有关平行四边形教案集合8篇
作为一位无私奉献的人民教师,总归要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。我们应该怎么写教案呢?以下是小编精心整理的平行四边形教案8篇,仅供参考,欢迎大家阅读。
平行四边形教案 篇1
教学目标:
(1)通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积,培养学生初步的逻辑思维能力和空间观念。
(2)能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的'能力。
教学重点:通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积。
教学难点:能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。
教学准备:教具、投影。
教学过程:
一、复习准备:
1.平行四边形、三角形、梯形的概念。
2.平行四边形、三角形的性质。
3.各图形的对称情况。
4.图形的大小用面积来表示。 (引人新课)
二、新授
1.投影,并观察,填书本P1的空格
2.操作:用割补法把平行四边形拼成长方形。
3.量一量长方形的长和宽与平行四边形的底和高有怎样的关系?
4.得出:
长方形的面积= 长 × 宽
平行四边形的面积=( )×( )
5.怎样计算下面图形的面积?
平行四边形教案 篇2
教学内容:
教科书第14、15页的内容。
教学目标:
1、通过观察、比较等方法,初步认识平行四边形,初步感知平行四边形的特征。
2、参与对图形的围、拼、折等实践活动,体会图形的变换,发展空间观念。
3、在学习活动中积累对数学的兴趣,培养交往、合作意识。
教学重点:
认识平行四边形。
教学难点:
感悟平行四边形的特征。
教学过程:
一、情境导入
同学们,上节课我们知道了什么是四边形以及它的特点,今天,老师又给你们带来了一位新朋友(出示平行四边形图),你们见过它吗?这节课我们就来认识这位新朋友。
二、自主探究
同学们在生活中见过这样的图形吗?在哪见过?
看,这是教师在生活中见到的四边形,你知道这是什么吗?
课件出示:教材第14页例2图
第一幅图是挂衣服的`架子,第二幅图是围起来的篱笆墙,第三幅图是楼梯的扶手。
你能用两块完全一样的三角尺拼出这样的平行四边形吗?它跟长方形、正方形有什么区别和联系呢?试一试。
学生动手操作,尝试拼平行四边形,教师巡视指导。
组织交流,展示学生拼图结果,并让学生说说发现了什么?
(它们的对边一样长,长方形、正方形和平行四边形都是四边形,长方形、正方形的四个角都是直角,平行四边形的角不是直角)
老师边画平行四边形边指出:像这样的四边形叫做平行四边形。
三、巩固练习
1.想想做做第1题。
学生独立完成,分小组讨论, 汇报。
2.想想做做第2题。
组织学生想一想,再围一围。
3.想想做做第3题。
学生在书上描一描,教师巡视检查。
4.想想做做第4题。
学生动手完成。
5. 想想做做第5题。
学生在家长的帮助下完成。
四、全课总结
提问:今天这节课你有什么收获?
平行四边形教案 篇3
【学习目标】
1.能运用勾股定理解决生活中与直角三角形有关的问题;
2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。
3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值
【学习重、难点】
重点:勾股定理的应用
难点:将实际问题转化为数学问题
【新知预习】
1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.
【导学过程】
一、情境创设
欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?
二、探索活动
活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.
活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?
三、例题讲解:
1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?
2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?
【反馈练习】
1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;
(2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;
(3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.
2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )
A.20cm B.10cm C.14cm D.无法确定
3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?
【课后作业】P67 习题2.7 1、4题
八年级数学竞赛辅导教案:由中点想到什么
第十八讲 由中点想到什么
线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:
1.中线倍长;
2.作直角三角形斜边中线;
3.构造中位线;
4.构造中心对称全等三角形等.
熟悉以下基本图形,基本结论:
例题求解
【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .
(“希望杯”邀请赛试题)
思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.
注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:
(1)利用直角三角斜边中线定理;
(2)运用中位线定理;
(3)倍长(或折半)法.
