当前位置:9136范文网>教育范文>教案>小数的意义教案

小数的意义教案

时间:2023-02-17 11:10:28 教案 我要投稿

小数的意义教案(15篇)

  作为一名辛苦耕耘的教育工作者,时常需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。那么应当如何写教案呢?下面是小编精心整理的小数的意义教案,仅供参考,大家一起来看看吧。

小数的意义教案(15篇)

小数的意义教案1

  【教学内容】

  教科书第50~51页。

  【教学目标】

  1.通过对生活中常见小数的探讨,体会小数产生的必要性,感悟小数表示的意义,同时理解、掌握小数的计数单位和进率。

  2.通过学习,培养学生应用数学知识解释新知的能力,培养合作交流与探索的能力,提高自主探究学习的能力。

  【教学过程】

  一、情境引入。

  1.出示信息:

  (1)一盒饼干12.8元。 (2)张叔叔身高1.73米。

  (3)一个苹果质量0.4千克。 (4)百米世界记录9.58秒。

  2.学生说一说这些小数的'含义。(学生可能对0.4千克、9.58秒理解的不够清楚)

  3.引入:我们有必要对小数进行更深入的研究。

  二、新知探索。

  1.教师引导学生结合线段图研究“ 0.1米”、“0.3米”等一位小数的具体含义。

  2.师生结合线段图研究“0.01米”、“0.08米”等两位小数的具体含义。

  3.学生自主结合线段图研究“0.001米”、“0.012米”等三位小数的具体含义。

  4.教师引导学生总结:一位小数、两位小数、三位小数、……分别表示十分之几、百分之几、千分之几、……;它们的计数单位分别为十分之一、百分之一、千分之一、……。

  三、课堂练习。

  1.看图写分数和小数、把对应的分数和小数连一连、说一说每个小数所包含的计数单位的个数。

  2.学生说一说“0.4千克”、“9.58秒”的含义。

  3.学生说一说下面信息中小数的含义。(学生体会有了小数就可以表现出物体细微的特点)

  (5)一颗灰尘的质量大约0.0000007克。 (6)一种细菌的长度大约0.00003米。

  四、课堂总结。

小数的意义教案2

  教学目标:

  1、知识与技能:①使学生了解小数的产生。②理解小数的意义。③掌握小数的计算单位及单位间的进率。

  2、过程与方法:①培养学生的动手操作能力及观察力。②培养学生的抽象概括能力。

  3、情感态度与价值观:①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。②渗透事物之间普遍联系的观点、实践第一的观点。

  教学重点:理解和抽象小数的意义。

  教学难点:抽象小数的意义。

  教学过程

  一、独立学习

  1、把1米平均分成10份,每份是多少米?3份呢?

  2、分母是10的分数可以写成几位小数?

  3、把1米平均分成1000份,每份长多少?分母是1000的分数可以写成几位小数?

  4、思考什么是分数?什么是小数?

  (学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)

  二、协作探究

  (一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。

  (二)师生互探

  1、解答各小组自学中遇到不会的问题。

  (1)让学生提出不会的问题并解决。

  (2)教师引导学生解决学生还遗留的问题。

  2、交流小数的意义。

  (1)这是把1米平均分成了多少份?根据以上学习你能知道什么?学生以小组为单位进行讨论。

  [学生由于对一位小数有了一定的理解,在两位小数的教学中,放手让学生小组讨论发言,发挥学生的积极主动性,使学生知道分母是100的分数可以写成两位小数]

  (2)抽象、概括小数的意义。

  把1米看成一个整体,如把一个整体平均分成10份、100份、1000份这样的一份或几份可以用分母是多少的分数表示?引导学生答出可以用十分之几、百分之几、千分之几这样的分数表示。

  (3)什么叫小数?引导学生讨论。

  (4)师生共同概括:

  分母是10、100、1000的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几的数叫做小数。(投影出示)。小数是分数的另一种表现形式。

  3、交流小数的计数单位。

  三、达标训练

  1、填空。

  (1)0.1是( )分之一,0.7里有( )个0.1。

  (2)10个0.1是( ),10个0.01是( )。

  (3) 写成小数是( ), 写成小数是( )。

  2、课本做一做。

  3、判断:

  (1)0.40里面有4个0.01。 ( )

  (2)35克=0.35千克 ( )

  4、把小数改写成分数。

  0.9 0.09 0.0359

  您现在正在阅读的.四年级下册《小数的意义与读写》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!四年级下册《小数的意义与读写》教学设计课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)

  四、堂清检测

  (一)出示堂清检测题。

  1、填空题。

  (1)小数点把小数分成两部分,小数点左边的数是小数的( )部分,小数点右边的数是它的( )部分。

  (2)小数点右边第二位是( ),计数单位是( )。

  (3)一个小数,它整数部分的最低位是( )位,小数部分的最高位是( )位。它们之间的进率是( )。

  (4)千分位在小数点( )边第( )位,它的计数单位是( )。小数点右边第一位是( )位,它的计数单位是( )。

  (5)有一个数,百位和百分位上都是5,十位个位和十分位上都是0,这个数写作( ),读作( )。

  2、读出下面各数。

  0.78 5.7 0.307 8.005 6600.506 88.188

  3、写出下面各数。

  零点一二 七点七零七 二十点零零零九

  四千点六五 零点九一八 五十三点三五三

  布置作业:教材P55页 1、2、3题。

  板书设计:

  小数的意义与读写

  十分之一---------------- 0.1

  百分之一----------------0.01

  千分之一----------------0.001

  分母是10、100、1000的分数可以写成小数,像这样用来表示十分之几、百分之几、千分之几的数叫做小数。

小数的意义教案3

  【第一课时】

  复习内容:小数乘、除法的意义和计算法则。(第16题,练习九第14题。)

  复习要求:

  1.使学生进一步理解小数乘、除法的意义,掌握小数乘、除法的计算法则,并能正确地进行计算。

  2.使学生掌握用四舍五人法取积、商是小数的近似值。复习重点:进一步提高计算的.正确率和熟练程度。

复习过程:

  一、基本练习

  1.口算。05。381。40。20。156800。58。50。21。250。83。910

  3。91。30。630。90。170。42.填表。保留整数保留一位小数保留两位小数

  10。395

  2。047

  0。9292

  二、复习指导

  1.小数乘、除法的意义。(1)填空。①6。53表示()②6。50。3表示()

  ③8。40。4表示()④8。44表示()(2)思考并回答。

  ①小数乘以整数以及一个数乘以小数的意义各是什么?②小数除法的意义与整数除法相同,是什么?2.小数乘、除法的计算法则。

  (1)计算下面各题。(指4名学生板演。)0。677。50。1250。241。890。547。10。125

  ①小数乘法中积的小数点的位置是怎样确定的?点小数点时积的小数位数不够,应怎么办?

  ②怎样把除数是小数的除法转化为除数是整数的除法?怎样确定商的小数点位置?(3)由学生小结出小数乘、除法的计算法则。

  三、课堂练习

  1。练习九第3题:计算下面各题,得数保留两位小数。0。350。20xx。1-0。9091。30。03

  0。78+5。4366。5090。2718。114+9。987589。76160。2532。50。680。95

  先让学生说一说怎样取积、商的近似值,再让学生按要求计算出结果,师辅导有困难的学生,集体订正。

  2。练习九第4题:一个纺织厂平均每小时生产棉纱927。5千克。如果每千克棉纱织布7。2米,这个厂每小时生产的棉纱可以织多少米布?

  生独立审题,分析数量关系并列式计算。

  四、作业

  练习九第1、2题

  【第二课时】

  复习内容:小数的混合运算和简便算法。(第7、8题,练习九第57题。)

  复习要求:

  1.使学生进一步掌握小数混合运算的运算顺序,并能正确地进行计算。

  2.使学生进一步掌握小数乘、除法中的一些简便算法,并能正确地进行小数乘、除法的简便计算。

  复习重点:小数的混合运算和简便计算的正确率及熟练程度。

  复习过程:

  一、基本训练

  练习九第5题:4。5+1。50。75+0。250。25+3。1+1。752。541-0。63

  10-1。8-2。20。46280。1254。80。20。50。71。42。430

  0。30。152根据学生情况限时做在课本上,集体订正。

  二、复习指导

  1.第7题。5。519。50。124。078。6+9。12524。842。7-7。3532。342。10。14

  (1)看题说一说各题的运算顺序。(2)学生独立计算。(指4名学生板演。)(3)集体订正。

  2.P。34页的第7题:先想想下面各题怎样计算简便,再计算。(1)学生看题说一说每题应该怎样算简便?根据是什么?

  (2)学生独立简算。(指4名学生板演。)(3)集体订正。

  三、课堂练习

  1.练习九第6题。学生独立进行简算,教师进行个别辅导。集体订正时要求学生说出每一题是根据什么简算的。

  2.练习九第8题:下面是某学校买球的发货票,请你把空格填满。数量单位单价总价

  篮球只78。6元

  排球3只145。20元

  总计金额302。40元

  (1)首先让学生讨论怎样才能填出篮球的个数、总价和排球的单价?并选代表发言。(2)学生填写,教师巡视。

  (3)集体订正。

  四、攻破难题

  1.练习九第9题:小华在计算3。6除以一个数时,由于小数点向右点错了一位,结果得24。这道题的除数是多少?

