当前位置:9136范文网>教育范文>教案>全等三角形教案

全等三角形教案

时间:2023-07-15 06:55:14 教案 我要投稿

全等三角形教案【合集15篇】

  作为一位杰出的教职工,常常要根据教学需要编写教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么教案应该怎么写才合适呢?下面是小编为大家整理的全等三角形教案,欢迎大家借鉴与参考,希望对大家有所帮助。

全等三角形教案【合集15篇】

全等三角形教案1

  教学目标

  一、知识与技能

  1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

  2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

  二、过程与方法

  通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

  三、情感态度与价值观

  通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

  教学重点

  1、全等三角形的性质。

  2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。

  教学难点正确寻找全等三角形的对应元素

  教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

  课前准备:教师------课件、三角板、一对全等三角形硬纸版 学生------白纸一张硬纸三角形一个

  教学过程设计

  一、 全等形和全等三角形的概念

  (一)导课:教师----(演示课件)庐山风景,以诗"横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中"指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。

  (二)全等形的定义

  象这样的图片,形状和大小都相同。你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]

  动手操作1---在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?

  [板书:能够完全重合]

  命名:给这样的图形起个名称----全等形。[板书:全等形]

  刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。

  (三)全等三角形的定义

  动手操作2---制作一个和自己手里的三角形能够完全重合的三角形。

  定义全等三角形:能够完全重合的两个三角形,叫全等三角形。

  [板书课题:13.1全等三角形,]

  (四)出示学习目标

  1. 知道什么是全等形,什么是全等三角形。

  2. 能够找出全等三角形的对应元素。

  3.会正确表示两个全等三角形。

  4.掌握全等三角形的性质。

  二、 全等三角形的'对应元素及表示

  (一)自学课本:91页的 内容(时间5分钟)可以在小组内交流。

  (二)检测:

  1.动手操作

  以课本p91页的思考的操作步骤,抽三个学生上黑板完成(即把三角形平移、翻折、旋转后得到新的三角形)

  思考:把三角形平移、翻折、旋转后,什么发生了变化,什么没有变?

  归纳:旋转前后的两个三角形,位置变化了,但形状大小都没有变,它们依然全等。

  2.全等三角形中的对应元素

  (以黑板上的图形为例,图一、图二、三学生独立找,集体交流)

  (1)对应的顶点(三个)---重合的顶点

  (2)对应边(三条)---重合的边

  (3)对应角(三个)--- 重合的角

  图一(平移)

  图二 (翻折)图三(旋转)

  归纳:方法一---全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;方法二:全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

  另外:有公共边的,公共边一定是对应边;有对顶角的,对顶角一定是对应角。

  3.用符号表示全等三角形

  抽学生表示图一、图二、三的全等三角形。

  4.全等三角形的性质

  思考:全等三角形的对应边、对应角有什么关系?为什么?

  归纳:全等三角形的对应边相等、对应角相等。

  请写出平移、翻折后两个全等三角形中相等的角,相等的边。

  三、 课堂训练

  1.下面的每对三角形分别全等,观察是怎么变化而成的,说出对应边、对应角。

  2.将△abc沿直线bc平移,得到△def(如图)

  (1) 线段ab、de是对应线段,有什么关系?线段ac和df呢?

  (2) 线段be和cf有什么关系?为什么?

  (3)若∠a=50?,∠b=30?,你知道其他各角的度数吗?为什么?

  3.议一议:△abe≌△acd,ab与ac,ad与ae是对应边,∠a=40?,∠b=30?,求∠adc的大小。

  四、小结:学生填写《课堂学习评价卡》并交流。

  五、作业:课本92页习题13.1第2题、3题、4题。

  板书设计:全等三角形对应元素

  全等形全等三角形全等三角形性质

全等三角形教案2

  教学建议

  直角三角形全等的判定

  知识结构

  重点与难点分析:

  本节课教学方法主要是“自学辅导与发现探究法”。力求体现知识结构完整、知识理解完整;注重学生的参与度,在师生共同参与下,探索问题、动手试验、发现规律、做出归纳。让学生直接参加课堂活动,将教与学融为一体。具体说明如下:

  (1)由“先教后学”转向“先学后教

  本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

  (2)在层次教学中培养学生的思维能力

  本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

  公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

  综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

  教法建议:

  由“先教后学”转向“先学后教”

  本节课开始,让同学们自己思考问题:判定三角形全等的方法有四种,如果这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?学生展开讨论,初步形成意见,然后由教师答疑。这样促进了学生学习,体现了以“学生为主体”的教育思想。

  (2)在层次教学中培养学生的思维能力

  本节课的层次主要表现为两个方面:一是对公理的多层次理解;二是综合练习的多层次变化。

  公理的多层次理解包括:明确公理的条件及结论;公理的文字语言、图形语言、符号语言的理解及掌握;公理的作用。这里特别强调三个方面:1、特殊三角形的特殊性;2、归纳总结判定直角三角形全等的方法。

  综合练习的多层次变化:首先给出直接应用公理证明三角形全等的题目;然后给出变式题目;最后给出综合应用题目。这里注意两点:一是给出题目后先让学生独立思考,并按教材的形式严格书写。二是给出的综合题目有一定的难度,教学时,要注意引导学生分析问题解决问题的思考方法。

  教学目标

  1、知识目标:

  (1)掌握已知斜边、直角边画直角三角形的画图方法;

  (2)掌握斜边、直角边公理;

  (3)能够运用HL公理及其他三角形全等的'判定方法进行证明和计算.

