《圆柱的体积》教案
作为一名默默奉献的教育工作者,通常会被要求编写教案,教案是保证教学取得成功、提高教学质量的基本条件。教案应该怎么写呢?下面是小编整理的《圆柱的体积》教案,欢迎大家分享。
《圆柱的体积》教案1
教学目标
1.理解圆柱体体积公式的推导过程,掌握计算公式
2.会运用公式计算圆柱的体积
教学重点
圆柱体体积的计算
教学难点
理解圆柱体体积公式的推导过程
教学过程
一、复习准备
(一)教师提问
1.什么叫体积?怎样求长方体的体积?
2.圆的面积公式是什么?
3.圆的面积公式是怎样推导的?
(二)谈话导入
同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)
二、新授教学
(一)教学圆柱体的体积公式.(演示动画“圆柱体的体积1”)
1.教师演示
把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体
2.学生利用学具操作
3.启发学生思考、讨论:
(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)
(2)通过刚才的实验你发现了什么?
①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了
②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化
③近似长方体的高就是圆柱的高,没有变化
4.学生根据圆的面积公式推导过程,进行猜想
(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?
(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?
(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?
5.启发学生说出通过以上的观察,发现了什么?
(1)平均分的份数越多,拼起来的形体越近似于长方体
(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体
6.推导圆柱的体积公式
(1)学生分组讨论:圆柱体的体积怎样计算?
(2)学生汇报讨论结果,并说明理由.
因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的`高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积×高)
(3)用字母表示圆柱的体积公式.(板书:V=Sh)
(二)教学例4.
1.出示例4
例4.一根圆柱形钢材,底面积是50平方厘米,高是2.1米,它的体积是多少?
2.1米=210厘米
50×210=10500(立方厘米)
答:它的体积是10500立方厘米.
2.反馈练习
(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?
(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?
(三)教学例5.
1.出示例5
例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?
水桶的底面积:
=3.14×
=3.14×100
=314(平方厘米)
水桶的容积:
314×25
=7850(立方厘米)
=7.8(立方分米)
答:这个水桶的容积大约是7.8立方分米.
三、课堂小结
通过本节课的学习,你有什么收获?
1.圆柱体体积公式的推导方法.
2.公式的应用.
四、课堂练习
(一)填表
class=Normal vAlign=top width=157>
底面积S(平方米)
class=Normal vAlign=top width=136>
高h(米)
class=Normal vAlign=top width=179>
圆柱的体积V(立方米)
class=Normal vAlign=top width=157>
15
class=Normal vAlign=top width=136>
3
class=Normal vAlign=top width=179> class=Normal vAlign=top width=157>
6.4
class=Normal vAlign=top width=136>
4
class=Normal vAlign=top width=179>
(二)求下面各圆柱的体积
(三)一个圆柱形水池,半径是10米,深1.5米.这个水池占地面积是多少?水池的容积是多少立方米?
五、课后作业
(一)求下列图形的表面积和体积(图中单位:厘米)
(二)两个底面积相等的圆柱,一个圆柱的高为4.5分米,体积为81立方分米.另一个圆柱的高为3分米,体积是多少?
六、板书设计
《圆柱的体积》教案2
教学目标:
1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
4、渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
教学难点:灵活应用圆柱的体积公式解决实际问题。
教学过程:
一、复习
1、复习圆柱体积的推导过程
长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积高,所以圆柱的体积=底面积高,即V=Sh。
2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。
二、解决实际问题
1、练习三第7题。
学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。
2、练习三第5题。
(1)指导学生变换公式:因为V=Sh,所以h=VS。也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习三第8题。
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的.圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习三第9、10题
(1)学生独立审题,完成9、10两题。
(2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)
(3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。
三、布置作业
完成一课三练的相关练习。
《圆柱的体积》教案3
尊敬的各位领导、老师:
大家好!今天,我说课的内容是北师大版小学数学六年级下册《圆柱的体积》。
一、 把握教材,目标定位
《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,我确定本节课的教学目标为:
1、知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。
2、过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、情感、态度、价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。
教学的重点和难点:
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
二、 把握学情,选择教法
(一)学情分析
六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
(二)、选择教法,实践课题。
《新课程标准》指出:数学教学应联系现实生活,使学生从中获得数学学习的积极情感体验,感受数学的力量。同时我紧密结合自己的课题“培养学生自主合作学习能力与学生数学素养的策略研究”、“在数学课上如何激发学生的学习兴趣”。通过教学实践,使学生学会自主学习和小组合作,培养学生的创新精神和小组合作及应用数学意识。因此,在本节课中,我认为运用活动教学形态,多媒体演示形态,采取“引导-合作-自主—探究”的教学方法,使每个学生都能参与到学习中,感受到学习的乐趣,从而突破本课的难点。
三、 教学策略的选择。
现代教育心理学认为:小学生思维的发展是从具体形象思维向抽象思维过渡的。因此,按小学认知规律从“具体感知-形成表象-进行抽象”的过程,我打算主要采用观察发现法、实验法,以及分组讨论、合作学习等形式,并运用多媒体辅助教学,让学生在观察、感知各种实物的基础上,动手操作,分组讨论、合作学习,教师恰当点拨,适时引导等方法及手段,激发学生的学习兴趣,调动学生的学习积极性,让学生通过动手操作、观察、实验得出结论,体现了以学生为主体、教师为主导的教学原则。
四、基于以上构想,我确定本节课的教学程序为:
教师活动: 创设情境 协作指导 拓展延伸
学生活动: 操作感悟 自主探究 实践应用
具体为三个环节进行教学:
1. 直观演示,操作发现
让学生充分利用直观教具观察、比较、动手操作、讨论交流,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
2. 巧设疑问,体现两“主”
教师通过设疑,指明观察方向,营造探究新知识的氛围,在引导学生归纳推理等方面充分发挥了其主导作用,有目的、有计划、有层次地启迪学生的思维,充分发挥了学生的主体作用。把学生当作教学活动的主体,成为学习活动的主人,使学生在观察、比较、讨论、研究等一系列活动中参与教学全过程,从而达到掌握新知识和发展能力的目的`。
3. 运用迁移,深化提高
运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。
现代课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。
本节课的教学,使学生掌握一些基本的学习方法
1. 学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2. 学会利用旧知转化成新知,解决新问题的能力。
3. 学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。
具体教学程序:
(一)、情景引入:
1、复习:
大家还记得长方体、正方体的体积怎样求吗?让学生说出公式。出示圆柱形水杯。(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?