  分析与解:此题先考虑正确商是多少,题中告诉由于小数点向右点错了一位,结果得24,那么正确商应为2。4。再根据除法中各部分之间的关系,用被除数3。6除以商2。4,得到除数是1。5。

  2.练习九第9题:小明和爸爸一起去电动游戏场乘飞机。买票时小明付出20元钱,找回了8元。游戏场的学生票价是成人的一半,算一算学生票和成人票的.票价各是多少钱?

  分析与解:先求出小明和爸爸买票一共花了多少钱,然后考虑,学生票价是成人的一半也就是说一章成人票价等于两张学生的票价。因此,小明和爸爸一共花了3张学生票价的钱。解法为:

  (20-8)(2+1)=4(元)学生票42=8(元)成人票五、作业

  练习九第6题、思考题。

小数的意义教案4

  教学目标

  1、 结合具体情境,进一步体会小数的意义及其与日常生活的密切联系。

  2、 会正确读写小数。

  3、 通过实际操作,体会小数与十进制分数的.关系,并能进行互化。

  重点 了解小数的意义,会正确读写小数。

  难点 理解小数的意义。

  教具 课件、正方形卡纸

  教学过程

  复习导入:元6角4分=( )元

  10元5角=( )元

  =( )元

  7分=( )元

  谁能说出生活中还有那些小数。

  学习目标:

  1、理解小数的意义。

  2、会正确读写小数。

  3、小数与分数能进行互化。

  自主学习(方式)、教师指导方案:

  1、看书上第2页认一认。

  2、把“1”平均分成1000份,其中的1份是( ) ,也可以表示( )。

  其中的59份是( ),也可以表示( )。

  3、读出下面的小数,并写出它们所表示的意义。

  0.9读作:

  表示:

  0.304读作:

  表示

  0.06读作:

  表示:

  展示方式:(学习目标中1、2……采取什么方式展示)

  1、 抽生回答,集体点评。

  2、 小组交流,抽生回答。

  3、 学生展示,集体交流。

  检测内容:

  填空:

  0.2 表示是( )位小数,它表示( )分之( )。

  0.15是( )位小数,它表示( )分之( )。

  0.008是( )位小数,它表示( )分之( )。

  0.3里面有( )个十分之一

  0.05里面有( )个百分之一

  0.009里面有( )个千分之一

  板书设计:

  小数的意义

  把1平均分成10份,其中的一份是1/10,也可以表示为0.1.

  把1平均分成100份,其中的一份是1/100,也可以表示为0.01.

  作业:

  6页2、3、4题

小数的意义教案5

  一、教学内容:小数的意义P32——P33

  二、教学目标:

  1、理解小数的意义,知道一位小数、两位小数、三位小数……分别表示十分之几、百分之几、千分之几……

  2、知道每个数位上的计数单位和相邻两个计数单位间的进率是十,初步认识一个小数的小数部分各数位上有几个这样的单位。

  3、通过了解小数的产生和发展过程,提高数学学习的兴趣,增强热爱数学的情感。

  三、教学重难点

  重点:理解小数的意义。

  难点:会用小数表示计量单位换算的结果。

  四、教学准备

  多媒体、米尺。

  五、教学过程

  (一)导入新授

  师:生活中你在哪些地方见到过小数?你能说说吗?(出示)学生回答。

  师:生活中这么多的地方用到小数,说明小数的应用十分广泛,无处不在。 请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按“整米数”和“非整米数”两类板书)

  师:这些不够整米数的部分,如果仍然要用“米”作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读教材第32页的内容。

  师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。但是,小数的意义又是什么呢?这节课,我们继续深入学习小数的知识。

  板书:小数的意义。

  (二)探索发现

  1、认识一位小数。

  (1)出示教材第32页例1米尺图。

  把1平均分成10份,每份长多少分米?1分米是1米的几分之几?

  教师介绍出示:“十分之一”米还可以写成0.1米。

  那2分米、3分米呢? 学生试着完成填空。

  学生在小组内交流后再全班交流,交流时说说每个分数表示的意义

  教师根据学生的回答板书:

  1分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.1米,3分米= 新人教版数学四年下第四单元小数的'意义和性质教案(一) 米=0.3米 ……

  (2)观察上面的等式你能发现分数和小数之间的联系吗?

  学生观察并在小组内讨论。

  师生交流后小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。

  2、认识两位、三位小数。

  我们知道了一位小数表示的是十分之几的数,那么两位、三位小数应该表示什么呢?下面请同学们以这些两位小数为材料,继续研究。

  (1)教师继续出示米尺的放大图。

  学生思考、小组交流后进行反馈:

  把1米平均分成100份,这样的一份或者是几份表示百分之几米,可以用像0. 04、0.01这种两位小数来表示。

  1米有1000毫米,就是把1米平均分成1000份,1毫米就是新人教版数学四年下第四单元小数的意义和性质教案(一) 米,用小数表示就是0.001米。

  (2)小结。

  分母是100的分数,可以写成两位小数。两位小数表示百分之几。

  分母是1000的分数,可以写成三位小数。三位小数表示千分之几。

  3、小数的意义。

  分母是10、100、1000……这样的分数可以用小数表示,这些小数的计数单位分别是多少?每相邻的两个计数单位之间的进率是多少?

  学生交流说说对小数的理解。

  师生共同归纳得出结论:一位小数表示十分之几,十分之几的计数单位是十分之一,那么一位小数的计数单位就是0.1。同理两位小数、三位小数的计数单位就是0. 01、0.001。每相邻两个计数单位间的进率是10。

  4、阅读“你知道吗?”。

  师:同学们已经知道小数是怎么产生的及小数的意义,那你们知道小数的历史吗?

  学生自学教材第33页“你知道吗?”。

  师生交流时,让学生说说小数的发展史。

  (三)巩固发散

  1、指导学生完成教材第33页“做一做”。

  让学生独立填写,集体订正时,让学生说说是如何用分数和小数来表示的。

  2、在括号内填上合适的小数。

  新人教版数学四年下第四单元小数的意义和性质教案(一)

  ( )元 ( )千克 ( )厘米

  (四)评价反馈

  通过今天这节课的学习,你有哪些收获?

  师生交流后总结:认识了小数,知道了小数就是用来表示十分之几、百分之几、千分之几……的数。还认识了小数的计数单位,知道了相邻的计数单位之间的进率是10。

  (五)板书设计

  小数的意义

  分母是10、100、1000……的分数可以用小数表示。

  小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……

  每相邻两个计数单位间的进率是10。

  六、教学后记

小数的意义教案6

  教材分析:

  人教版四年级下册“小数的意义和性质”这一单元共有“五个板块”的内容:小数的意义和读写法、小数的性质和大小比较、小数点移动引起小数大小的变化、小数与单位换算和小数的近似数,其中小数的意义的理解是本单元的关键。这一单元涉及到的内容比较多,而且知识点比较散,所以这一单元的复习有一定的难度。

  学情分析:

  根据学生平时的作业情况,笔者出了相应的前测卷,了解了学生对本单元知识的掌握情况。通过前测分析,发现:本单元知识学生的错误主要集中在小数的意义、小数的近似数和小数与单位换算这三块内容,其中学生对小数的意义的理解和掌握很不乐观,情况如下:

  图1第一幅图的错误率居然达到了25、53%,第二幅图的错误率是36、17%,图2的错误率也是25、53%。图1第一幅图和图2的错误率是我没有预想到的,测试前我以为这样的基本的题、常见的题,学生的掌握情况会比较好,但是前测的结果让我吃了一惊。图1第一幅图错误的学生大部分填了1、4,第二幅图大部分填了0、3。细细分析图1这么高的错误率,我们会发现:学生只是关注到了涂色部分的份数而没有关注到分成的总份数,实质上学生对小数的意义没有真正地理解。至于图2,我发现学生说不出1到2这一大段表示多少,也就是说学生对这样的题学生没有真正地理解后去做,有些无从下手。

  教学目标:

  1、通过对本单元知识系统地整理和复习,让学生进一步理解和掌握本单元知识,沟通小数和分数、小数和整数之间的联系,形成新的认知结构。

  2、通过介绍0.3、分析错例、猜数等方式,让学生感受复习与整理的方法,提高学生的学习能力。

  3、在学习中,让每一位学生享受到表达的乐趣和成功的喜悦,让学生产生学习数学的信心。

  教学重点:通过整理和练习,巩固本单元知识。

  教学难点:通过整理和练习,对知识的进一步领悟。

  教学预设:

  一、梳理知识

  1、回顾知识。

  (1)揭题:同学们,今天这节课我们一起对小数的意义和性质这一单元进行整理和复习。(出示课题:小数的意义和性质整理和复习)

  (2)引导回顾:回忆一下,这一单元我们学了哪些知识?