  2、能力目标:

  (1)通过尺规作图使学生得到技能的训练;

  (2)通过公理的初步应用,初步培养学生的逻辑推理能力.

  3、情感目标:

  (1)在公理的形成过程中渗透:实验、观察、归纳;

  (2)通过知识的纵横迁移感受数学的系统特征。

  教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

  教学难点:灵活应用五种方法(SAS、ASA、AAS、SSS、HL)来判定直角三角形全等。

  教学用具:直尺,微机

  教学方法:自学辅导

  教学过程

  1、新课引入

  投影显示

  问题:判定三角形全等的方法有四种,若这两个三角形是直角三角形,那么判定它们全等的方法有哪些呢?

  这个问题让学生思考分析讨论后回答,教师补充完善。

  2、公理的获得

  让学生概括出HL公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

  公理:有斜边和一条直角边对应相等的两个直角三角形全等。

  应用格式: (略)

  强调说明:

  (1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

  (2)、判定两个直角三角形全等的方法。

  (3)特殊三角形研究思想。

  3、公理的应用

  (1)讲解例1(投影例1)

  例1求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。

  学生思考、分析、讨论,教师巡视,适当参与讨论。找学生代表口述证明思路。

  分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出、已知求证后,再写出证明过程。

  证明:(略)

  (2)讲解例2。学生分析完成,教师注重完成后的点评。)

  例2:如图2,△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直于AB、AC,垂足为E、F.

  求证:BE=CF

  分析: BE和CF分别在△BDE和△CDF中,由条件不能直接证其全等,但可先证明△AED≌△AFD,由此得到DE=DF

  证明:(略)

  (3)讲解例3(投影例3)

  例3如图3,已知△ABC中,∠BAC=,AB=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:

  (1)BD=DE+CE

  (2)若直线AE绕A点旋转到图4位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何,请证明;

  (3)若直线AE绕A点旋转到图5时(BD>CE),其余条件不变,BD与DE、CE的关系怎样?请直接写出结果,不须证明

  学生口述证明思路,教师强调说明:阅读问题的思考方法及思想。

  4、课堂小结:

  (1)判定直角三角形全等的方法:5个(SAS、ASA、AAS、SSS、HL)在这些方法的条件中都至少包含一条边。

  (2)直角三角形判定方法的综合运用

  让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

  5、布置作业:

  a、书面作业P79#7、9

  b、上交作业P80#5、6

  板书设计

  探究活动

  直角形全等的判定

  如图(1)A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,

  若AB=CD求证:BD平分EF。若将△DEC的边EC沿AC方向移动变为如图(2)时,其余条件不变,上述结论是否成立,请说明理由。

全等三角形教案3

  【教学目标】

  知识与技能:理解三角形全等的“边角边”的条件。掌握三角形全等的“SAS”条件,了解三角形的稳定性。能运用“SAS”证明简单的三角形全等问题。

  过程与方法:经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程。掌握三角形全等的“边角边”条件。在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明。

  情感态度与价值观:通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神。

  教学重点:三角形全等的条件。

  教学难点:寻求三角形全等的条件。

  教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。

  学情分析:这节课是学了全等三角形的边边边后的一节课、将中间的边变为角探讨、学生一定能理解,根据之前的学情、学好这一节课有把握。

  课前准备:全等三角形纸片、三角板、

  【教学过程】:

  一、创设情境,导入新课

  [师]在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等。给出三个条件时,有四种可能,能说出是哪四种吗?

  [生]三内角、三条边、两边一内角、两内角一边。

  [师]很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等。今天我们接着研究第三种情况:“两边一内角”。

  (一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况?

  [生]两种。

  1、两边及其夹角。

  2、两边及一边的对角。

  [师]按照上节方法,我们有两个问题需要探究。

  (二)探究1:先画一个任意△ABC,再画出一个△A/B/C/,使AB=A/B/、AC=A/C/、∠A=∠A/(即保证两边和它们的夹角对应相等)。把画好的`三角形A/B/C/剪下,放到△ABC上,它们全等吗?