【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )
A.AB=MN B.AB>MN C.AB (20xx年河北省初中数学创新与知识应用竞赛试题) 思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点. 【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC. (浙江省宁波市中考题) 思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线. 【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC). 若(1)BD、CF分别是△ABC的内角平分线(如图2); (2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明. (20xx年黑龙江省中考题) 思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础. 注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用. 【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE. (20xx年天津赛区试题) 思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口. 注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一. 学历训练 1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= . (20xx年广西中考题) 2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数). (200l年山东省济南市中考题) 3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 . 4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的.长等于 cm. (20xx年天津市中考题) 5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( ) A.40 B.48 C 50 D.56 6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( ) A.8cm D.7cm C. 6cm D.5cm 7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( ) A.不能确定 B.2 C. D. +1 (20xx年浙江省宁波市中考题) 8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题: ①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形; ②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形; ③若所得四边形MNPQ为矩形,则AC⊥BD; ④若所得四边形MNPQ为菱形,则AC=BD; ⑤若所得四边形MNPQ为矩形,则∠BAD=90°; ⑥若所得四边形MNPQ为菱形,则AB=AD. 以上命题中,正确的是( ) A.①② B.③④ C.③④⑤⑥ D.①②③④ (20xx年江苏省苏州市中考题) 9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE. (20xx年上海市中考题) 10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点. 11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F. (1)求证:EF=FB; (2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系. 12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 . (20xx年四川省竞赛题) 13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= . (重庆市竞赛题) 1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号) 15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( ) A. B. C. D. 