  根据生说师相机板贴知识点。

  2、整理知识。

  (1)提出问题:那现在我写一个小数(板书:0.3),你能用学过的知识来介绍它吗?

  (2)明确要求:在你的介绍中不出现这个数,但让别人一听就明白你在介绍它。(出示课件)

  (3)回答一生,理解要求

  评价:这样的介绍符合要求吗?

  (4)知识归类:他用到了这儿的什么知识?

  3、独立思考

  (5)思考:他是从意义的角度来介绍的,那还有不一样的介绍吗?

  (6)记录:看来已经有很多同学想到了,别急,把你想到的记录在学习单第1题的框里。

  学生记录。

  师巡视并引导:想到一种的再想想还有没有不同的介绍方法,比一比谁想到的方法最多。

  (7)汇报,根据生说师相机板书内容。

  预设:

  ①意义:3个0.1;画图;十分位上是3,个位是0等。

  ②大小比较:比0.2大比0.4小的一位小数。

  ③小数点的移动规律:如3的小数点左移一位是几。

  ④近似数:如0.29保留一位小数。

  ⑤单位换算:如300千克等于几吨。

  (8)总结:一个0.3大家居然想到了这么多,这是我们全班同学的智慧,把掌声送给自己。

  【设计意图:通过“介绍0.3”,让学生自主地对本单元知识进行梳理。这样的学习任务,对学生来说是具有挑战性的,可以很好地激发学生的学习主动性;这样的学习任务,可以在较短的时间内完成教学目标,提高教学效率。在“思考介绍方法”和“汇报介绍方法”的过程中,让每一位学生都享受到表达的乐趣和成功的喜悦,感受到“如果你有一种思想,我有一种思想,彼此交换,我们每个人就有了两种思想,甚至多于两种思想”。】

  二、查漏补缺

  1、过渡:刚才我们用一个0、3对这单元的知识进行了梳理,这节课除了梳理,我们还需要查漏补缺,我对你们的作业和练习情况进行了整理。猜一猜,我们班哪块知识错误最多?(出示课件)

  2、根据生说,课件相机出示相应内容并分析。

  预设:

  (1)小数与单位换算。

  ①出示错例。

  ②说妙招:的确,这块内容错误比较多。那做这类题目谁有妙招?

  学生总结方法,师板书。

  ③做一做:那让我们用这个妙招一起来做一做这几题。在学习单第2题的框里写一写过程。

  ④汇报,师相机书写过程。

  (2)小数的近似数。

  ①出示错例。

  ②分析错误:这题错误稍微有点多,主要有两种错误,(出示错例)你能帮忙分析一下错误原因吗?

  生分析原因。

  ③引导总结:对于做这样的题你有什么要提醒大家的?

  (3)小数的性质与大小比较。

  ①课件:恭喜你们,你们做得很棒!

  ②沟通联系:同学们做得这么棒,这个问题肯定难不倒大家,那小数的.大小比较跟整数的大小比较有什么相同的地方?

  ③同桌交流:想好的跟同桌说一说。

  ④汇报。

  (4)小数点的移动规律。

  ①课件:恭喜你们,你们做得很棒!

  ②沟通联系:小数点的移动规律其实我们早就用到过了,一起来看。

  出示题,做题,问:仔细观察,你有什么发现?

  (5)小数的意义和读写法。

  ①课件出示:找0、4题

  ②学生判断:图2、

  ③激疑:图1为什么不可以?(0.04)图3呢?(0.8)

  ④总结:都涂了4格,为什么表示的小数却不一样?

  图1得出4/100,图2得出4/10,图3:通过再分得到了8/10,所以这个4格其实表示的是0.8。所以我们不仅要看涂的份数,还要看分的总份数。

  ⑤沟通联系:那问题又来了,出示问题:小数和分数有着怎样的联系?

  ⑥做错题:相信现在大家不会犯这样的错误了吧!这题应该是(1.04)这题呢?总份数不是10份的要先平均分成10份,是0.6。

  【设计意图:这个环节根据学生错误情况,让学生对本单元易混淆和出错的知识进行有针对性的练习,查漏补缺。在练习过程中,让学生说出自己解题的思考过程,总结解题的方法,分析错误的原因,有助于加深学生对本单元知识的理解和掌握,提升思维能力;让学生沟通小数与整数、小数与分数之间的联系,有助于学生从整体上理解和掌握知识之间的内在联系,促进学生认知结构的优化。而且本环节让学生自主选择研究内容,可以很好地激发学生学习的积极性。】

  三、巩固提升

  1、猜数。

  (1)大家学得这么棒,奖励大家玩一个猜数的游戏,(出示课件:猜猜我心中想着几)它就装在这个信封里。

  (2)第一猜:给大家第一条信息:它在1与2之间(课件出示直线),会是几呢?

  生猜。

  师:有多少种可能?(无数种)

  (3)第二猜:那再给你第二条信息:它保留一位小数约是1、7,可能是几?

  生猜,师相机板书。

  师:那这个数最小是几?

  最大是几?(1、74,1、749……)(师板书)

  师:这些数都有可能吗?为什么?(只要看百分位,跟后面的数没关系。)

  师:那找得到这个最大的数吗?(找不到)

  师:那有多少种可能?(无数种)

  (4)第三猜:那再给你一个信息:它是一个两位小数。

  生猜,师判断:大了,小了。

  (5)揭晓答案:1.66

  2、找位置。

  (1)那你能在这条线上找到1、66的位置吗?

  (2)那要准确地找到它,谁有好方法?

  3、说关系。

  (1)出示1、0、1、0、01。

  (2)问:1、0、1、0、01之间有着怎样的关系?

  【设计意图:通过“猜数”和“找位置”等活动,激发学生的参与热情,对本单元知识进行综合练习,加深学生对小数的意义的理解和掌握,提升对小数的近似数、小数的大小比较等的认识,直观地理解1、0、1、0、01之间的关系,提升学生的思维能力。在“猜数”活动过程中,让学生初步感知到近似数的取值范围;在“找位置”活动过程中,培养学生的数感,感知“找小数位置”的步骤:先确定这个小数在哪两个相邻的整数之间,再确定它在哪两个相邻的一位小数之间……感知“找小数位置”的方法:可以从左往右,也可以从右往左等。】

  四、课堂小结

  这节课我们是怎么复习的?对你以后的学习有什么启示?

  【设计意图:通过小结,让学生回顾这节课复习与整理的方法,提升学生的学习能力。】

  374650285750小数的意义和性质整理和复习

  小数的意义和性质整理和复习

  742950228600意义和读写

  意义和读写

  板书(部分):

  63500057150

  742950114300性质和大小比较

  性质和大小比较

  74295025400小数点的移动规律

  小数点的移动规律

  768350273050单位换算

  单位换算

  768350203200近似数

  近似数

  教学反思:

  这一单元涉及到的内容比较多,且知识点比较散,对于这一单元的复习,怎样对知识进行梳理?怎样可以做到高效?怎样能让学生形成新的认知?通过对这一节课的研究,感悟到上好复习课,可以从以下3个方面去展开。

  1、制定任务,高效梳理。

  学习任务好比承载教学内容的“舟”,复习课学习任务的选择要符合知识内在的逻辑,又要构建整体的学习框架。“介绍0.3”这一任务无疑是一具有挑战性的任务,学生需唤醒所有有用的知识,这充分地调动了学生的学习积极性和主动性。这个“0.3”,承载了本单元涉及的五块内容,学生通过“介绍0.3”,一个单元的知识点以各种方式表达了出来,高效地完成了本单元的知识梳理。

  2、基于学情,有效复习。

  复习的功能之一是查漏补缺,也就是说,要针对学生学习困难和错误进行复习。这一单元知识多又散,一节课中不可能做到面面俱到,通过前测,了解了学生的学情。

  小数的读写、性质与大小比较、小数点移动引起小数的大小比较,这些内容学生基本上没有问题,所以这节课中对这些内容的处理相对比较简单,如大小比较知识只是让学生沟通了小数大小比较与整数大小比较的联系;小数点的移动规律也只是让学生沟通了跟以前知识之间的联系。

  本节课的重点放在小数的意义、小数与单位换算、小数的近似数等内容上。如“找0.4”题,通过让学生思考“为什么都涂了4格,表示的小数却不一样”,通过比较、分析、总结,让学生感悟到“不仅要看涂的份数,还要看平均分成的总份数,平均分成10份、100份、1000份……的才能直接写成小数”,从而进一步理解了小数的意义以及小数与分数的联系。又如“单位换算”这块内容错误比较多,所以让学生经历了“说妙招——用妙招——说思路”这样一个过程,帮助学生掌握这块内容。

  这样针对学生错误的复习过程,极大地节省了时间,提高了课堂效率,并有效地对本单元内容进行了复习。

  3、精选练习,合理拓展。

  复习课除了查漏补缺,还要使学生进一步地熟练技能、拓展思维,本节课的练习设计关注恰当的拓展性。如:有关“小数与近似数”的题学生常碰到如“一个两位小数保留一位小数约是3.5,这个小数最大是(),最小是()”这样的题,所以学生以为“近似数是3.5的数只有两位小数这几个数”。针对这样的情况,教学中,通过让学生猜“近似数是1.7的数”,通过找符合要求的最小数和最大数,让学生从这种固定思维中走了出来,感悟到“近似数是1.7”的数有无数个,并初步感知近似数的取值范围。又如:找1.66的位置,学生经历了“说大概的位置——找确切位置”的过程,并在找确切位置的过程中,让学生用“顺着”和“倒着”等不同的方法来找,从而拓展了学生的思维。

小数的意义教案7

  教学内容: 小数的意义

  教学目标:1、使学生理解小数的意义。

  2、使学生认识数学知识源于实际生活,用于实际生活。

  3、通过分析、对比、概括培养学生的思维能力。初步渗透对应思想和分类思想。

  4、激发学生大胆质疑、问答,培养创新意识。

  教学重点:理解小数的意义

  教学难点:理解三位小数的意义

  教学准备:直尺、课件

  教学过程:

  课前谈话:同学们,你们逛过超市吗?大家在挑选商品的时候,一般看些什么?