  探究2:先画一个任意△ABC,再画出△A/B/C/,使AB=A/B/、AC=A/C/、∠B=∠B/(即保证两边和其中一边的对角对应相等)。把画好的△A/B/C/剪下,放到△ABC上,它们全等吗?

 学生活动:

  1、学生自己动手,利用直尺、三角尺、量角器等工具画出△ABC与△A/B/C/,将△A/B/C/剪下,与△ABC重叠,比较结果。

  2、作好图后,与同伴交流作图心得,讨论发现什么样的规律。

  教师活动:

  教师可学生作完图后,由一个学生口述作图方法,教师进行多媒体播放画图过程,再次体会探究全等三角形条件的过程。

  二、探究

  操作结果展示:

  对于探究1:

  画一个△A/B/C/,使A/B/=AB,A/C/=AC,∠A/=∠A.

  1、画∠DA/E=∠A;

  2、在射线A/D上截取A/B/=AB.在射线A/E上截取A/C/=AC;

  3、连结B/C/。

  将△A/B/C/剪下,发现△ABC与△A/B/C/全等。这就是说:两边和它们的夹角对应相等的两个三角形全等(可以简写为“边角边”或“SAS”)。

  小结:两边和它们的夹角对应角相等的两个三角形全等。简称“边角边”和“SAS”。

  如图,在△ABC和△DEF中,对于探究2:

  学生画出的图形各式各样,有的说全等,有的说不全等。教师在此可引导学生总结画图方法:

  1、画∠DB/E=∠B;

  2、在射线B/D上截取B/A/=BA;

  3、以A/为圆心,以AC长为半径画弧,此时只要∠C≠90°,弧线一定和射线B/E交于两点C/、F,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和△ABC全等的

  也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等。所以它不能作为判定两三角形全等的条件。

  归纳总结:

  “两边及一内角”中的两种情况只有一种情况能判定三角形全等。即:

  两边及其夹角对应相等的两个三角形全等。(简记为“边角边”或“SAS”)

  三、应用举例

  [例]如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使CE=CB.连结DE,那么量出DE的长就是A、B的距离。为什么?

  [师生共析]如果能证明△ABC≌△DEC,就可以得出AB=DE.

  在△ABC和△DEC中,AC=DC、BC=EC.要是再有∠1=∠2,那么△ABC与△DEC就全等了。而∠1和∠2是对顶角,所以它们相等。

  证明:在△ABC和△DEC中

  所以△ABC≌△DEC(SAS)

  所以AB=DE.

  1、填空:

  (1)如图3,已知AD‖BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?)。

  (2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?)。

  四、练习

  1、已知:AD‖BC,AD=CB(图3)。

  求证:△ADC≌△CBA.

  2、已知:AB=AC、AD=AE、∠1=∠2(图4)。

  求证:△ABD≌△ACE.

  五、课堂小结

  1、根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件。

  2、找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理。

  六、布置作业

  必做题:课本P43——44页习题12.2中的第3,选做题:第4题题

  七、板书设计

  教学反思

  本节课的教学过程是:首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式在练习中指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。

  此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。

  再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。

全等三角形教案4

  课程内容

  边边边判定定理

  选用教材

  人教版数学八年级上册

  授课人

  崔志伟

  授课章节

  第十二章第二节

  学 时

  1

  教学重点

  掌握全等三角形的判定定理边边边,能运用该定理解决实际问题。

  教学难点

  探索三角形全等的条件,以及运用边边边定理画一角等于已知角

  教学方法

  学生合作探究法、教师讲解结合谈话法等综合教学方法

  教学手段

  黑板板书教学

  课 堂 教 学 设 计

  阶段

  教学内容

  导入部分

  采用复习导入,教师首先提问学生回顾全等三角形的定义,以及全等三角形的性质。

  学生在复习以上知识的条件下教师做出解释,上节课我们已经学习了三角形在满足三边对应相等,三角对应相等,则两三角形全等,那么在实际的运用过程中,需要这么多条件运用会很不方便,那么我们很容易想到,能不能简化条件,得出三角形全等呢?由此引出课题全等三角形的判定。

  阶段

  课堂教学设计

  课程新授

  教师让学生大胆想象,可以从一组对应关系相等开始探究,逐步上升到两组对应关系相等三组对应关系相等。

  但是为了节约时间,可以让学生从两组开始,如若两组都不行,那一组肯定也不行,反之如若两组条件就足够了,再回头看看一组的情况。

  接下来学生在教师的提问下思考二组对应条件的所有可能的情况,预设会有思考不全面的同学,教师即使揭示在一组边与一组角相等的情况下,边与角的关系可以为相邻,也有可能为相对。

  学生在教师的提示下,探索发现满足两组对应关系相等的三角形不一定全等,由此可以断定一组对应关系相等也不能作为判定三角形全等的条件。接下来直接考虑三组对应相等关系的情况。