(2)你能想办法计算出这些水的体积吗?
(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。
2、创设问题情景。
如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(板书课题:圆柱的体积)通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成"任务驱动"的探究氛围。
(二)、新课教学:
设疑揭题:同学们想一想,我们当初是如何推导出圆的面积计算公式的呢?演示推导圆的面积公式的转化过程。我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?引导学生小组合作交流、观察、既而动手操作。沿着圆柱底面把圆柱切开,可以得到大小相等的16块或更多块,启发学生说出转化成我们熟悉的长方体。同时引导学生观察转化前后两种几何形体之间的内在联系,圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?学生交流、进行验证、自己推导出圆柱体体积计算的公式。教师再用多媒体演示验证整个的具体操作过程,最后让学生说一说圆柱体计算公式的整个推导过程。引导学生用字母表示出来。
根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,亲自完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。
关于难点的突破,我主要从以下几个方面着手:
(1) 引导学生自己动手通过观察比较,明确圆柱体的体积与它的底面积和高有关。
(2) 运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。
(3) 充分利用直观教具,师生互动,小组合作,通过演示操作,帮助学生找出两种几何形体转化前后的关系。
(4) 根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。
3. 运用。出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:
(1)单位要统一
(2)求出的是体积要用体积单位。在掌握了圆柱体积计算的方法之后,安排例1进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。
(三)巩固练习,检验目标
1.练一练1题:计算各圆柱的体积,目的是让学生进一步理解巩固圆柱的体积公式。
2.完成练习第2题。通过练习,巩固新知识,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。
3.变式练习:已知圆柱的体积、底面积,求圆柱的高。
这道题的安排是对所学内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定式。
4.动手实践:让学生测量自带的圆柱体。
教师提问:如果要知道这个圆柱体积,该用什么方法?让学生说一说是怎样测量的?又是如何计算的?
这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。
(四)总结全课,深化教学目标
结合板书,引导学生说出本课所学的内容,我是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来丰富自己的头脑,思考问题。
板书设计: 圆柱的体积
长方体的体积=(长×宽)×高
↓ ↓ ↓
圆柱体的体积=底面积 × 高
↓ ↓
V = S h
本节课我采用的是图示式板书,这样能让学生清楚地看出圆柱体积公式的推导过程,以及两个形体间的密切联系,同时便于学生对于公式的记忆和理解。
五、教学效果预测:
新课程标准认为:“数学教学是师生交往、互动与共同发展的过程,教师是课堂气氛的调节者”。本节课我始终注意以人为本,从学生的兴趣出发,通过动手实践、自主探究、自主发现、使学生充分地理解、掌握圆柱体体积公式的推导过程,并熟练地加以运用。总之,本节课的设计,我遵循小学生的认知规律,由直观到抽象,由感性到理性,采用分组讨论,合作学习等形式,让学生参与教学全过程,增强了学生的主人翁意识。并用计算机多媒体教学辅助教学,激发了学生的学习兴趣,提高了教学效率与效益。在圆满的同时,我也觉得会有一些可能出现问题的地方:比如,在具体的运用、实践中一定要注意和圆柱的表面积加以区别,这一点我在实际的教学中会多加以指导和训练。
以上是我《圆柱的体积》的说课设计,谢谢大家!
《圆柱的体积》教案4
教学目标:
1、知识与技能:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程能够运用公式正确地计算圆柱的体积。
2、过程与方法:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究法。
3、情感态度与价值观:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
教学重点:掌握和运用圆柱体积计算公式进行正确计算。
教学难点:理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。
教学过程:
一、情景导入:
1、教师:(出示)多么温馨的场面,今天是亮亮和爷爷的生日,幸福的一家人围坐在饭桌前享用着美酒佳肴,你能观察到今天的饭菜比平时多了什么吗?
学生:1、比平日多了两个蛋糕。
2、两个蛋糕一个大一个小。
3、蛋糕都是圆柱形的。
2、教师:同学们观察的很仔细,那你能根据刚学过的知识说一说爷爷蛋糕较大意味着什么吗?
学生:蛋糕大,意味着圆柱的体积大。
3、教师:那你还知道什么是圆柱的体积吗?
学生:圆柱的体积就是圆柱体占空间的大小。
4、教师:两个蛋糕的体积相差较多,我们容易比较出那个体积大,如果体积相差较小我们怎么比较呢?
学生:拿出准备的圆柱体进行比较,讨论,各小组分别说明比较的方法并展示。
教师:板书:圆柱的体积
二、课上探究
1、教师:同学们回忆一下我们还学过那些立体图形?