  一、看价签,引出小数

  1、课前我知道了你们都挺爱逛超市的,在超市里买过食品、衣服,那么,你们买学习用品吗?我发现有一家文具店,那里的文具又好又便宜,你们想去看看吗?一会大家认真看,挑一件你们最喜欢或最需要的文具的价钱记下来,好吗?

  2、看课件。

  3、说说你记得都是什么?这些都是什么数?这些都是用小数表示的`价钱,还能用别的方法表示吗?试一试。

  4、和小组里的同学说一说自己是怎样想的?如果组里有什么解决不了的困难,一会儿告诉全班同学我们一起来研究。

  5、汇报:(师选择板书)

  6、刚才,我们一起研究了这么多小数,还把他们用分数表示出来了,请你们仔细观察一下,小声读读,你们有什么发现吗?(独立思考)有想法了吗?快跟组里同学说一说。

  7、汇报:生发现小数与分数之间的关系

  二、解决实际问题

  1、我们初步认识了小数,除了在价签上见过小数,你还在哪见过小数?举个例子说一说。你能说一说它是什么意思吗?

  2、测量。以小组为单位:(1)测量身边物体的长度。(2)以米为单位用小数表示出来。(3)把测量结果写在记录单上

  (主要解决三位小数)

  三、小结

  1、有关小数你还知道些什么?你是怎样知道的?

  2、小数还有许多有趣的知识,你们还想继续了解吗?你们有什么办法能学到这些知识呢?

小数的意义教案8

  教学目标:

  1、使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。

  2、利用直观的图片,建构小数和分数的联系,经历小数意义的归纳过程,学会小数之间的转换。

  3、培养学生的迁移、类推能力,以及良好的数学学习品质。

  教学重点:

  理解小数的意义,知道小数的计数单位及每相邻的两个计数单位之间的进率是10。

  教学难点:

  理解一位、两位、三位小数的意义。

  教学过程:

  一、情境导入:

  1、(展示一根绳子)猜猜它有多长?

  生猜:1米……

  师:要想知道准确的结果,怎么办?

  生:量一量。

  师:谁愿意来测量一下它的长度?

  两名学生合作测量。

  师:把你们测量的结果汇报一下。

  生:一米。

  师:刚才谁猜对了?大家的眼力真不错,很会观察,下面加大难度,你能猜一猜课桌面的宽吗?

  生猜并测量验证。

  师:通过测量我们发现,绳子的长度是1米,课桌面的宽度是41厘米,那么课桌面的宽度仍用“米”做单位,还能用整数表示吗?

  生:不能。

  师:为什么不能用整数了?

  生汇报

  师:也就是说,在进行测量时,如果不能得到整数的结果,我们就要用其他的数来表示,也就是我们今天要学习的小数。(板书:小数)

  师:那你们说说在哪些地方还见过小数。

  生汇报

  师:看来小数在生活中的用处真是不小,今天我们就来研究“小数的意义”。(补充板书)

  二、探索交流,建构新识:

  (一)理解一位小数的意义。

  1.师:请同学们任意说一个小数。

  生汇报师板书

  师:那老师也来写几个。

  0.1 0.01

  师:猜一猜老师接下来会写什么?

  生:0.001

  师:同学们真的是很会推理。

  2.今天我们要学习的是--小数的意义,那我们就从0.1开始研究好不好,那0.1的意义你知道吗?它表示什么?

  生汇报

  师:对于0.1同学们都有不同的认识。老师带来了一个正方形,如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。

  师:请同学们在这张纸上分一分并用阴影涂色表示出0.1。老师看哪些同学的速度最快。

  3.生展示、汇报

  展示若干组学生的画法。

  (编号,让学生说出自己的想法。)

  师:你认为哪位同学表示出了0.1那么大小。

  生:1号;3号;2号;4号。

  师:到底哪位同学的表示出了0.1呢?我们一起来看一下。(出示课件)这个纸杯的售价为0.1元,如果你是顾客,你应该付给售货员多少钱?(1角)。明明是0.1元,为什么你要付1角钱呢?(生汇报:0.1元就是1角)师出示课件。那一角钱还可以用()/()元(生汇报)

  师:1角=元,1角=0.1元,那元和0.1元是什么关系?看来,0.1=。

  师:现在我们再来回头看刚才几位同学的作品,哪位同学的涂色部分表示出了0.1?(生汇报:3号和4号。)

  师:现在我们再一起来理顺一下。(出示课件)一个正方形用1表示,要想表示0.1我们先把这个正方形平均分成10份,其中的一份涂出来就是0.1。

  师:那现在谁来说说0.1到底表示什么?

  生汇报师小结:说简单点0.1就表示。(板书)

  师:涂色部分为0.1那空白部分用哪个小数表示呢?

  生汇报:0.9。

  师:怎么看出0.9的?

  生汇报

  师:那0.9表示什么?()0.9里面有几个0.1?(9个)我们一起来数一数。把0.1和0.9合在一起是多少?

  生:1

  师:现在我们明白了1里面有(10)个0.1。(板书)

  4.再涂1块能看到哪两个小数?

  生:0.2、0.8。

  师:他们的分数朋友分别是谁?(生汇报师板书),把它们合在一起是多少?(1)

  师:(指板书)仔细观察,这些小数有什么特点?(小数点后有一位数的小数叫做一位小数。)(板书:一位小数)这些分数有什么相同的地方?

  生:分母都是10、都是十分之几……

  师:那我们就可以说一位小数表示的就是十分之几。(板书)

  (出示课件)其中的一份,就是一位小数的计数单位。也就是说一位小数的计数单位是(十分之一),写作(0.1)。这就是我们认识的一位小数。

  (二)理解两位小数的意义。

  1.师手指0.01,0.01表示什么呢?如果还是把这张纸看做1,要找出0.01你会怎么做?

  同桌交流讨论。

  生汇报:把它平均分成100份,取其中的一份。

  预设:如果学生有分歧,可用一元和一分的关系来验证帮助学生理解。

  师:同学们的想法非常正确,我们要想在正方形中找到0.01,就要先把这个正方形(出示平均分成100份的正方形)

  师:0.01就表示。还看到了哪个小数?

  生:0.99。

  师:0.99里面有几个0.01。

  生:99个。

  师:把他们合起来是多少?那1里面有多少个0.01?(100个)师板书

  2.如何表示0.25呢?

  生汇报

  师:还能想到哪个小数?他们的分数朋友分别是谁?

  生:0.75,分数朋友:

  3.(拿出平均分成100份的正方形纸)请你在方格纸上创造一个新的小数,再同桌间说一说这个小数表示什么意思,看到这个小数,你又想到了那个小数?

  4.师提问:

  (1)你涂了哪个小数?

  生汇报。

  师:猜一猜他涂了几格,还能找到另外一个小数吗?

  (2)你涂了几格?谁能知道他写的是哪个小数?

  5.师:(指板书)刚才我们研究的小数都有什么特点?他们都表示什么?

  生汇报师小结板书:两位小数表示的就是百分之几。(出示课件)其中的一份,就是一位小数的计数单位。也就是说两位小数的计数单位是(百分之一),写作(0.01)。

  (三)理解三位小数的意义。

  1.师:我们已经知道了一位小数表示十分之几,两位小数表示百分之几,那0.001是几位小数?(三位小数)。那三位小数又表示什么呢?生:它表示千分之几。(师板书)

  师:那它的分数朋友是多少?()

  师:那0.237表示什么?它的`分数朋友是谁?

  生:

  师:小数是多少?

  生汇报

  2.师:谁能找一个大一点的三位小数?

  生:0.999 =

  师:要在正方形纸上涂上0.999会有什么感觉?

  生汇报

  如果再涂多少就涂满了?(0.001)

  师:那也就是说(1000)个0.001是1。

  师小结:三位小数表示的就是千分之几。(出示课件)其中的一份,就是三位小数的计数单位。也就是说三位小数的计数单位是(千分之一),写作(0.001)。

  3.延伸:师:那如果把1平均分成10000份,这样的一份或几份用几位小数表示?(四位小数)。把1平均分成100000份,这样的一份或几份用几位小数表示?(五位小数)

  ……

  师:看来同学们的类推能力都很强,能够根据前面所学的知识来回答老师的问题了。

  (四)提炼小数意义

  1.请同学们回想刚才的学习过程,说一说小数的意义到底是什么?