16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( ) A.1 D.2 C.3 D. 17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( ) A. B. C. D. 18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF. (20xx年全国初中数学联赛试题) 19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论. (山东省竞赛题) 20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点. (1)求证:MB=MC; (2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论. (江苏省竞赛题) 21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1. (1)求证AA1+ CCl = BB1 +DDl; (2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系? 教学过程 一、课堂引入 1.平行四边形的性质;平行四边形的判定;它们之间有什么联系? 2.你能说说平行四边形性质与判定的用途吗? (答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.) 3.创设情境 实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图) 图中有几个平行四边形?你是如何判断的? 二、例习题分析 例1(教材P98例4)如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且DE=BC. 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的`对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形. 方法1:如图(1),延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC. (也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同) 方法2:如图(2),延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形ADCF是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC. 定义:连接三角形两边中点的线段叫做三角形的中位线. 【思考】: (1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别? (2)三角形的中位线与第三边有怎样的关系? (答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.) 三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半。 教材分析 1、课标分析:《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。 2、教材分析: 《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学会长方形、正方形的面积计算,已掌握平行四边形的特征,会画平行四边形的底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为进一步学习立体图形的表面积做了准备。 由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然的产生了。本节课的教学不仅培养了学生的观察比较、分析综合的能力,还培养了学生动手操作、探索创新的能力,是学习多边形面积计算,掌握转化思想的起始内容。 学情分析 五年级学生正处在形象思维和逻辑思维过渡时期。他们有了一定空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的教学媒介让学生去参与、去操作、去实践,才能让学生通过体验,掌握规律,形成技能。这节课中生动形象的多媒体有助于学生将这些抽象的事物转化为易于理解、易于接受的事物,多媒体的使用在教学中起到了不可替代的作用。 教学目标 (1)使学生通过探索理解和掌握平行四边形的面积公式,会计算平行四边形的面积。 (2)通过操作,观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。 (3)培养学生学习数学的兴趣及积极参与、团结协作的精神。 