学生:还学过正方体和长方体。
教师:它们的体积怎样计算?(多媒体出示长方体)有什么共同点?
学生:长方体的体积=长×宽×高,长×宽=底面积,V=sh;正方体的体积=棱长×棱长×棱长,棱长×棱长=底面积,V=sh;共同点都是底面积乘高。
2、猜测圆柱的体积与什么有关
师:拿出圆柱体,让学生猜想圆柱体积与什么有关。
生1、圆柱的体积与圆柱的高有关。
生2、圆柱的'体积与圆柱的底面积有关。
生3、圆柱的体积与圆柱的底面周长有关。
生4、圆柱的体积与圆柱的底面半径有关。
3、推导圆柱体积公式
①师: 同学们观察圆柱的底面是一个圆,学习圆面积时,我们是把圆转化成哪种图形来求面积的?
生: 把圆转化成近似长方形来求面积的。
②师:我们一起来回忆把圆转化成近似长方形的过程,()
师: 你发现了什么?
生:我发现把圆平均分成的份数越多,拼成的图形越接近长方形。
③师:圆柱可以看成多个圆片摞在一起,把圆剪拼成的每个近似长方形也摞在一起。我们就把圆柱转化成我们以前学过的哪种立体图形呢?
生:把圆柱转化成近似的长方体。
④师用圆柱体演示转换过程,让学生说怎样转换的。
生:把圆柱平均分成16份拼成一个近似的长方体。
⑤师: 为了让大家看的更清楚,我们再演示一下这个转化过程。
再次演示把圆柱等分16等份,拼成近似的长方体。
再出示32等份的圆柱体拼成的近似的长方体,让学生观察,发现了什么?
生:分成的份数越多,拼成的图形越接近长方体。
⑥师:出示圆柱体和拼成的长方体,让学生观察,拼好的长方体与原来的圆柱比较,发现了什么?
学生分组讨论,汇报:
生:长方体的高和圆柱的高相等。
生:长方体的底面积和圆柱的底面积相等。
⑦师:你是怎么想的?
生:刚才我们复习了把圆转化成长方形,所以圆柱的底面积和长方体的底面积相等。
⑧师:再次用圆柱拼成近似长方体的过程,让学生仔细观察圆转化成长方形后,面积相等。
生:长方体的长是圆柱底面周长的一半,宽是圆柱底面半径
师:演示 长方体的体积=底面积×高
⑨师:那么圆柱的体积等于什么呢?
生:圆柱的体积=底面积×高
⑩下面我们再一起回忆一下转化的过程,()
让学生独立填答案,汇报:
三、我们知道了圆柱的体积公式,下面我们就来解决一些实际问题。
《圆柱的体积》教案5
教学目标:
1、渗透转化思想,培养学生的自主探索意识。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
教学重点:
掌握圆柱体积的计算公式。
教学难点:
圆柱体积的计算公式的推导。
教学准备:主题图、圆柱形物体
教学过程:
一、复习:
1、长方体的体积公式是什么?
(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)
2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、新课:
1、圆柱体积计算公式的推导:
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的'立体图形就越接近于长方体了。
(课件演示将圆柱细分,拼成一个长方体)
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)
2、教学补充例题:
(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?
(2)指名学生分别回答下面的问题:
① 这道题已知什么?求什么?
② 能不能根据公式直接计算?
③ 计算之前要注意什么?
(计算时既要分析已知条件和问题,还要注意要先统一计量单位)
(3)出示下面几种解答方案,让学生判断哪个是正确的.
①V=Sh
50×2.1=105(立方厘米)
答:它的体积是105立方厘米。
②2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的体积是10500立方厘米。
③50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的体积是1.05立方米。
④50平方厘米=0.005平方米
V=Sh
0.005×2.1=0.0105(立方米)
答:它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.
(4)做第20页的“做一做”。
学生独立做在练习本上,做完后集体订正。
3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)
4、教学例6:
(1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)
(2)学生尝试完成例6。
① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)
5、比较一下补充例题、例6有哪些相同的地方和不同的地方?
(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积。)
三、巩固练习:
1、做第26页的第1题:
2、练习五的第2题:
这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。
四、全课总结:
《圆柱的体积》教案6
●教学内容
苏教版六年级下册第二单元圆柱和圆锥第三课时P17~18页例4,P2页练一练,练习一1~3。
●设计说明
教学目标:
知识技能:结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。
数学思考:让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。
解决问题:通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。
情感态度:提高学习数学的兴趣和学好数学的信心。
教学重点:
掌握和运用圆柱体积计算公式。
教学难点:
利用“转化”的方法推导圆柱体积公式的过程。
●课时安排
1课时
●教学准备
教师准备:多媒体课件一套。把圆柱沿底面等分成16份的教具。 学生准备:预习教材,把圆柱沿底面等分成16份的教具。
●教学过程
一、创设情境,提出问题
某玩具厂厂长,他们厂新开发了一种积木玩具,这三个积木的底面积和高都相等,他想比较一下这三个积木的体积的大小,同学们有什么方法?
二、动手实验,探索公式
1.观察、比较,建立猜想。引导生观察例4中的三个几何体,提问:
⑴长方体、正方体的'体积相等吗?为什么?
(板书:长方体的体积=底面积×高)
⑵圆柱的体积与长方体、正方体的体积可能相等吗?这三个几何体的底面积和高都相等,它们的体积有什么关系?