  生汇报

  小结:分母是10、100、1000……的分数都可以用小数表示(课件出示)。其实这就是小数的意义。

  2.思考:(课件出示)通过刚才的学习我们知道小数的计数单位是十分之一、百分之一、千分之一‥‥‥分别写作0.1、0.01、0.001 ‥‥‥那这几个相邻的计数单位之间有什么关系呢?如果老师把正方体看做1的话,你能用分数和小数表示出涂色部分吗?

  0.1里面有多少个0.01?0.01里面有多少个0.001?也就是说小数每相邻两个计数单位之间的进率是(10)。

  3.师:大家回答的都不错,其实今天我们学习的小数在产生的过程中经历了一段较长的历史。同学们,请看(出示课件)

  三、巩固内化:

  师:今天有关小数的知识大家都学会了吗?那接下来咱们做几道题检验一下同学们的学习成果,好不好?

  出示课件练习题。

  1、填一填。

  2、填上合适的数。

  四、回顾反思:

  1.师:一节课就快要结束了,下面我们一起来回顾一下我们刚才的学习过程。(出示课件)

  2.自我评价:如果最好的表现是1,最不好的表现用0表示,你打算用什么数来表示自己的表现?

  3.最后老师想送给同学们一段话--小知识:人类对自己大脑的利用水平却极低,普通人只利用了大脑的百分之二(0.02)到百分之五(0.05)左右,就连世界上最伟大的科学家爱因斯坦也只利用了大脑的十分之一(0.1)。

  师:老师希望同学们能够尽可能的发挥自己的潜能,去畅游我们的数学王国。

小数的意义教案9

  教学目标:

  1.借助具体情景操作认识平角和周角,使学生建立平角、周角概念。

  2.通过操作活动,知道周角、平角形成过程及与各种角的关系,把钝角范围补充完整。

  3.能正确画平角和周角,找出生活中的平角、周角。发展学生空间观念。

  教学重点:

  平角、周角的特征。

  教学难点:

  知道平角、周角形成过程并会叙述。

  教学准备:

  活动角、纸扇、一张纸。

  教学过程:

  一、激发兴趣导入

  1、 ①师:老师想考考同学们的记忆力,拿出一张白纸,在黑板上演示,像老师这样对折一次,再对折一次。指着角问同学:这是什么角?你是怎么知道的?

  生回答:1、量角器量的 2、三角板对比的

  板书:直角等于90度

  ②师:比90度角小的角是什么角? 生回答后,板书 :锐角 小于90度

  ③师:比90度角大的角是什么角? 生回答后,板书 :钝角 大于90度

  2. 今天老师又给你们带来两位新朋友,今天我们继续学习角并板书:平角、周角(彩笔)。

  快来打声招呼吧!

  3.读一读,平角、周角。你知道什么?生回答:角的度数! 边在哪边?今天我带同学们一起走进平角周角。

  二、探究新知

  1.学习平角

  你们想当魔术师吗?

  举起纸,这是90度角,翻过来,指着角,这是什么角?你是怎么知道的?

  板书:画上直角符号,让同学们也画上直角符号。

  变!这就是平角,听!平角大声跟同学们说:我是平角,我愿意跟同学们交朋友。同学们,你们也变,认真看平角,讨论:你发现了什么?快说给同学们听,一定要认真听,互相补充。

  学生展示,板书:一平角=2直角=180度。两条边在第一次折痕上引导学生说,角的两条边在一条直线上,这样的角就叫做平角。

  让学生拿出活动角,转动时,注意角的`一边不动,另一边绕着角的顶点旋转成平角。让学生指出平角的顶点和两条边,板书:画平角。让学生也跟着画平角,齐读两遍平角的特征。

  2.学习周角

  我还会变呢,翻动平角纸,这又是什么角?说理由。画上符号,要求学生也画上两个直角符号,变!这就是周角,听!同学们好 我是周角,我愿意和同学们交朋友!

  讨论:和同桌说说你的发现!生按顺序展示后,教师板书:1周角=4直角=2平角=360

  定义:有四个直角组成一个新的角,这样的角叫做周角。

  让学生试着用活动角转动周角,画周角,然后,指出周角的顶点和两条边。

  齐读周角的特征,再齐读平角和周角的特征。

  三、进一步感受平角、周角。

  1.伸出一条胳膊。旋转平角、周角。同桌互相转,展示转。学生评价。

  四、补充钝角范围

  师:老师有个问题,180度,360度都比90度大,但他们不叫钝角,再平角上展示活动角,活动角的一条边,在0度90度区域形成的角是锐角,在90度180度形成的区域形成的角是钝角,请学生说一说钝角比谁大?比谁小?

  生回答后, 板书:而小于180度。

  五、让学生寻找生活中的周角、平角。

  互相说,展示说,评价。

  六、巩固练习.

  1.游戏,用纸扇摆角,同桌说角,老师摆角,考同学说角

  2.判断:⑴平角是一条直线,⑵周角是一条射线,⑶一个周角等于四个平角,

  3.抢答题:⑴从小到大排序:直角、钝角、平角、锐角、周角,⑵从大到小排序:直角、钝角、平角、锐角、周角。

  4.再出一个难一点的题:(要求说清理由)

  1=752=? 3=? 4=?

  七、总结

  你们知道了平角、周角,现在让你扮演角色,平角、周角,做个自我介绍吧!

  板书设计:

  角

  锐角 直角 钝角 平角 周角

  比90角小 比90角大 1平角=2直角=180

小数的意义教案10

  教学目标

  (一)熟练地掌握小数乘法和除法的计算法则,进一步理解小数乘除法的意义。

  (二)通过归纳整理,提高学生的概括能力。

  教学重点和难点

  熟练掌握小数乘除法的计算法则,提高学生计算的准确率。

  教学过程设计

  (一)归纳整理小数乘除法的意义

  1口算下面各题,并说出各算式的意义。

  15×3 15×3 15×03 15÷3

  28×2 28×2 28×02 28÷2

  25×5 25×5 25×05 25÷05

  12×4 12×4 012×04 012÷04

  2思考:

  ①小数乘法的意义有几种情况,是按什么划分的?分别是什么?

  ②小数除法的意义是什么?

  讨论得出:小数乘法的意义包括两种情况,按乘数是整数还是小数划分。当乘数是整数时,表示求几个相同加数的和的简便运算;当乘数是小数时,表示求这个数的十分之几,百分之几,千分之几,……(小数除法的意义是已知两个因素的积与其中的一个因数,求另一个因数的运算。)

  3比较归纳、整理:

  看表思考:小数乘除法的意义与整数乘除法的意义有哪些地方相同,有哪些地方不同?

  讨论完成下表:

  (二)复习小数乘除法的计算法则

  1小数乘法的计算法则。

  (1)说出下面各题的积中各有几位小数。

  23×05 214×07 275×1203 184×0026

  提问:你是根据什么确定积中的小数位数的`?为什么?(小数乘法中,积中小数的位数是由因数的小数位数决定的。因数中一共有几位小数,就从积的右边起数出几位,点上小数点。因为把小数乘法转化成整数乘法,因数扩大了多少倍,积也扩大多少倍,要使积不变,就要缩小多少倍。)

  (2)根据4×25=100,75×52=3900,你能很快说出下面各题的积吗?

  ①04×25=(1);②0075×052=(0039)。

  提问:

  ①式中的因数共有两位小数,为什么积中没有小数部分?②式中的因数共有五位小数,为什么积中只有三位小数?(因为积的小数部分末尾是零,根据小数的性质被划掉。)

  (3)计算并验算:

  67×75= 836×25= 125×24=

  订正后回答:

  067×75= 836×025= 0125×24=

  小结:

  小数乘法与整数乘法计算方法有哪些相同的地方,有哪些不同?

  讨论得出:

  相同点:把小数乘法转化成整数乘法后,按整数乘法的计算法则算出积。

  不同点:小数乘法,还要看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

  (4)口算:

  08×4= 4×08= 005×20= 20×005=

  003×9= 9×003= 19×5= 5×19=

  观察上面的算式:谁的积大于被乘数?谁的积小于被乘数?(乘数大于1时,积小于被乘数;乘数大于1时,积大于被乘数。)

  练习:在下题的○中填上>,<或=。

  ①16×12○16; ②14×0○14;

  ③024×5○024; ④37×21○37;

  ⑤0×7○0; ⑥0×28○0。

  上述规律对于⑤,⑥两题为什么不灵了?应该补充什么?(上述规律应该补充“被乘数不为零时”。)

  2小数除法的计算法则。

  (1)计算并验算(P34:6):

  189÷054= 71÷0125= 051÷022=

  计算后订正,提问:

  ①怎样把除数是小数的除法转化为除数是整数的除法?根据什么?(把除数转化为整数。根据商不变的性质,除数扩大了几倍,被除数也扩大几倍。)

  ②小数除法与整数除法有什么相同点和不同点?(小数除法需要把除数转化成整数,按照整数除法的计算法则进行计算,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在后面添上0再继续除。)

  (2)口算:

  42÷06= 15÷5= 32÷08= 2÷4=

  哪些算式的商大于被除数?哪些算式的商小于被除数?为什么?