  首先引导学生对三组对应关系相等进行分类。

  预设学生部分可以全部考虑到,部分学生考虑不周到,这时教师可以请会的同学展示被同学忽略的情况即两组角与一组对边对应相等时,边可以为对边,也可以为邻边。

  本节课将引导学生探索三边相等的情形,有了前面两组对应相等的经验,预设学生根据尺规作图可以画出三边等于已知三角形的三角形,接下来通过三角形全等的.定义,让学生动手操作进行验证,发现可以完全重合,由此我们得到三组边对应相等的三角形全等。即SSS,教师解释S为英文边,side的首字母。

  接下来请同学说出已知三角形与所作三角形之间存在的对应相等关系,预设学生可以很轻易说出。

  由此教师揭示,实际上我们还学回了一个做角等于一只角的另外一种做法,即运用尺规作图画一角等于已知角。接下来,教师稍作解释,请学生探究讨论作图步骤。看谁的最简便。

  学生探索过后,教师请学生回答自己的作图步骤,最后由教师板书最简易的作图步骤。

  之后我将用练习的方式,加深同学对边边边判定定理的理解并加强应用能力。

  作业

  作业为书上的练习第二题,以及课后作业的第四题对应基础性练习即巩固性练习。

  板书设计

  采用归纳式的板书设计,主要板书两种即三种对应关系相等的种类,边边边判定定理的内容以及画一角等于已知角的步骤以及重要练习的过程。

  小结

  本结课内容比较多,主要体现在全等三角形判定的探索过程,为了节约时间,我选择让学生直接从两个条件开始探究,同时也不影响学生理解,教师主要以引导为主,学生自主探索学习。

全等三角形教案5

  一、教材分析

  本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节。这是全章的开篇,也是全等条件的基础。它是继线段、角、相交线与平行线及三角形有关知识之后出现的通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用。

  教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法。通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质。

  二、教学目标分析

  知识与技能

  1、了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法。

  2、能准确确定全等三角形的对应元素。

  3、掌握全等三角形的性质。

  过程与方法

  1、通过找出全等三角形的对应元素,培养学生的识图能力。

  2、能利用全等三角形的概念、性质解决简单的数学问题。

  情感、态度与价值观

  通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度。

  三、教学重点、难点

  重点:全等三角形的概念、性质及对应元素的确定。

  难点:全等三角形对应元素的确定。

  四、学情分析

  学生在七年级时已经学过线段、角、相交线与平行线及三角形的`有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期。为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识。

  五、教法与学法

  本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合。

  六、教学教程

  Ⅰ 课题引入

  1、电脑显示

  问题:各组图形的形状与大小有什么特点?

  一般学生都能发现这两个图形是完全重合的。

  归纳:能够完全重合的两个图形叫做全等形。

  2、学生动手操作

  ⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。

  ⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?

  (学生分组讨论、提出方法、动手操作)

  3、板书课题:全等三角形

  定义:能够完全重合的两个三角形叫做全等三角形

  “全等”用“≌”表示,读着“全等于”

  如图中的两个三角形全等,记作:△ABC≌△DEF

  Ⅱ 全等三角形中的对应元素

  1、 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?

  2、学生讨论、交流、归纳得出:

  ⑴两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。

  ⑵表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。

  Ⅲ 全等三角形的性质

  1、观察与思考:

  寻找甲图中两三角形的对应元素,它们的对应边

  有什么关系?对应角呢?

  (引导学生从全等三角形可以完全重合出发找等量关系)

  全等三角形的性质:

  全等三角形的对应边相等。

  全等三角形的对应角相等。

  2、用几何语言表示全等三角形的性质

  如图:∵ABC≌ DEF

  ∴AB=DE,AC=DF,BC=EF

  (全等三角形对应边相等)

  ∠A=∠D,∠B=∠E,∠C=∠F

  (全等三角形对应角相等)

  Ⅳ 探求全等三角形对应元素的找法

  1、动画(几何画板)演示

  (1)图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?

  归纳:两个全等的三角形经过一定的转换可以重合。一般是平移、翻折、旋转的方法。

  (2)说出每个图中各对全等三角形的对应边、对应角

  归纳:从运动的角度可以很轻松地解决找对应元素的问题。可见图形转换的奇妙。

  3、 归纳:找对应元素的常用方法有两种:

  (1)从运动角度看

  a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素。

  b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素。

  c.平移法:沿某一方向推移使两三角形重合来找对应元素。

  (2)根据位置元素来推理

  a.有公共边的,公共边是对应边;

  b.有公共角的,公共角是对应角;

  c.有对顶角的,对顶角是对应角;

  d.两个全等三角形最大的边是对应边,最小的边也是对应边;

  e.两个全等三角形最大的角是对应角,最小的角也是对应角;

  Ⅴ 课堂练习

  练习1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么 ?