2.实验操作,验证猜想
让学生自主探究(材料:圆柱体积木、圆柱体插拼教学具、师准备课件),想办法验证圆柱的体积与长方体、正方体的体积相等。
教师提示:你能想办法把圆柱转化成长方体吗?圆是如何转化成长方形的,可以模仿这样的方法来转化。
⑴小组合作研究怎样将圆柱体转化成一个长方体。
⑵小组代表汇报,全班交流。
(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励) ⑶演示操作。
a.请一名学生演示用切、插、拼的方法把圆柱体转化成长方体。其他学生模仿操作。
b.思考:这是一个标准的长方体吗?为什么?如果分割的份数越多,你会有什么发现?
c.电脑演示圆柱体转化成长方体的过程(从16等份到32等份再到64等份)。
3.观察比较,推导公式。
a.小组讨论:
圆柱体转化成长方体后,什么变了,什么没有变?
b.根据学生的观察、分析、推想,老师完成板书:
长方体的体积=底面积× 高
圆柱的体积 = 底面积× 高
《圆柱的体积》教案7
教学目标
圆柱的体积(1)
圆柱的体积(教材第25页例5)。
探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。
教学重难点
1.掌握圆柱的体积公式,并能运用其解决简单实际问题。
2.理解圆柱体积公式的推导过程。
教学工具
推导圆柱体积公式的圆柱教具一套。
教学过程
复习导入
1、口头回答。
(1)什么叫体积?怎样求长方体的体积?
(2)怎样求圆的面积?圆的面积公式是什么?
(3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。
2、引入新课。
我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的'面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?
教师板书:圆柱的体积(1)。
新课讲授
1、教学圆柱体积公式的推导。
(1)教师演示。
把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。
(2)学生利用学具操作。
(3)启发学生思考、讨论:
①圆柱切开后可以拼成一个什么立体图形?
学生:近似的长方体。
②通过刚才的实验你发现了什么?
教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?
学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。
(4)学生根据圆的面积公式推导过程,进行猜想:
①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?
②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?
③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?
(5)启发学生说出:通过以上的观察,发现了什么?
①平均分的份数越多,拼起来的形状越接近长方体。
②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。
(6)推导圆柱的体积公式。
①学生分组讨论:圆柱的体积怎样计算?
②学生汇报讨论结果,并说明理由。
教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。
2、教学补充例题。
(1)出示补充例题:一根圆柱形钢材,底面积是1250px2,高是2.1m。它的体积是多少?
(2)指名学生分别回答下面的问题:
①这道题已知什么?求什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。
(3)出示下面几种解答方案,让学生判断哪个是正确的。
①50×2.1=105(cm3)答:它的体积是2625px3。
②2.1m=5250px 50×210=10500(cm3)
答:它的体积是262500px3。
③1250px2=0.5m2 0.5×2.1=1.05(m3)
答:它的体积是1.05m3。
④1250px2=0.005m2
0.005×2.1=0.0105(m3)
答:它的体积是0.0105m3。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、③种解答要说说错在什么地方。
(4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?
教师板书:V=πr2h。
课堂作业
教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。
答案:“做一做”:1. 6750(cm3)
2. 7.85m3
第1题:(从左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
课堂小结
通过这节课的学习,你有什么收获?你有什么感受?
课后作业
完成练习册中本课时的练习。
第4课时圆柱的体积(1)
课后小结
1.“圆柱的体积”是学生在掌握了圆柱的基本特征以及长方体、正方体体积计算方法等基础上学习的。它是今后学习圆锥体积计算的基础。
2.采用小组合作学习,从而引发自主探究,最后获取知识的新方式来代替教师讲授的老模式,能取得事半功倍的效果。
3.推导公式时间过长,可能导致练习时间少,练习量少,要注意把控。
课后习题
教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。
答案:“做一做”:1. 6750(cm3)
2. 7.85m3
第1题:(从左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
《圆柱的体积》教案8
教学目标:
1、使学生能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
3、渗透转化思想,培养学生的自主探索意识。
教学重点:
掌握圆柱体积的计算公式。
教学难点:
灵活应用圆柱的体积公式解决实际问题。
教学过程:
一、复习
1、复习圆柱体积的推导过程
长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。
2、复习长方体、正方体的体积公式后,让学生独立完成练习三第6题求体积部分,并指名板演。
二、解决实际问题
1、练习三第4题。
学生独立练习,强调选取有用信息,培养认真审题习惯。
2、练习三第5题。
(1)指导学生变换公式:因为V=Sh,所以h=V÷S。也可以列方程解答。
(2)学生选择喜爱的方法解答这道题目。
3、练习三第10题。
指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。
4、练习三第8题。
(1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。
(2)在充分理解题意后学生独立完成,集体订正。
4、练习三第9题
(1)学生独立审题后完成。
评讲:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh)
5、练习三第11题。
此题既可以用外圆柱体积减内圆柱的体积,也可以用圆环的面积乘高。
(3)三、布置作业
完成练习中未做完的习题
教学反思
第五课时特别关注
练习三第4题,在教学中必须应该特别关注。
关注理由:
1、有多余条件,是培养学生收集有用信息的契机。
这道题中出现两个圆柱体的高,分别是花坛的高0.8米和花坛里面填土的高0 .5米。学生该如何合理做出选择呢,关键要通过问题来思考。因为问题是求“花坛中共需要填土多少方”,所以应该选用“填土的高度是0.5米”这条数学信息。
在课堂中,我还要求学生思考,如果要用上“0.8米”这个条件下,可以怎么改变问题。有的学生说“可以问花坛的体积是多少立方米”,还有的同学说“可以求花坛中空间的体积是多少立方米”。通过这样的训练,能够有效培养学生收集、处理信息的能力,同时提升他们综合分析问题的能力。
2、有容易忽视的条件,是培养学生认真审题的契机。
一般习题中的数据是用阿拉伯数字呈现,可这道题的问题是求“两个花坛中共需要填土多少方”,这里隐含着一个极易被学生忽视的数据“两个”。其实,配套的插图中也明显绘制出了2个花坛,但在做题中许多学生仍旧会出错。所以,应抓住此题,培养学生良好审题的习惯。如在做这类习题时,建议首先将单位圈出来,以确保列式时单位统一。还可以将问题划横线,以提醒自己将生活问题转化为数学问题等。
学生巧解
——巧求削去部分的体积
今天,全班同学做这样一题:一块长方体木块体积是20立方分米,它的底面为正方形,边长为2分米。现在,将它削成一个的圆柱体,求削去的部分是多少立方分米?