  (除数大于1时,商小于被除数;除数小于1时,商大于被除数。)

  练习:在下面的○中填上>,<或=。

  30÷06○30 18÷9○18 0÷02○0

  36÷4○36 27÷03○27 0÷12○0

  上述规律应该补充什么?(上述规律应该补充“被除数不为0时”。)

  (三)综合练习

  1口算:

  3978×1= 36÷36= 287×0=

  1×056= 78÷1= 0÷287=

  “1”与“0”有什么特性?

  2计算并求近似值:P35:2。

  小结:怎样取积、差、和、商的近似值?(先算出积、差、和后,用“四舍五入法”取近似值;求商的近似值时,要除到需要保留的数位的下一位,然后再按“四舍五入法”省略尾数。)

  3作业:P35:1,3。

  课堂教学设计说明

  复习小数乘除法的意义和法则,对整数和小数的乘除法进行了系统的整理和归纳,通过填表的形式,学生明确了它们的联系与区别,把新知识同旧知识联系起来,有利于学生掌握新知识,巩固旧知识。

  通过练习,进一步完善了积与被乘数、商与被除数大小关系的规律,培养学生认真审题,细心计算,加强检验,提高计算的正确率和速度。

  板书设计

  整数乘法:

  4×25=100

  75×52=3900

  小数乘法:

  小数除法:

小数的意义教案11

  【教学内容】

  【教学目标】

  【教学重点 】重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点 、数大小变化的规律。

  难点:用“四舍五入”法按要求求出小数近似数。

  【教学过程】

  一、揭示课题

  这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。

  二、复习小数的意义

  1、做期末复习第8题(1)、(2)、(3)。

  (1)学生在书上填写,集体订正。说一说0.5、0.023的意义。

  (2)说一说小数的意义是什么?

  问:一位小数、两位小数、三位小数……各表示几分之几的数?

  2、(1)在小数里,小数部分最高位是哪一位?从小数点起,向右依次有哪些数位?每个数位上计数单位是什么?

  (2)填空。

  0.1里面有( )个0.01。 10个0.001是( )。

  10个0.1是( )。 0.1里有( )个0.01。

  三、复习小数的性质和小数的.大小比较

  1、练习。

  (1)把下面小数化简。

  4.700 16.0100 8.7100 14.00

  (2)不改变数的大小,把下面的数写成两位小数。

  4.2 13.121

  ①学生做,指名板演,集体订正。

  ②问:做题时是根据什么来做的?什么是小数的性质?

  2、做期末复习第9题,第1竖行两题。

  (1)学生在书上做,指名板演,集体订正。

  (2)让学生说一说怎样比较两个小数的大小。

  3、做期末复习第10题。

  (1)先把这些数排列起来,找出最大、最小数,并和其他数一起,写好序号。

  0.1 0.012 0.102 0.12 0.021

  (2)按要求从小到大排列。

  四、复习小数点位置移动引起小数大小变化的规律

  1、做期末复习第8题(4)、(5)。

  (1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化?小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化?

  问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动?

  (2)学生练习,指名回答。

  2、练习。

  (1)把1.8扩大100倍是( )。( )扩大1000倍是6.21。

  (2)把( )缩小100倍是0.021。( )缩小1000倍是6.21。

  五、复习求小数的近似数和整数的改写

  1、把下面小数精确到百分位。

  0.834 2.786 3.895

  (1)学生做,指名板演。

  (2)让学生说一说怎样求一个小数的近似数。

  2、(1)把下面各数改写成“万”作单位的数。

  486700521000

  (2)把下面各数改写成“亿”作单位的数。

  460000000 7189600000

  学生在练习本上做,指名板演,说一说怎样把一个较大数改写

  成“万”或“亿”作单位的数。

  3、把下面各数改写成“万”作单位的数,并保留一位小数。

  67100209500

  (1)学生在练习本上做,指名板演。

  (2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么?

  4、做期末复习第9题剩下的两题。

  (1)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。

  (2)学生练习,集体订正。

  (3)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以

  了。

  5、做期末复习第11题。

  学生在书上做,并说明理由。

  六、全课总结

  这节课复习了什么内容?

  怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?

  【作业设计】

  1、0.45表示( )。

  2、把6.956 6.965 6.659 9.665 5.669 按从小到大排列是( )。

  3、把6712098600改写成“万”作单位的数是( )万,保留一位小数是( )万;改写成“亿”作单位的数是( )亿,保留一位小数是( )亿。

  4、在○里填“”、“”或“=”。

  16.36○16.63 0.36万○3600

  0.97○1.01 0.23亿○2100万

  5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克?

  10000千克稻谷可出大米多少千克?

小数的意义教案12

  教学内容:

  人教版小学数学四年级下册第4单元第32页。

  教学目标

  1.理解和掌握小数的意义。

  2.理解整数、小数、分数之间的联系。

  教学重点:理解和掌握小数的意义。

  教学难点:认识小数的计数单位。

  教学过程

  一、展示生活中的小数

  师:同学们,我们在生活中经常会看到小数的存在,你能举几个例子吗? (学生回答)

  我们一起来看,教室里有几个同学在进行测量。但是,他们测量的一边长1米,但是另一边不够1米,用米做单位,不够1米那应该怎么办呢?这时候,就可以用小数来表示了。

  二、创设情境,导入新课:

  这些数都是什么数?

  生:小数。

  师:小数是怎么产生的呢?

  在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。

  揭示课题:小数的意义。

  关于小数你想知道些什么?今天我们继续来学习课本中的新知识:“小数的意义”。

  三、探究新知:

  1.提出探究问题,引出小数的性质。

  我们把1米平均分成10份,每份用分数表示是多少米?

  每份用分数表示是米?

  1-1. 反馈交流。请学生结合图说明自己的想法。

  师:米还可以写成0.1米。这样我们就得到了一个小数0.1米。

  师:0.1米是怎样得到的?谁来说一说。

  生:把1米平均分成10份,每份用分数表示是米,用小数表示就是0.1米。

  箭头指向30的地方怎么表示? 0.3米是怎样得到的?

  我们可以看出把整数1平均分成10份,每一份是0.1, 3份是0.3,用分数表:。

  0.3的计数单位是0.1,的计数单位是。所以0.3表示3个0.1

  同理得出:指向7的箭头,用分数和小数分别怎么表示?

  把整数1平均分成10份,每一份是0.1, 7份是0.7,用分数表:。0.7表示7个0.1

  1-2.抽象概括:小数是分数的另一种表示形式。分母是10的分数可以用一位小数表示。一位小数的'计数单位是十分之一,也写作0.1。

  2-1.同学们,学习了把1米平均分成10份可以用一位小数来表示,你能把1米平均分成100份,也用小数来表示吗?

  师:把1米平均分成100份,每份用分数表示是米,用小数表示就是0.01米。

  师:刚才0.01米是怎样得到的?谁来说一说。

  生:把1米平均分成100份,每份用分数表示是米,用小数表示就是0.01米。

  箭头指向4的地方怎么表示?0.04米是怎样得到的?

  我们可以看出把整数1平均分成100份,每一份是0.01, 4份是0.04,用分数表:。0.04的计数单位是0.01,的计数单位是。所以0.04表示4个0.01

  同理得出:指向8箭头,用分数和小数分别怎么表示?

  把整数1平均分成100份,每一份是0.01, 8份是0.08,用分数表:。0.08表示8个0.01

  2-2.抽象概括::小数是分数的另一种表示形式。分母是100的分数可以用两位小数表示。两位小数的计数单位是百分之一,也写作0.01。

  3-1.同学们,学习了把1米平均分成10份可以用一位小数来表示,你能把1米平均分成1000份,也用小数来表示吗?

  师:把1米平均分成1000份,每份用分数表示是米,用小数表示就是0.001米。

  师:刚才0.001米是怎样得到的?谁来说一说。

  生:把1米平均分成1000份,每份用分数表示是米,用小数表示就是0.001米。

  箭头指向6的地方怎么表示? 0.006米是怎样得到的?

  我们可以看出把整数1平均分成1000份,每一份是0.001, 6份是0.006,用分数表:。0.006的计数单位是0.001,的计数单位是。所以0.006表示6个0.001

  3-2.抽象概括:小数是分数的另一种表示形式。分母是1000的分数可以用三位小数表示。三位小数的计数单位是千分之一,也写作0.001。

  刚才我们分的是一米,用整数“1”来表示,平均分成10份、100份、1000份......这样的一份或几份是十分之几、百分之几、千分之几......实际应用中,可以用小数来表示。像0.1、0.2、0.01、0.52、0.625等都是小数。

  5、各部分名称:

  (以0.625为例来说明)小数中的小圆点“.”叫做小数点。小数点右边第一位是十分位,十分位上2表示2个0.1,3表示3个0.1,因此十分位上的计数单位是0.1,也可以说成是十分之一;小数点右边第二位是百分位,计数单位是百分之一(0.01);小数点右边第三位是千分位,计数单位是千分之一(0.001); 。

  归纳:每相邻两个计数单位之间的进率是10。

  课堂小结:

  今天你有什么收获?