教学重点和难点 教学重点:使学生通过探索、理解和掌握平行四边形的面积、计算公式、会计算平行四边形的面积。 教学难点:通过学生动手操作,用割补的`方法把一个平行四边形转化为一个长方形,找出两个图形间的联系,推导出平行四边形的面积公式。 教学过程 一、情感交流 二、探究新知 1、旧知铺垫 (1)、说出平面图形名称并对它们进行分类。 (2)、计算正方形、长方形的面积。(强调长方形面积计算公式) 设计目的:从学生熟悉的知识点入手,能够降低门槛顺理成章的引入新知识。 2、 导入新课 3、 探究平行四边形面积计算方法。 (1)、在方子格中数出长方形的面积。 (2)、在方子格中数出平行四边形的面积(不满一格的按半格计算)。要求学生说出平行四边形对应的底和高。 (3)、通过观察表格,试着猜测平行四边形的面积计算方法。 (4)、共同探讨如何计算平行四边形的面积。 ①出示平行四边形,引导学生明确其底和高。 ②学生在学具上标明其底并画出对应的高。 ③讨论:能否把平行四边形转化为已学过的平面图形再计算(保证面积不会发生变化) ④小组交流如何操作的。(割补法) ⑤学生代表汇报各组的操作方法以及得到的结论。 ⑥幻灯片演示割补的过程。 ⑦引导学生归纳平行四边形面积计算公式。(让学生明确算平行四边形面积的必须条件) 4、 课堂小练笔。 设计目的:达到让学生动手操作,从实践中掌握知识,并能够从实践中总结知识。让学生明白知识来源于生活,又用于生活。 三、课堂练习 四、小结本课 五、课堂作业 板书设计 平行四边形 面积 = 底 × 高 长方形 面积 = 长 × 宽 S表示平行四边形的面积 a表示底 h表示高 S=a×h s=a.h S=ah 教学内容: 义务教育课程标准实验教科书(西南师大版)四年级(下)第97,98页中的主题图和例题1,例2,以及第97~99页中课堂活动第1~2题和练习二十第1题。 教学目标: 1、通过观察、操作等活动,认识平行四边形以及图形的特征;通过操作活动(折纸)认识并理解平行四边形的高。 2、经历探索平行四边形形状的过程,了解它的基本特征,进一步发展空间观念,培养学生动手操作能力。 3、通过观察、操作、交流等数学活动,体验数学问题的探索性和挑战性,感受数学思考的条理性。 教学重、难点: 让学生在观察、操作、交流等教学活动中认识平行四边形。 教具准备: 一个长方形方框,多媒体课件。 学具准备: 每人一块直尺、一副三角板、一张印有平行四边形的白纸和一个剪好的平行四边形、一个硬纸条做的长方形方框。 教学过程: 一、 谈话引入 教师:同学们,在以前的学习中我们已经初步认识了平行四边形。实际上,在我们生活中也经常见到平行四边形。请看大屏幕。 (课件出示主题图) 请同学们仔细观察这些物体,你能在这些物体上找出平行四边形吗?(请同学到台上用鼠标边指边说,然后课件再呈现学生所指出的平行四边形。) 教师:同学们观察得非常仔细,找到了这么多的平行四边形,它们有些什么共同的特征呢?今天这节课老师就和同学们一起来进一步认识平行四边形。 板书课题:平行四边形 二、 探究新知 1、认识平行四边形的特征 (1)教师:同学们喜欢看魔术表演吗?(喜欢)现在,老师就给同学们表演一个小魔术。 (教师出示一个长方形方框)这个图形大家认识吗?(它是长方形) 教师:对!这是一个长方形。老师握着这个长方形方框的两个对角,轻轻地拉一拉。变!变!变!这还是长方形吗?(平行四边形)对!这是平行四边形。 教师:你们想玩玩这个魔术吗? (2) 学生自己用硬纸条做的长方形方框来体验平行四边形的不稳定性。 (3)师:同学们观察老师手里的`平行四边形,同桌讨论你们发现了什么? 生1:对边平行 生2:对边相等 同学们真聪明,真能干通过观察发现了这么多! 同学们,这些发现对吗?现在我们来验证我们的发现,请同学们拿出老师发的平行四边形,首先我们用画平行线的方法来验证对边是否平行。 汇报结果:对边平行 现在我们再来验证一下对边真的相等吗?应该怎样办呢? 生:测量平行四边形四条边的长度。 师:请拿出你们的直尺测量手中平行四边形四条边的长度。 汇报结果:对边相等 师:同学们,我们现在发现了平行四边形有两个特点,它们是什么呢? (4)师:我们现在认识了平行四边形,也知道它的对边相等且平行。那么什么是平行四边形呢? 教师通过学生的回答引导出:对边平行的四边形,叫做平行四边形。 2、认识平行四边形的高 同学们真能干!这么快就知道了什么叫做平行四边形,现在我们来学习平行四边形另外一个特征。请同学们拿出老师发的平行四边形跟老师做(折高)。 师:打开平行四边形,观察折痕有什么特点(垂直于边) 师:想一想什么叫做平行四边形的高?(从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.)教师:同学们,通过刚才折平行四边形的高,你有什么发现? 学生:我发现平行四边形的高有无数条。 教师:对!平行四边形有无数条高。 第99页第3题,学生独立完成之后全班交流,教师强调底与高的对应性。 