我因为做得既对又快,最终获得全班第一名的成绩。通过对比,我发现自己的方法比同学们巧妙。
同学们的'解法是先求长方体的高(即圆柱体的高),用20÷(2×2)=5分米,然后求圆柱体的体积,列式为3.14×(2÷2)2×5=15.7立方分米,最后求削去部分的体积是20—15.7=4.3平方分米。
而我在做这一题时,想起上学期在正方形中画的圆,圆的面积占正方形面积的157/200的结论。因为直柱体的体积都可以写成底面直径乘高,而长方体和削成的圆柱体高相等,所以削成的圆柱体体积也应该是长方体体积的157/200。所以直接用20×(1—157/200)也等于4.3立方分米。
《圆柱的体积》教案9
《数学课程标准》指出“数学教学要让学生经历知识的形成过程,能够初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活和学科学习中的问题,增加应用数学的意识”。新课标注重的不只是让学生掌握学习中的结论,更关注的是个性的体验,让学生在活动中体验 、在实践中运用即让学生主动参与、实践交流、合作探究中去经历知识形成的过程,通过不断地发现问题、提出问题、分析问题、解决问题,积累生活中的经验,培养应用数学的能力,体验数学的乐趣,感受数学在生活中的应用价值。
圆柱的体积这节课是在学生已经初步理解体积和容积的含义、掌握了长方体和正方体体积计算方法的基础上学习的。本节内容包括圆柱的体积计算公式的推导,利用公式计算圆柱的体积,能运用圆柱的体积解决生活中的实际问题。
教学情境如下:
一:情境引入,感性认识
师:(拿出橡皮泥)你知道它的体积吗?你用什么方法知道的,说给大家听一听。
生:捏成长方体或正方体,量出长、宽、高后再用公式:长×宽×高计算出体积。
师:你还能捏成我们学过的其他图形吗? (学生操作:捏成圆柱)
师:现在你会计算它的体积吗?猜一猜,怎么办呢?(学生操作:圆柱捏成长方体)
师:你发现了什么?
生:形状变,体积不变.
师:我们曾经学过可以把什么图形通过什么方法转化成什么图形求面积呢?
生:圆切割拼成一个近似的长方形。
师: 圆柱形橡皮泥的体积会求了, 如果要求圆柱体容器里水的体积该怎么办?
生:把水倒入长方体容器中,再测量计算。
师:要求圆柱体铁块的体积呢?
生:把它浸入水中,求出排出水的体积。
师:要求商场门口圆柱体柱子的体积呢?(生面面相觑,不知所措)。
二:自主探究,迁移转化
1、引导
师:有的同学把圆柱转化成我们已学过的立体图形,来计算它的体积。
(让学生互相讨论,应如何转化,然后组织全班汇报)
生:把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。
2、 操作
学生拿出事先准备好的萝卜(圆柱体模具)和小刀,让学生动手切一切,拼一拼。
3、感知:将圆柱体模具(已切好)当场演示。
①让一位学生把切割好的一半拿上又叉开;
②另一位学生将切割好的另一半拼合上去;
③观察得到一个什么形体?同时你发现了什么?
以四人小组为单位进行探索、讨论、总结。
小组汇报:
生:拼成的长方体和圆柱体不变的有:体积、底面积、高等;变了的有:侧面积、表面积、底面周长。
4、课件演示,让学生明白:分成的扇形越多,拼成的立体图形就越接近于长方体。
5、讨论:圆柱与所拼成的近似长方体之间的有什么联系?你发现了什么?
6、汇报:
圆柱→近似长方体
①体积相等②底面积相等③高相等④表面积不相等,
根据学生的回答板书如下:
长方体的体积=底面积×高
↓ ↓ ↓
圆 柱 体 的 体 积 =底面积×高
引导学生用字母表示计算公式:V=Sh
师:要用这个公式计算圆柱的'体积必须知道什么条件?
生:底面积和高。
师:如果给你圆柱的直径(半径或者周长)和高,如何求圆柱的体积呢?
生:根据公式先求出半径,再求出底面积即可…
教学反思:
教学中充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、实践、比较找两个图形之间的关系,推导出圆柱的体积计算公式。直观有效的教学过程不需要教师繁复的讲解,学生在自主动手探索,互动交流讨论的学习空间里思维的火花自然而然地爆发出来。教学内容和重难点不仅得到实施和解决,更重要的是学生的综合能力得到提高。
实际教学中教师只有不断诱发学生主动思维的愿望,营造无拘无束的思维空间,让学生经历知识发现、探索、创造的过程,才能更有效地培养学生的创新能力,还要使学生在学习中发现数学知识“从生活中来到生活中去”的理念。
《圆柱的体积》教案10
探究目标:
1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。
2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。
3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。
4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。
教学重难点:
学生会应用圆柱体积公式解决实际问题。
探究过程:
一、迁移引入
提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。
提问:如果已知的是底面半径和高,该怎么求呢?