  1.小数的计数单位是十分之一、百分之-一、 千分之一......分别写作0.1、0.01、 0.001......。

  2.小数中, 每相邻两个计数单位间的进率是10。

  3.十分之几是一位小数,百分之几是两位小数,千分之几是三位小数。

小数的意义教案13

  教学目标:

  1、结合具体情境,通过操作、观察、类比等活动理解小数的意义。

  2、经历探索小数意义的过程,培养归纳能力。

  3、在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。

  教学重难点:

  理解小数的意义和小数的计数单位。

  教具准备:

  米尺、课件。

  教学过程:

  一、回顾导入

  1、读一读信息(课件出示)想一想,这样写符合实际吗?

  (1)老师的体重是565千克。

  (2)小明的身高是145米。

  (3)笑笑的数学测验成绩是935分。

  2、这些数据都少了“一点”,那你知道小数由几部分组成吗?比如这里,51.5这个小数,里面的51是整数部分,小数点右边的这个5就是小数部分。那这两个5所在的数位一样吗?表示的意义一样吗?

  3、那这小数部分的5所在的数位是什么呢?这个数位的计数单位又是多少?学了小数的意义这节课,你就能找到答案。

  二、探索新知识

  1、过去,我们学习长度单位时,都测量过自己的课桌高度,那么你们想知道老师的讲桌的高度是多少吗?

  指名测量,其他同学观看。

  2、汇报测量结果。

  3、在日常生活中,测量一个物体的长或高时,往往得不到整数结果,这时,我们就要用到小数。那么,小数的意义是什么呢?这节课我们将继续来学习。

  4、出示米尺图。

  上图把1米平均分成了多少份?每份在尺子上是多少米?写成分数是多少?

  5、请同学们看米尺:从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?

  十分之几的数可以用一位小数表示,那么,请同学们猜一猜,两位小数与什么样的分数有关?

  6、出示米尺。

  指着板书:有什么新发现?学生汇报。

  7、提问:如果我们把1米平均分成1 000份,每一份是多少?从0刻度线到第一条短刻度线表示1毫米,它是几分之几米?写成小数呢?

  让学生说出两个用毫米作单位的长度,并请自己的同桌把它用小数表示出来。

  学生交流,并汇报结果。再次提问:从这里你们又发现了什么?汇报。

  8、我们这节课学习的知识,你都发现了什么?同桌先交流,后汇报。

  小结:分母是10、100、1 000……的分数可以用小数表示,一位小数表示十分之几?两位小数表示百分之几?三位小数表示千分之几?……

  进一步提问:在分数中,十分之几的计数单位是十分之一?百分之几的计数单位是百分之一?千分之几的计数单位是千分之一?请同学们想一想,小数的计数单位分别是多少?归纳整理。

  三、巩固练习

  第一层练习:

  分数小数互化。

  第二层练习。

  1、填空

  (1)0.8表示(),它的计数单位是(),它有()个这样的计数单位。

  (2)1里面有()个0.1和()个0.01。

  (3)0.52是由()个0.1和()个0.01组成的。

  2、判断:

  (1)0.8是把1个整体平均分成10份,表示这样的8份。()

  (2)1毫米写成小数是0.01米。()

  第三层练习:

  猜数游戏。

  小明和小红的数各是多少?

  四、总结

  师生共同回顾本节课内容。

  反思:

  “小数的产生和意义”人教版课程标准实验教材四年级下册的内容。这一内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的。本课要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识。

  小数的意义是什么?一位小数、两位小数是怎么来的?这是本课中重点要解决的概念问题。本节课,教者力求在课堂上给学生充足的空间,采用学生自主探究、合作交流的方式,把学生引入研究性学习的氛围,主动建构知识。

  在小数意义的教学中,教材中利用米与分米、厘米、毫米的改写,让学生理解小数的'意义。设计了“把一米平均分成10份,每份是多少?如果用米做单位,每份是多少米呢?能分别用分数、小数表示吗?教者在教学中直接从米尺入手,从平均分成10份、100份、1 000份入手,让学生在改动分母是10、100、1000的分数中来理解分数的意义。从而避免了教材中由于增加了米后意思上表达的不够清楚。

  引导学生进行观察归纳一位小数的意义时,当黑板上形成了下面的板书:0.1= 0.4=.7=后,让学生进行观察,让学生思考“通过观察发现了什么”。由于有了丰富的感性材料作为支撑,学生轻易地完成了对一位小数意义的抽象过程。然后两位,三位小数的意义的研究方法,是一个类推的过程,学生充分经历了一位小数的意义学习过程后,先猜测,两位小数、三位小数应该表示什么?再应用生活的例子加以说明,真正使学生卷入了学习过程中,学生的主体地位得到了较好的发挥。

  最后,通过教师点拨和学生观察、讨论,将小数计数单位和计数单位之间的进率通过对整数计数单位的复习进行引申。使知识形成一个完整的知识结构体系。

  反思这节课,也有一些地方预设的不够充分:

  1、在本课的教学内容安排上要突出小数的意义,尽量做到在三年级教学内容之上进行提升。归纳小数意义是本节课的难点,由于学生数学语言的表述错误较多,所以我花了一定的时间让学生说思考过程,导致时间上较紧迫。

  2、练习量较大,没有考虑学生实际。

  “课堂教学中我们教学的关注点是什么?”通过本课的教学,我又有了自己的一些思考。只要教师在课堂上关注学生,关注学生的学,定能让课堂焕发师生生命的活力,带来课堂上难以预约的精彩!

小数的意义教案14

  教学目标

  1.结合具体情境,通过观察、操作等活动掌握小数的读写法,理解小数的意义;

  2.在合作探索中,掌握小数各部分的名称和小数的数位顺序、小数的计数单位。

  3.培养学生的观察能力、分析能力、抽象概括能力和迁移能力,使学生在合作与交流过程中,获得积极的情感体验。

  教学过程

  第1课时

  一、创设情境,复习引入

  1.谈话:同学们,在我们的数学王国里,除了整数外,你还知道哪些数?你能举一个我们学过的小数的例子,并说出它表示的意义吗?

  (学生举例回答,师订正。)

  (根据学生的回答,教师板书一组一位小数:0.1 1/10;0.4 4/10……)

  教师引导学生观察这组数据,这些小数有哪些共同特征?(小组内交流)

  学生小组交流后,再集体交流。教师引导归纳:一位小数表示十分之几。

  2.谈话:看来同学们前面的知识掌握的不错,作为奖励,老师带来一组美丽的图片,请同学们看大屏幕。(伴随音乐,出示情境图。)

  [设计意图]本课是在学习了一位小数和初步认识分数的基础上进行的,所以,先带领学生回顾一下前面所学的有关知识,为学习新知做铺垫。再带领学生欣赏信息窗1,引入新知,培养情感,激发兴趣。

  二、结合情境,探究新知

  1.学习小数的读写。

  谈话:从图中你都看到了什么?了解到哪些数学信息?(学生交流。)

  (1)根据以前的知识,请你从中任选两种蛋的数据试着把它们读或写在练习本上。

  (2)全班交流订正。

  (3)教师根据学生的读、写情况引导学生概括小数读、写的基本方法。

  谈话:对于这些小数,你还想了解它们哪些知识?(学生自由提问。)

  下面我们先来研究一下0.25千克中的0.25表示什么意思?

  2.学习两位小数的意义。

  谈话:0.25千克中的0.25表示什么,首先要弄清0.01表示什么。(板书:0.25 0.01)

  (1)出示一张正方形纸片。

  谈话:如果正方形纸片用“1”表示,那么把它平均分成10份,每份可以怎样表示?如果把它平均分成100份。每份可以怎样表示?(学生发言。)

  (师板书:0.1——1/10 0.01——1/100)

  (2)在正方形纸片上表示出0.25。

  谈话:我们知道了0.01就是1/100,那么你能在这张正方形纸片上表示出0.25吗?它表示什么?

  (小组合作完成,全班交流,师引导学生明确0.25就是25/100,也就是25个1/100。)

  板书:0.25 25/100

  (3)教师多媒体出示0.05、0.10的方格图,阴影部分表示什么?

  板书:0.05 5/100

  0.10 10/100

  (4)小组讨论:这些小数有什么共同特点?

  (全班交流。教师引导学生概括出两位小数表示的意义)

  3.学习三位小数的意义。

  (1)谈话:我们已经知道了两位小数表示的意义,猜想:那么0.001表示什么?0.365表示什么?(学生口答。学生在两位小数的启发下,可以自然迁移)

  (2)教师多媒体出示大正方体塑料块动态平均分产生0.365的过程(教材51的图),引导学生理解0.365就是365个1/1000,也就是365/1000。)

  (3)多媒体出示0.305、0.360的阴影方块图,阴影部分表示什么?