  练习2.△ABC≌△FED

  ⑴写出图中相等的线段,相等的角;

  ⑵图中线段除相等外,还有什么关系吗?请与同伴交

  流并写出来。

  Ⅵ 小结

  1、这节课你学会了什么?有哪些收获?有什么感受?

  2、通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用一些方法可以找到两个全等三角形的对应元素。这也是这节课大家要重点掌握的

  Ⅶ。作业

  课本第92页1.2.3题

全等三角形教案6

  全等三角形教案

  1.只给定一个角时:

  2.给出的两个条件可能是:一边一内角、两内角、两边.

  可以发现按这些条件画出的三角形都不能保证一定全等.

  五、课堂小结

  我们有五种判定三角形全等的方法:

  1.全等三角形的定义

  2.判定定理:边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS)

  六、布置作业

  必做题:课本P44页习题12.2中的第6,选做题:第11题

  七、板书设计

  课 题 :12.2.4三角形全等的判定《4》

  【教学目标】:

  知识与技能:直角三角形全等的条件:“斜边、直角边”.

  过程与方法:经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系.掌握直角三角形全等的条件:“斜边、直角边”.能运用全等三角形的条件,解决简单的推理证明问题.

  情感态度与价值观:通过画图、探究、归纳、交流使学生获得一些研究问题的经验和方法.发展实践能力和创新精神

  教学重点:运用直角三角形全等的条件解决一些实际问题。

  教学难点:熟练运用直角三角形全等的条件解决一些实际问题。

  教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。

  学情分析:这节课是学了全等三角形的边边边.边角边.角边角边后的一节课、根据直角三角形的特点、探讨出 “HL”.学生一定能理解。

  课前准备 全等三角形纸片、三角板、

  【教学过程】:

  一、提出问题,复习旧知

  1、判定两个三角形全等的方法: 、 、 、

  2、如图,Rt△ABC中,直角边是 、 ,斜边是

  3、如图,AB⊥BE于C,DE⊥BE于E,

  (1)若∠A=∠D,AB=DE,

  则△ABC与△DEF (填“全等”或“不全等” )

  根据 (用简写法)

  (2)若∠A=∠D,BC=EF,

  则△ABC与△DEF (填“全等”或“不全等” )

  根据 (用简写法)

  (3)若AB=DE,BC=EF,

  则△ABC与△DEF (填“全等”或“不全等” )

  根据 (用简写法)

  (4)若AB=DE,BC=EF,AC=DF

  则△ABC与△DEF (填“全等”或“不全等” )

  根据 (用简写法)

  二 、创设情境,导入新课

  如图,舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但两个三角形都有一条直角边被花盆遮住无法测量.(播放)

  (1)你能帮他想个办法吗?

  (2)如果他只带了一个卷尺,能完成这个任务吗?

  (1)[生]能有两种方法.

  第一种方法:用直尺量出斜边的长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“AAS”可以证明两直角三角形是全等的.

  第二种方法:用直尺量出不被遮住的直角边长度,再用量角器量出其中一个锐角的大小,若它们对应相等,根据“ASA”或“AAS”,可以证明这两个直角三角形全等.

  可是,没有量角器,只有卷尺,那么他只能量出斜边长度和不被遮住的直角边边长,可是它们又不是“两边夹一角的关系”,所以我没法判定它们全等.

  [师]这位师傅量了斜边长和没遮住的直角边边长,发现它们对应相等,于是他判断这两个三角形全等.你相信吗?

  三、探究

  做一做:

  已知线段AB=5c,BC=4c和一个直角,利用尺规做一个直角三角形,使∠C=90°,AB作为斜边.做好后,将△ABC剪下与同伴比较,看能发现什么规律?

  (学生自主完成后,与同伴交流作图心得,然后由一名同学口述作图方法.老师做多媒体演示,激发学习兴趣).

  作法:

  第一步:作∠MCN=90°.

  第二步:在射线CM上截取CB=4c.

  第三步:以B为圆心,5c为半径画弧交射线CN于点A.

  第四步:连结AB.

  就可以得到所想要的Rt△ABC.(如下图所示)

  将Rt△ABC剪下,同一组的同学做的三角形叠在一起,发现这些三角形全等.

  可以验证,对一般的直角三角形也有这样的规律.

  探究结果总结:

  斜边和一条直角边对应相等的'两个直角三角形全等(可以简写成“斜边、直角边”和“HL”).

  [师]你能用几种方法说明两个直角三角形全等呢?

  [生]直角三角形也是三角形,一般来说,可以用“定义、SSS、SAS、ASA、AAS”这五种方法,但它又具有特殊性,还可以用“HL”的方法判定.

  [师]很好,两直角三角形中由于有直角相等的条件,所以判定两直角三角形全等只须找两个条件,但这两个条件中至少要有一个条件是一对对应边才行.