二、自主探究
1、出示长方体鱼缸。
要计算这个长方体鱼缸能装多少水,就是求什么?
怎样求这个长方体的容积呢?
2、出示圆柱形鱼缸。
⑴估测。这个圆柱形鱼缸的容积大约是多少?
⑵操作、汇报。如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。
学生可能的回答有:
生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)
生2:我们小组测量的是底面直径和高。底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)
生3:我们测量的是底面半径和高。3.14×152×12=8478(立方厘米)
⑷评价。
组织学生间进行评价。你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。
⑸反思。引导学生将实际计算结果与自己的估测结果进行对比。自己矫正偏差。
⑹延伸。如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?
3、自学例题。
组织学生自学课本例5。同桌的两名同学结合例5的解答过程提出相关的数学问题,进行互问互答。
三、巩固练习
做教科书第80页“做一做”中的第2题、练习二十一的'第5题。
学生独立完成,指名板演,集体评讲。
四、创意作业
学生综合运用所学的知识,进行计算、绘图、裁剪、粘贴等多项操作活动。
在一张长30厘米,宽20厘米的长方形纸上进行合理的裁剪,做一个无盖的圆柱形笔筒。比一比,谁做的笔筒容积最大?
《圆柱的体积》教案11
教学内容:
本内容是六年级下册第8页至第9页。
教材分析:
本节内容是在学生了解了圆柱体的特征,掌握了圆柱表面积的计算方法基础上进行教学的,是几何知识的综合运用,为后面学习圆锥的体积打下基础,教材重视类比,转化思想的渗透,引导学生经历“类比猜想——验证说明”的探索过程,掌握圆柱体积的计算方法。
学生分析:
学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过“类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。
学习目标:
1、使学生理解和掌握圆柱体积的计算方法,在推导圆柱体积计算公式的过程中培养学生初步的空间观念和动手操作的技能。
2、使学生能够通过观察,大胆猜想和验证获得新知识在教学活动过程中发展学生的推理能力,渗透转化思想。
3、引导学生积极参与数学学习活动,培养学生的数学意识和合作意识。
教学过程:
出示教学情境:一个杯子能装多少水呢?
想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?
让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出相关数据,就能求出水的体积;倒入量筒里直接得到水的体积。
(设计意图:让学生根据自己已有的知识经验,把圆柱形杯子里的水倒入长方体或正方体容器,使形状转化成自己熟悉的长方体或正方体,只要求出长方体或正方体的体积就知道水的体积。)
出示第二情境:圆柱形的木柱子的体积是多少?用这种方法还行吗?怎么办?
(设计意图:创设问题情境,引起学生认知冲突,激起学生求知欲望,使学生带着积极的思维参与到学习中去,从而产生认知的飞跃。)
探究新知:怎样计算圆柱的体积?(板书课题:计算圆柱的体积)
大胆猜想:你觉得圆柱体积的大小和什么有关?圆柱的体积可能等于什么?(说说猜想依据)
长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。
(设计意图:在新知识的探索中,合理的猜测能为探索问题,解决问题的思维方向起到导航和推进作用。)
验证:能否将圆柱转化为学过的立体图形?
让学生利用学具动手操作来推导圆柱体积公式(小组合作探究:给学生提供充分的时间和空间),引导学生把圆柱体底面平均分成多个小扇形,沿着高切开,拼成一个近似的长方体。
思考:圆柱体转化成长方体为什么是近似的长方体?怎样才能使转化的立体图形更接近长方体?
(设计意图:让学生明确圆柱体的底面平均分成的扇形越多拼成的立体图形就越接近于长方体,渗透“极限”的思想。)
用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。
学生讨论交流:
1、把圆柱拼成长方体后,什么变了,什么没变?
2、拼成的长方体与圆柱之间有什么联系?
3、通过观察得到什么结论?
得到:圆柱的体积=底面积×高
V=Sh=πr2h
(设计意图:在数学活动中通过观察比较培养学生抽象概括能力,及逻辑思维能力。)
练习设计:
1、计算下面各圆柱的体积。
(1)S=60cm2 h=4cm(2)r=1cm h=5cm(3)d=6cm h=10cm
2、算一算:已知一根柱子的底面半径为0。4米,高为5米,你能算出它的体积吗?
(设计意图:使学生达到举一反三的效果,从而训练学生的技能,灵活掌握本课重点。)
3、试一试:
(1)一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个桶的容积是多少升?
(2)一根圆柱形铁棒,底面周长是12。56厘米,长是100厘米,它的.体积是多少?
(设计意图:运用圆柱的体积计算公式解决生活实际问题,切实体验到数学源于生活,身边处处是数学。)
4、拓展练习:
(1)填表:
填表后观察:你发现了什么?先独立思考,再小组交流,最后汇报。
(设计意图:在教学时应找出知识间存在着的密切联系,帮助学生建立一个较为完整的知识系统,为以后“比例”的教学作了孕伏)
(2)一个柱形容器的底面直径是10厘米,把一块铁块放入这个容器后,水面上升2厘米,这块铁块的体积是多少?
(设计意图:体会测量不规则物体体积的方法,认识到数学的价值体验,使学生的思维处于积极的状态,培养学生思维灵活性,提高学生创造性解决问题的能力。)
课堂小结:谈谈这节课你有哪些收获?