  (4)引导学生概括出三位小数表示的意义

  4.总结小数的意义和计数单位。

  (1)谈话:今天我们认识了0.25和0.365这样的小数,你在生活中见过这样的'小数吗?

  (学生寻找生活中的小数,并结合实际说出它们的意义。)

  (2)小组讨论:你认为小数是用来表示什么的数?它的计数单位是什么?

  (集体交流,师引导学生总结出小数的意义。)

  [设计意图]通过对正方形纸片和正方体塑料块的观察、涂色、操作等活动,以及学生对日常生活中存在的小数的寻找和理解,使学生积累了丰富的感性认识,为学生顺利抽象概括小数的意义奠定了坚实的基础,同时感受小数应用于生活的广泛性。

  三、情境练习,巩固提高

  1.出示自主练习第一题。

  学生分别用分数和小数表示图中的阴影部分。

  2.自主练习第3题。

  学生独立读题,再说一说小数和分数之间的联系。

  [设计意图]练习重点是小数和分数的联系,注重培养学生系统归纳知识的能力,也让学生在练习中进一步理解小数的意义。

  四、课堂总结

  谈话:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?

  [设计意图]让学生分享学习成功的喜悦,激发学生的积极性和求知欲,同时也为学生的后续学习总结了经验和方法。

  课后反思

  兴趣是儿童最活跃的心理成分,当学生对某种事物产生兴趣时,他们就会主动、执着地探索。因此本课开始,就利用出示情景窗一,吸引了学生的兴趣,激发了学生探究的欲望,为小数意义地学习做了准备。

  同时,本节课以学生的生活经验和知识背景为切入点,引导学生进行积极的操作和体验。在这个过程中,教师引导学生感知、感受、感悟知识,围绕着学生这个主体,利用现代化教学手段与常规教学手段互相结合的方式,直观展现了知识的形成过程,启迪学生思维,提高了课堂效率。

  数学思想方法是数学知识的灵魂,是最有价值的数学知识。因此,数学课堂既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。在本课中,鼓励学生从一位小数迁移类推得到两位小数;在概括出两位小数的意义的基础,再对三位小数的意义进行猜测和验证,从而有效地渗透数学抽象化方法,进一步促进学生的数学思维能力。

小数的意义教案15

  【教学内容】 五年级上册第28页至30页例1和例2及相应的“试一试”和“练一练”,练习五1-5题。

  【教学目标】

  1.在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。

  2.在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。

  3.培养良好的学习习惯,提高学生的探究、归纳比较、抽象概括的能力。

  【教学重、难点】理解小数的意义。

  【教学过程】

  一、交流信息,引入课题

  课前我们收集了一些关于小数的资料,老师选择了一些,谁愿意给大家介绍一下?

  (1)一块橡皮0.3元;一张信封0.05元;一本练习本0.48元。

  (2)一枚1分硬币的厚度大约是0.001米。

  (3)老师用的签字笔笔芯是0.38毫米的。

  (4)艾兰德 “维生素C含片”净含量:0.65克×120片。

  (5)钱嘉容的家到学校大约有3.9千米,她的爸爸身高1.82米。

  像0.3这样的一位小数三年级时我们已经认识,这些小数和它们有什么不一样?会读吗?只读小数,谁来读一读。

  你们觉得读小数时需要提醒大家注意什么?(小数点前面的数和我们学过的整数一样读,小数点后面的数只要依次一个一个地读。)

  【设计意图:学生的知识起点是三下时对一位小数的直观认识和刻画,这是教学的起点,也是思维的动点。通过找身边的小数,引发学生对小数的认识,激起进一步学习和探究的热情。教材为什么三下就安排初步认识小数,因为生活中小数随处可见,孩子不陌生,早些了解也便于孩子在生活中交流。孩子对小数不陌生,因此两位小数、三位小数虽课本没安排学习,但孩子的读法早已在生活中习得,因此小数的读写方法不作为本节课的教学重点,只课之初始阶段稍做提醒,指出读法中的注意点,即尊重孩子的实际情况。】

  这节课我们将继续学习小数的意义。(板书课题:小数的意义)

  二、教学例1,初步感知

  1、出示例1。我们先来看第一条信息。

  这些小数表示物品的单价。

  如果你到商店去买这些物品,该怎样付钱呢?(课件出示: 3角 5分 48分)

  谈话: 这里的0.3元用分数可以怎么表示?你是怎么想的?(板书:0.3元)

  小结:1元=10角,3角是1元的3/10,可以写成0.3元。(板书:3/10元 0.3元)

  2、初步认识两位小数。

  你能仿照(0.3元)这样的思路说说0.05元和0.48元的意思吗?先独立想想,再同桌交流。(如果学生感到困难,提示:1元是多少分;1分是1元的几分之几;那5分呢?48分呢?可以怎样想?)

  0.05元,谁来说说你是怎么想的?(同桌互相说说)

  1元=100分,5分是1元的5100 ,可以写成0.05元;

  0.48元谁来说?

  1元=100分,48分是1元的48100 ,可以写成0.48元;

  板书:5100 元 0.05元 48100 元 0.48元

  3、看看这些小数,为什么(0.05)这里要写0?(因为是5分钱,1元=100分)几分钱用小数表示就是——,这里(0.48)为什么没有0?几角几分用小数表示就是——

  【设计意图:小数的意义较为抽象,学生掌握起来有一定困难。但以元为单位的小数所表示的金额是学生在生活中已经初步认识了的,比较熟悉,这些经验能支持学生理解小数的意义,从而实现感性认识到理性认识的飞跃。在初步感知阶段,利用“0.3元该怎么付?”学生把元转化成角,进而追问0.3元用分数可以怎么表示?得出3角是1元的3/10,可以写成0.3元。充分运用学生已有的知识经验和生活经验,通过类比,迁移,为下面学习两位小数、三位小数等作好充分的准备。】

  三、教学例2,概括意义

  (一)进一步理解两位小数的意义。

  1、刚才我们借助圆角分间的关系认识小数,其实还可以借助其它一些事物,这是一把米尺,把1米平均分成100份,每份长多少(1厘米)?为了方便看得清楚,我们截取一部分将它放大。想一想, 1厘米是1米的几分之一?用小数怎么表示?

  投影:1米=100厘米,1厘米是1米的1/100,可以写成0.01米。

  谁能这样完整的说说。(板书:1厘米 1/100米 0.01米)

  2、4厘米和9厘米写成以“米”作单位的分数和小数各是多少?拿出练习纸,在第一题处填一填。和屏幕校对。谁来说说(4厘米)你是怎么想的?0.09米有多长?

  (二)自主探究三位小数的意义。

  1、出示第一屏,收集的小数信息:请同学们看第2条信息,读——0.001米?你认为它比要0.01米的长度——短!究竟有多长?

  2、老师将米尺再截短再放大,现在你能在米尺上指出0.001米吗,并告诉大家你是怎样想。(能仿照刚才的思路说说想法)

  谁再来说说0.001米的意思?板书:11000 米 0.001米

  你能说一个毫米数,让大家像这样来说说吗?板书两个

  3、练习纸上找到材料2完成填空。(课件出示,直接校对)

  这些用米作单位的三位小数都表示1米的——千分之几。

  (三)观察发现,概括意义

  1、一起来观察板书,先竖着看看,再横着看,仔细观察这一行分数和对应的小数,你有什么发现?想一想四人小组交流。汇报

  竖着看,这3个数量都是——相等的.!下面两个数量的单位都是——相同的!这说明分数、小数之间有着密切的联系!(根据学生交流情况可适当擦去写板书,只留下分数、小数,便于观察、比较、抽象概括意义。)

  从分数往小数看,什么样的分数可以直接写成小数呢?

  看看下面的小数,可以分成几类?

  从小数往分数看,一位小数、两位小数、三位小数各表示什么?还能往下想吗?四位小数呢?(表示万分之几)能想的完吗?

  引导出示:分母是10、100、1000……的分数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  指出:这就是小数的意义,引导学生完整的看一看 。

  (四)回到第一屏学生收集的信息,解释3、4条信息中小数的意义。

  【设计意图:例2的教学分成三段进行。第一段继续教学两位小数,以“米”为单位改写成小数,从中体会不仅是“元”为单位的百分之几可以写成两位小数,其他百分之几的分数都可以写成两位小数。第二段教学三位小数,让学生把学习两位小数的经验迁移到三位小数上。数学学习的本质在于数学思维,第三段初步概括小数的意义,对一位、两位、三位……小数意义的具体分析后,抓住展示和交流这一时机,通过清晰直观的板书,从上往下又从左往右地引导学生进行概括、归纳、推理,最后达成了对小数意义的系统认识和理解。】

【小数的意义教案】相关文章:

《小数的意义》教案03-12

小数的意义教案09-22

小数的意义教案【荐】03-01

【热门】小数的意义教案03-01

小数的意义教案【精】03-01

【精】小数的意义教案03-01

【荐】小数的意义教案02-21

小数的意义教案【热门】02-22

【热】小数的意义教案02-22

小数的意义教案【热】02-23