师:引导认识底 3、引导学生认识长方形、正方形、平行四边形的关系 (1)完成表格 (2)归纳总结第98页课堂活动第1题 教师:请同学们想一想,到现在为止,我们都学习了哪些四边形?(长方形、正方形、平行四边形……) 教师:它们都有哪些地方一样呢?(它们都是对边相等,对边互相平行……) 教师:平行四边形的这些特征,长方形、正方形都具备。 我们通常说长方形、正方形是特殊的平行四边形。 长方形、正方形是特殊的平行四边形。平行四边形的对边平行且相等,具有不稳定性。 三、课堂小结 同学们,这节课你学到了哪些知识?能给大家讲讲吗? 教学内容: 《义务教育课程标准实验教科书数学(四年级上册)》教科书70-71页例1,练习十二相关练习题。 教学目标: 知识目标: 1、认识平行四边形和梯形,掌握平行四边形和梯形的特征; 2、学会四边形分类;概括出长方形、正方形是特殊的平行四边形,正方形是特殊的长方形的关系; 能力目标:培养学生动手操作能力和概括能力,发展空间思维能力。 情感目标:在小组合作中,培养学生团结合作互助精神,在拼图的过程中感受图形的美。 教学重点:掌握平行四边形和梯形的特征。 教学难点:理解平行四边形、长方形、正方形的关系。 教学准备: 教具:课件,四边形关系图,长方形、正方形、平行四边形、梯形模具各一个。 学具:三角尺,直尺,量角器。 教学过程: 一、回顾旧知,引入新课。 师:我们以前已学过很多图形了,请认真观察下面图形它们是由几条边围成的?(课件出示) 生:四条。 师:你观察得真仔细。由四条边围成的这些图形叫四边形。 师:在这些四边形中,你最熟悉的是什么图形? 生:长方形,正方形。 师:长方形、正方形的边和角各有什么特点? 生:长方形的对边相等,对边平行,四个角都是直角。(板书) 生:正方形的四条边都相等,对边平行,四个角都是直角。(板书) 师:看来同学们对以前的知识掌握得真牢固!正方形是长方形吗? 生:是。 师:正方形是特殊的长方形,我们也可以说长方形包含正方形。 师:你知道这两个图形的名称吗?(指课件中的平行四边形和梯形)。 生:平行四边形和梯形。 师:你们认识得真多,这节课我们就一起来探究一下平行四边形和梯形的有关知识。(板书课题) 二、合作学习,探究新知 (一)动手操作初步感知平行四边形和梯形的特点。 师:平行四边形和梯形又有什么特点呢?现在我们用学具分别量一量它们的边、角各有什么特点,把你的发现像这样写下来。并相互说说你是怎样发现的?四人小组活动开始。 生:学生活动,教师巡视。 (二)教学平行四边形的特点。 1、汇报发现。 师:谁来大胆汇报自己的发现?你是怎样知道的? (指名说说平行四边形的特点) 师:谁还有其它的发现吗? 2、?验证结论 师:刚才有的同学找到平行四边形的两组对边是互想平行的,我们一起来验证吧,请看大屏幕!(大屏幕展示方法:用直尺、三角尺平移验证) 3、总结概念。 师:(边操作边说)这组对边平行,这组对边也平行,两组对边都平行。 师:你们能用自己的话说说怎样的四边形叫“平行四边形”吗?(指名回答) 师:请打开课本71页,找找课本是怎么说的,画起来齐读一遍。 揭示概念:[课件展示]两组对边分别平行的四边形叫做平行四边形。(并板书) 4、引导学生找出关键词。 师:在这定义中,你认为哪些词语比较重点? 生:两组,平行,四边形。 师:你真会找。我们把重点词读重音,齐读一遍。 生:学生读。 师:下面我们男女同学比赛,看谁读得好。(男女分别读) 师反问:要想判断一个图形是不是平行四边形,必须符合什么条件? 5、穿插练习。 请判断下面图形是平行四边形的打“”,不是打“”。 (三)认识梯形 1、汇报发现 师:梯形的边又有哪些特点呢? 生:只有一组对边平行。 师:你们都有同样的发现吗?(板书) 生:有。 2、?验证结论 师:我们一起来验证一下。 师:(边操作边说)这组对边不平行,这组对边平行,只有一组对边平行。 3、总结概念。 师:你们能用自己的话说说怎样的四边形叫“梯形”吗? 师:请打开课本71页,找找课本是怎么说的,画起来齐读一遍。 揭示概念:[课件展示]只有一组对边平行的四边形叫做梯形。 (并板书) 4、引导学生找出关键词。 师:在这定义中,你又认为哪些词语比较重点? 生:只有一组,平行四边形。 师:你找得真准确,我们把重点词读重音,再读一遍。 师:下面我们来小组比赛,看哪个小组读得好。 师反问:要想判断一个图形是不是梯形,必须要符合什么条件? 5、穿插练习。 请判断下面图形是梯形的打“”,不是打“”。 6、比较平行四边形与梯形有什么不同。 师:(指练习中的平行四边形)问:它为什么不是梯形?它其实是个平行四边形,那平行四边形与梯形有什么不同? 三、教学四边形之间的关系。 师:我们已经认识了这么多的图形了,这些图形都是四边形。(课件出示四边形的集合图) 师:我们先看长方形,正方形和平行四边形的边都有什么共同的特点? 生:两组对边都平行。 师:那长方形,正方形是特殊的'平行四边形吗?(四人小组讨论) 师:指名汇报。 师总结:长方形,正方形是特殊的平行四边形。它们特殊在哪里? 生:四个角都是直角。 师:梯形有没有两组对边平行? 生:没有。 师:所以梯形自己为一类。 