  四、例题:

  [例1]如图,AC⊥BC,BD⊥AD,AC=BD. 求证:BC=AD.

  分析:BC和AD分别在△ABC和△ABD中,所以只须证明△ABC≌△BAD,就可以证明BC=AD了.

  证明:∵AC⊥BC,BD⊥AD

  ∴∠D=∠C=90°

  在Rt△ABC和Rt△BAD中

  ∴Rt△ABC≌Rt△BAD(HL)

  ∴BC=AD.

  [例2]有两个长度相等的滑梯,左边滑梯的高AC与右边滑梯水平方向的长度DF相等,两滑梯倾斜角∠ABC和∠DFE有什么关系?

  [师生共析]∠ABC和∠DFE分别在Rt△ABC和Rt△DEF中,已知条件中这两个三角形又有一些对应的等量关系,所以可以证明这两个三角形全等得到对应角相等,显然,可以看出这两个角不相等,它们又是直角三角形中的锐角,是不是互余呢?我们试试看.

  证明:在Rt△ABC和Rt△DEF中 又∵∠DEF+∠DFE=90°

  ∴∠ABC+∠DFE=90° 所以Rt△ABC≌Rt△DEF(HL)

  ∴∠ABC=∠DEF

  即两滑梯的倾斜角∠ABC与∠DFE互余.

  五、课时小结

  至此,我们有六种判定三角形全等的方法:

  1.全等三角形的定义 2.边边边(SSS) 3.边角边(SAS)

  4.角边角(ASA) 5.角角边(AAS) 6.HL(仅用在直角三角形中)

  六、布置作业

  必做题: 课本P44页习题12.2中的第7,8,选做题:12,13题

  七、板书设计

全等三角形教案7

  一、教学目标

  【知识与技能】

  掌握三角形全等的“角角边”条件,会把“角边角”转化成“角角边”。能运用全等三角形的条件,解决简单的推理证明问题。

  【过程与方法】

  经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。

  【情感、态度与价值观】

  在探索归纳论证的过程中,体会数学的`严谨性,体验成功的快乐。

  二、教学重难点

  【教学重点】

  “角角边”三角形全等的探究。

  【教学难点】

  将三角形“角边角”全等条件转化成“角角边”全等条件。

  三、教学过程

  (一)引入新课

  利用复习旧知三角形“角边角”全等判定定理:两角和它们夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)

  (四)小结作业

  提问:今天有什么收获?还有什么疑问?

  课后作业:书后相关练习题。

全等三角形教案8

  【教学目标】

  知识与技能:理解三角形全等的“边角边”的条件.掌握三角形全等的“SAS”条件,了解三角形的稳定性.能运用“SAS”证明简单的三角形全等问题.

  过程与方法:经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程.掌握三角形全等的“边角边”条件.在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明.

  情感态度与价值观:通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神.

  教学重点:三角形全等的条件.

  教学难点:寻求三角形全等的条件.

  教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。

  学情分析:这节课是学了全等三角形的边边边后的一节课、将中间的边变为角探讨、学生一定能理解,根据之前的学情、学好这一节课有把握。

  课前准备:全等三角形纸片、三角板、

  【教学过程】:

  一、创设情境,导入新课

  [师]在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能,能说出是哪四种吗?

  [生]三内角、三条边、两边一内角、两内角一边.

  [师]很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等.今天我们接着研究第三种情况:“两边一内角”.

  (一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况?

  [生]两种.

  1.两边及其夹角.

  2.两边及一边的对角.

  [师]按照上节方法,我们有两个问题需要探究.

  (二)探究1:先画一个任意△ABC,再画出一个△A/B/C/,使AB=A/B/、AC=A/C/、∠A=∠A/(即保证两边和它们的夹角对应相等).把画好的三角形A/B/C/剪下,放到△ABC上,它们全等吗?

  探究2:先画一个任意△ABC,再画出△A/B/C/,使AB=A/B/、AC=A/C/、∠B=∠B/(即保证两边和其中一边的对角对应相等).把画好的△A/B/C/剪下,放到△ABC上,它们全等吗?

  学生活动:

  1.学生自己动手,利用直尺、三角尺、量角器等工具画出△ABC与△A/B/C/,将△A/B/C/剪下,与△ABC重叠,比较结果.

  2.作好图后,与同伴交流作图心得,讨论发现什么样的规律.

  教师活动:

  教师可学生作完图后,由一个学生口述作图方法,教师进行多媒体播放画图过程,再次体会探究全等三角形条件的过程.

  二、探究

  操作结果展示:

  对于探究1:

  画一个△A/B/C/,使A/B/=AB,A/C/=AC,∠A/=∠A.

  1.画∠DA/E=∠A;

  2.在射线A/D上截取A/B/=AB.在射线A/E上截取A/C/=AC;

  3.连结B/C/.