(设计意图:采用提问式小结,让学生畅谈本节课的收获,包括知识,能力,方法,情感等,通过对本节课所学知识的总结与回顾,培养学生的归纳概括能力,使学生学到的知识系统化,完整化。)
教学反思:
本节课采用新的教学理念,创设情境导入渗透转化思想,让学生在兴趣盎然中径历自主探究,独立思考、合作交流从而获得新知。
情境导入渗透转化思想激发学生的学习欲望,课的开始让学生想方法测量出圆柱形水杯中水的体积,学生想出把水倒入长方体容器中转化成长方体的体积来计算出水的体积,初步引导学生把圆柱体的体积转化为长方体的体积。教会学生数学方法,注重让学生在操作中探究,动手操作能展示学生个体的实践活动,在动手过程中易于激发兴趣,积累知识,发展思维,利于每一位学生自主,独立,创造性的学习知识,发展他们的能力,课中让学生经历知识产生的过程,理解和掌握数学基础知识,让学生在体验和探索过程中不断积累知识,逐步发展其空间观念,促进学生的思维发展。
《圆柱的体积》教案12
教学目标
1.理解圆柱体体积公式的推导过程,掌握计算公式.
2.会运用公式计算圆柱的体积.
教学重点
圆柱体体积的计算.
教学难点
理解圆柱体体积公式的推导过程.
教学过程
一、复习准备
(一)教师提问
1.什么叫体积?怎样求长方体的体积?
2.圆的面积公式是什么?
3.圆的面积公式是怎样推导的?
(二)谈话导入
同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)
二、新授教学
(一)教学圆柱体的体积公式.(演示动画“圆柱体的体积1”)
1.教师演示
把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.
2.学生利用学具操作.
3.启发学生思考、讨论:
(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)
(2)通过刚才的实验你发现了什么?
①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.
②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.
③近似长方体的高就是圆柱的高,没有变化.
4.学生根据圆的面积公式推导过程,进行猜想.
(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?
(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?
(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?
5.启发学生说出通过以上的观察,发现了什么?
(1)平均分的份数越多,拼起来的形体越近似于长方体.
(2)平均分的份数越多,每份扇形的底面就越小,弧就越短,拼起来的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体.
6.推导圆柱的体积公式
(1)学生分组讨论:圆柱体的体积怎样计算?
(2)学生汇报讨论结果,并说明理由.
因为长方体的体积等于底面积乘高.(板书:长方体的体积=底面积×高)近似长方体的体积等于圆柱的`体积,(板书:圆柱的体积),近似长方体的底面积等于圆柱的底面积,(板书:底面积)近似长方体的高等于圆柱的高,(板书:高)所以圆柱的体积等于底面积乘高.(板书:圆柱的体积=底面积×高)
(3)用字母表示圆柱的体积公式.(板书:V=Sh)
(二)教学例4.
1.出示例4
例4.一根圆柱形钢材,底面积是50平方厘米,高是2。1米,它的体积是多少?
2。1米=210厘米
50×210=10500(立方厘米)
答:它的体积是10500立方厘米.
2.反馈练习
(1)一根圆柱形木料,底面积是75平方厘米,长90厘米,它的体积是多少?
(2)一个圆柱形罐头盒的内底面半径是5厘米,高15厘米,它的容积是多少?
(三)教学例5.
1.出示例5
例5.一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米,这个水桶的容积是多少立方分米?
水桶的底面积:
=3。14×
=3。14×100
=314(平方厘米)
水桶的容积:
314×25
=7850(立方厘米)
=7。8(立方分米)
答:这个水桶的容积大约是7。8立方分米.
三、课堂小结
通过本节课的学习,你有什么收获?
1.圆柱体体积公式的推导方法.
2.公式的应用.
四、课堂练习
(一)填表
底面积S(平方米)15
高h(米)3
圆柱的体积V(立方米)6.4
(二)求下面各圆柱的体积.
(三)一个圆柱形水池,半径是10米,深1。5米.这个水池占地面积是多少?水池的容积是多少立方米?
五、课后作业
(一)求下列图形的表面积和体积.(图中单位:厘米)
(二)两个底面积相等的圆柱,一个圆柱的高为4。5分米,体积为81立方分米.另一个圆柱的高为3分米,体积是多少?
六、板书设计
《圆柱的体积》教案13
教学内容:
教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。
教学目标:
1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。
重点难点:
掌握圆柱体积公式的推导过程。
教学资源:
PPT课件 圆柱等分模型
教学过程:
一、联系旧知,设疑激趣,导入新课。
1.呈现例4中长方体、正方体和圆柱的直观图。
2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?
启发:大家想不想知道圆柱的`体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?
3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。
二、动手操作,探索新知,教学例4
1.观察比较
引导学生观察例4的三个立体,提问
⑴这三个立体的底面积和高都相等,它们的体积有什么关系?
⑵长方体和正方体的体积一定相等吗?为什么?
⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?
2.实验操作
⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。
提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?
⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。
⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?
操作教具,让学生观察。
引导想像:如果把底面平均分的份数越来越多,结果会怎么样?
演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。
3.推出公式
⑴提问:拼成的长方体与原来的圆柱有什么关系?
指出:长方体的体积与圆柱的体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。
⑵想一想:怎样求圆柱的体积?为什么?