教师总结:所以在四边形这个大家族中[展示:四边形集合圈],有平行四边形、梯形、一般四边形这几个家庭组成[展示:平行四边形、梯形集合圈],在平行四边形这个家庭中,包含有长方形这个特殊的小家庭[展示:长方形集合圈],长方形这个小家庭中又包含正方形这个特殊的成员[展示:正方形集合圈]。 师:现在我们对照课本71页的这个集合图,同桌互相说说这些四边形之间的关系。 生:学生活动。 师:谁来说说它们的关系。(指名说) 四、质疑。 师:请打开课本70--71页,看书有没有要问老师的呢? 五、巩固练习。 1、判断: (1)两组对边分别平行的图形是平行四边形。() (2)有一组对边平行的四边形是梯形。() (3)平行四边形的两组对边分别平行并且相等。() (4)长方形、正方形都是特殊的平行四边形。() 2、找一找生活中的平行四边形和梯形。 师:你们判断得真准确。其实平行四边形和梯形就在我们的身边,你们在哪里看到过平行四边形和梯形呢?(指名说说) 师:好,老师现在带你们去校园找找,看这美丽的校园哪里有平行四边形和梯形呢?(主题图) 师:谁愿意上来找找? 师:同学们真会找,我们在生活中也要仔细观察身边的事物。老师也找到了一些生活中的平行四边和梯形。我们一起来欣赏一下。(课件欣赏生活中的平行四边形和梯形) 师:我们生活中很多建筑物都要用到我们学过的图形的。你们想不想利用我们学过的图形亲手拼一幅美丽的图画呢? 生:想。 3、拼图。 师:拼图要求:用学过的图形,拼出你们喜欢的图画。 (1)找图形(2)小组拼图画。(3)展示作品。 生:学生动手拼。 师:同学们真能干,能利用我们学过的图形拼出这么漂亮的图画,你们的手真巧。在这些美丽的图画中,你最喜欢哪一幅?它是由哪些图形拼成的? 六、总结:谈收获。 师:同学们,你觉得这节课里你表现怎样?你有什么收获和体会? 四年级数学上册《平行四边形、梯形特征》教学设计教学目标: 1、学生理解平行四边形和梯形的概念及特征。 2、使学生了解学过的所有四边形之间的关系,并会用集合图表示。 3、通过操作活动,使学生经历认识平行四边形和梯形的全过程,掌握它们的特征。 4、通过活动,让学生从中感受到学习的乐趣,体会到成功的喜悦,从而提高学习的兴趣。 教学重点:理解平行四边形和梯形的概念及特征。了解学过的所有四边形之间的关系,并会用集合图表示。 教学难点:理解平行四边形和梯形的'概念及特征。用集合图表示学过的所有四边形之间的关系。 教具准备:图形、剪子、七巧板。 教学过程: 一、创设情景 感知图形 1、出示校园图(70页)在我们美丽的校园中,你能找到那些四边形? 2、画出你喜欢的一个四边形。说一说什么样的图形是四边形? 展示学生画出的四边形,请学生标出它们的名称。 长方形 平行四边形 梯形 正方形 3、小组交流:从四边形的特点来看,四边形可以分成几类?学生讨论交流。 二、探究新知 1、归纳平行四边形和梯形的概念。 有什么特点的图形是平行四边形?(两组对边分别平行的四边形叫做平行四边形。) 强调说明:只要四边形的每组对边分别平行,就能确定它的每组对边相等。因此平行四边形的定义是两组对边分别平行的四边形。 提问:生活中你见过这样的图形吗?它们的外形像什么? 这些图形有几条边?几个角?是什么图形? 这几个四边形有边有什么特点? 它是平行四边形吗? 你们在量这些图形时,是否发现它们都有一个共同的特点?如果有,是什么? 只有一组对边平行的四边形叫做梯形。 5、现在你有什么问题吗? 长方形和正方形是平行四边形吗?为什么? 6、用集合图表示四边形之间的关系。我们学过的长方形、正方形、平行四边形、刚刚认识的梯形,你能用这个集合圈来表示他们的关系吗? 7、判断: 长方形是特殊的平行四边形。( ) 两个完全一样的梯形可以拼成一个平行四边形。( ) 一个梯形中只有一组对边平行。( ) 三、巩固练习。 1、在梯形里画两条线段,把它分割成三个三角形。你有几种画法?学生展示 2、七巧板拼一拼 用两块拼一个梯形 用三块拼一个梯形 用一套七巧板拼一个平行四边形 1、 下面的图形中有( )个大小不同的梯形。 2、 用两个完全一样的梯形,能拼成一个平行四边形吗? 把1张梯形纸剪一次,再拼成一个平行四边形。 拿一张长方行纸,不对折,剪一次,再拼出一个梯形。 四、课堂小结:通过这节课的学习,你有何体会和收获? 五、作业: 1、把一个平行四边形剪成两个图形,然后拼成一个三角形,这个三角是什么三角形?有几种剪拼的方法? 2、把一张平行四边形的纸剪一下,分成两个梯形,有多少种剪法? 【平行四边形教案】相关文章: 《平行四边形的判定》教案06-03 平行四边形的认识教案03-09 认识平行四边形教案03-05 《平行四边形面积的计算》教案09-14 精选平行四边形教案四篇05-19 平行四边形教案4篇05-13 精选平行四边形教案3篇05-18 精选平行四边形教案4篇05-16 平行四边形教案四篇05-21 精选平行四边形教案10篇05-23平行四边形教案 篇4
平行四边形教案 篇5
平行四边形教案 篇6
平行四边形教案 篇7
平行四边形教案 篇8