  将△A/B/C/剪下,发现△ABC与△A/B/C/全等.这就是说:两边和它们的夹角对应相等的两个三角形全等(可以简写为“边角边”或“SAS”).

  小结:两边和它们的夹角对应角相等的两个三角形全等.简称“边角边”和“SAS”.

  如图,在△ABC和△DEF中,

  对于探究2:

  学生画出的图形各式各样,有的说全等,有的说不全等.教师在此可引导学生总结画图方法:

  1.画∠DB/E=∠B;

  2.在射线B/D上截取B/A/=BA;

  3.以A/为圆心,以AC长为半径画弧,此时只要∠C≠90°,弧线一定和射线B/E交于两点C/、F,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和△ABC全等的

  也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等.所以它不能作为判定两三角形全等的条件.

  归纳总结:

  “两边及一内角”中的两种情况只有一种情况能判定三角形全等.即:

  两边及其夹角对应相等的两个三角形全等.(简记为“边角边”或“SAS”)

  三、应用举例

  [例]如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使CE=CB.连结DE,那么量出DE的`长就是A、B的距离.为什么?

  [师生共析]如果能证明△ABC≌△DEC,就可以得出AB=DE.

  在△ABC和△DEC中,AC=DC、BC=EC.要是再有∠1=∠2,那么△ABC与△DEC就全等了.而∠1和∠2是对顶角,所以它们相等.

  证明:在△ABC和△DEC中

  所以△ABC≌△DEC(SAS)

  所以AB=DE.

  1.填空:

  (1)如图3,已知AD‖BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).

  (2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).

  四、练习

  1.已知:AD‖BC,AD=CB(图3).

  求证:△ADC≌△CBA.

  2.已知:AB=AC、AD=AE、∠1=∠2(图4).

  求证:△ABD≌△ACE.

  五、课堂小结

  1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.

  2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.

  六、布置作业

  必做题:课本P43——44页习题12.2中的第3,选做题:第4题题

  七、板书设计

  教学反思

  本节课的教学过程是:首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式在练习中指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。

  此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。

  再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。

全等三角形教案9

  一、教学目标

  1、使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式、

  2、使学生掌握化简一个二次根式成最简二次根式的方法、

  3、使学生了解把二次根式化简成最简二次根式在实际问题中的应用、

  二、教学重点和难点

  1、重点:能够把所给的二次根式,化成最简二次根式、

  2、难点:正确运用化一个二次根式成为最简二次根式的方法、

  三、教学方法

  通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法、

  四、教学手段

  利用投影仪、

  五、教学过程

  (一)引入新课

  提出问题:如果一个正方形的面积是0.5m 2,那么它的边长是多少?能不能求出它的近似值?

  了、这样会给解决实际问题带来方便、

  (二)新课

  由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创

  这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、

  总结满足什么样的条件是最简二次根式、即:满足下列两个条件的二次根式,叫做最简二次根式:

  1、被开方数的因数是整数,因式是整式、

  2、被开方数中不含能开得尽方的因数或因式、

  例1?指出下列根式中的.最简二次根式,并说明为什么、

  分析:

  说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、

  例2?把下列各式化成最简二次根式:

  说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、

  例3?把下列各式化简成最简二次根式:

  说明:

  1.引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简、

  2.要提问学生

  问题,通过这个小题使学生明确如何使用化简中的条件、

  通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题、

  注意:

  ①化简时,一般需要把被开方数分解因数或分解因式、

  ②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化、

  (三)小结

  1、满足什么条件的根式是最简二次根式、

  2、把一个二次根式化成最简二次根式的主要方法、

  (四)练习

  1、指出下列各式中的最简二次根式:

  2、把下列各式化成最简二次根式:

  六、作业

  教材P、187习题11、4;A组1;B组1、

  七、板书设计

全等三角形教案10

  【教学目标】

  1、使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;

  2、继续培养学生画图、实 验,发现新知识的能力。

  【重点难点】

  1、难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;

  2、重点:灵活运用SSS判定两个三角形是否全等。

  【教学过程 】

  一、创设问题情境,引入新课

  请问同学,老师在黑板上画得两个三角形,△ ABC与△ 全等吗? 你是如何判定的。

  (同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等。)

  上一节课我们已经探讨了两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全

  等。满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究。

  二、实践探索,总结规律

  1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段 ,分别为 ,你能画出这个三角形吗?

  先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤。

  步骤:

  (1)画一线段AB使 它的长度等于c(4.8cm)。

  (2)以点A为圆心,以线段b(3cm)的.长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.

  (3)连结AC、BC.

  △ABC即为所求

  把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?

  换三条线段,再试试看,是否有同样的 结论

  请你结合画图、对比,说说你发现了什么?

  同学们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的。 这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等。简写为边边边,或简记为(S.S.S.)。

  2、问题2:你能用 相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?