根据学生的回答小结并板书圆柱的体积公式
圆柱的体积=底面积高
⑶引导用字母公式表示圆柱的体积公式:V=sh
长方体的体积 = 底面积 高
圆柱的体积 = 底面积 高
用字母表示计算公式V= sh
三、分层练习,发散思维,教学试一试
⑴让学生列式解答后交流算法。
⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?
(s和h,r和h,d和h,c和h)
四、巩固拓展练习
1.做练一练第1题。
⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?
⑵各自练习,并指名板演。
⑶对照板演,说说计算过程。
2.做练一练第2题。
已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。
五、小结
这节课我们学习了什么?有哪些收获?还有什么疑问?
六、作业
练习三第1~3题。
《圆柱的体积》教案14
教学内容:
北师大版小学数学教材六年级下册第8—10页。
教学目标:
1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,能够运用公式正确的计算圆柱的体积和容积。
2、初步学会用转化的思想和方法,提高解决实际问题的能力。
教学重点、难点:
重点:掌握圆柱体积的计算公式。
难点:圆柱体积计算公式的推导。
教学过程:
一、情境导入
1、出示教学情境:怎样用学过的知识测量出老师的水杯里装了多少毫升的水?
想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?
让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出长方体的长、宽和水的高,就能求出水的体积。
2、出示第二情境:圆柱形的木柱子、压路机的车轮这样的圆柱用这种方法还行吗?怎么办?
怎样计算圆柱的体积?这就是我们本节课要研究的问题。(板书课题:计算圆柱的体积)
二、探究新知:
1、大胆猜想:你觉得圆柱体积的大小和什么有关?
学生猜想,教师出示相应的课件演示,让学生观察,体会圆柱的体积和它的底面积和高,有关系,有怎样的关系。
2、圆柱的体积可能等于什么?(说说猜想依据)
长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。
(用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。)
学生讨论交流:
(1)把圆柱拼成长方体后,什么变了,什么没变?
(2)拼成的长方体与圆柱之间有什么联系?
(3)通过观察得到什么结论?
得到:圆柱的体积=底面积×高 V=Sh
三、拓展交流
要求圆柱的体积只要找到它的底面积和高就可以,分别讨论知道半径、直径、地面周长,该怎么求出圆柱的体积,总结出公式。
四、练习设计:
1、想一想,填一填:
把圆柱体切割拼成近似(),它们的()相等。长方体的高就是圆柱体的( ),长方体的`底面积就是圆柱体的( ),因为长方体的体积=(),所以圆柱体的体积=()。用字母“V”表示( ),“S”表(),“h”表示( ),那么,圆柱体体积用字母表示为( )
2、判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。×
(2)圆柱体的高越长,它的体积越大。×
(3)圆柱体的体积与长方体的体积相等。×
(4)圆柱体的底面直径和高可以相等。√
3、分别计算下列各图形的体积,再说说这几个图形体积计算方法之间的联系。
4×3×8
6×6×6
3.14×(5÷2)2×8
=96(cm3)
=216(cm3)
=157(cm3)
4、计算下面各圆柱的体积。
60×4
3.14×12×5
3.14×(6÷2)2×10
=240(cm3)
=15.7(cm3)
=282.6(dm3)
5、这个杯子能否装下3000mL的牛奶?
3.14×(14÷2)2×20
=3077.2(cm3)
=3077.2(mL)
3077.2mL>3000mL
答:这个杯子能装下3000mL的牛奶。
五、课堂小结:谈谈这节课你有哪些收获?
《圆柱的体积》教案15
教学内容:教材第12页例3、练一练,练习二第6~11题。
教学要求:使学生进一步认识体积的计算方法,能根据不同的条件求圆柱的体积,学会计算套管体积的计算方法,井能应用于实际求出物体的重量。
教学重点:计算套管体积的计算方法。
教学难点:根据不同的条件求圆柱的`体积。
教学过程:
一、铺垫孕伏:
1.求下列圆柱的体积(口答列式)。
(1)底面积3平方分米,高4分米;
(2)底面半径2厘米,高2厘米;
(3)底面直径2分米,高3分米。
追问:圆柱的体积是怎样计算的?(板书:V=Sh)
2.复习环形面积的计算公式。
提问:怎样计算环形面积?你能举例和同学们说一说吗?小组交流。
3.引入新课。
我们已经学习过圆柱的体积计算。这节课,就在计算圆柱体积的基础上,学习套管体积的计算。(板书课题)
二、自主探究:
1.教学例3。
出示例3,读题。提问:这道题求什么?要求钢管的质量先要求什么?怎样求钢管的体积?小组讨论。解答这道题还要注意些什么?(单位,取近似数)指名学生板演,其余学生做在练习本上。集体订正,说明每一步求的什么,怎样求的。
2.新课小结。
提问:怎样计算套管体积?如果知道套管的内周长和外周长几套管的长,怎样求套管的体积?
三、巩固练习
1.做练一练第1题。
指名两人板演,其余学生分两组,每组-题做在练习本上。集体订正。
2.做练习二第6题。
让学生在练习本上完成。指名学生口答算式,老师板书。结合让学生说一说是怎样想的。
四、布置作业
练习二第7、8题及数训。
【《圆柱的体积》教案】相关文章:
圆柱的体积教案03-19
圆柱的体积教案15篇03-29
《圆柱的体积》教案15篇04-01
《圆柱的体积》教案合集7篇01-29
关于《圆柱的体积》教案三篇02-12
《圆柱的体积》说课稿01-16
《圆柱的体积》教案汇编七篇07-08
《圆柱的体积》教案锦集6篇07-08
《圆柱的体积》教案集锦五篇07-27