  (我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等了,这两个三角形不但形状相同,而且大小都一样,即为全等三角形。)

  3、问题3、你用这个SSS三角形全等的判定法解释三角形具有稳定性吗?

  (只要三角形三边的长度确定了,这个三角形的形状和大小就完全确定了)

  4、范例:

  例1 如图19.2.2,四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA. 解:已知 AD=BC,AB=DC , 又因为AC是公共边,由(S.S.S.)全等判定法,可知 △ABC≌△CDA

  5、练习:

  6、试一试:已知一个三角形的三个内 角分别为 、 、 ,你能画出这个三角形吗?把你画的三角形与同伴画的进行比较,你发现了什么?

  (所画出的三角形都是相似的 ,但大小不一定相 同)。

  三个对应角相等的两个三角形不一定全等。

  三、加强练习,巩固知识

  1、如图, , ,△ABC≌△DCB全等吗?为什么?

  2、如图,AD是△ABC的中线, 。 与 相等吗?请说明理由。

  四、小结

  本节课探讨出可用(SSS)来判定两个三角形全等,并能灵活运用( SSS )来判定三角形全等。三个角对应相等的两个三角不一定会全等。

  五、作业

全等三角形教案11

  【课前准备】

  1.定义:能够的两个三角形叫全等三角形。

  2.全等三角形的性质,全等三角形的判定方法见下表。

  【例题讲解】

  一.挖掘“隐含条件”判全等

  如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)

  1.如图AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由.

  变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD

  2.如图点D在AB上,点E在AC上,CD与BE相交于点O,

  且AD=AE,AB=AC.若∠B=20°,CD=5cm,则∠CD的度数与BE的长。

  3.如图若OB=OD,∠A=∠C,若AB=3cm,求CD的长。

  变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD

  二.添条件判全等

  1.如图,已知AD平分∠BAC,要使△ABD≌△ACD,

  根据“SAS”需要添加条件;

  根据“ASA”需要添加条件;

  根据“AAS”需要添加条件.

  2.已知AB//DE,且AB=DE,

  (1)请你只添加一个条件,使△ABC≌△DEF,

  你添加的条件是.

  三.熟练转化“间接条件”判全等

  1.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?

  为什么?

  2.如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?

  3.“三月三,放风筝”,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明.

  巩固练习:如图,在中,,沿过点B的一条直线BE

  折叠,使点C恰好落在AB变的中点D处,则∠A的度数.

  4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D

  【当堂反馈】

  1.(20xx攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为全等三角形是△≌△

  2.如图,已知AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE

  3.如图,已知AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC

  4.等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L的垂线,垂足分别为M、N

  (1)你能找到一对三角形的全等吗?并说明.

  (2)BM,CN,MN之间有何关系?

  若将直线l旋转到如下图的位置,其他条件不变,那么上题的结论是否依旧成立?

  【课后作业】

  1.如图,要用“SAS”说明ΔABC≌ΔADC,若AB=AD,则需要添加的'条件是.

  要用“ASA”说明ΔABC≌ΔADC,若∠ACB=∠ACD,则需要添加的条件是.

  2..如图,在ΔABC中,AD⊥BC,CE⊥AB.垂足分别为D.E,AD.CE交于点H,请你添加一个适当的条件:,使ΔAEH≌ΔCEB.

  (第3题)

  (第4题)(第5题)(第6题)

  3.如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有()

  A..2对B.3对C.4对D.5对

  4.如图,ΔABC中,AB=AC,BE=EC,则由“SSS”可判定()

  A.ΔABD≌ΔACDB.ΔABE≌ΔACEC.ΔBED≌ΔCEDD.以上答案都不对

  5.如图,Rt△ABC中,∠C=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形.(保留作图痕迹,不要求写作法和证明).

  6.如图,一个六边形钢架ABCDEF,由6条钢管连接而成,为使这一钢架稳固,请你用3条钢管使它不能活动,你能设计两种不同的方案吗?

  7:如图11-9在△ABC中.⑴分别以AB、AC为边向形外作正方形ABDE、ACFG.

  试说明:①CE=BG;②CE⊥BG;

  ⑵如图11-10分别以AB、AC为边向形外作正三角形△ABD、△ACE.

  试说明:①CD=BE;②求CD和BE所成的锐角的度数.

  【拓展延伸】

  如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF

  (2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.

全等三角形教案12

  教学目标

  1、知识目标:

  (1)熟记边角边公理的内容;

  (2)能应用边角边公理证明两个三角形全等。

  2、能力目标:

  (1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;

  (2) 通过观察几何图形,培养学生的识图能力。

  3、情感目标:

  (1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;

  (2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

  教学重点:学会运用公理证明两个三角形全等。

  教学难点:在较复杂的图形中,找出证明两个三角形全等的条件。

  教学用具:直尺、微机

  教学方法:自学辅导式

  教学过程

  1、公理的发现

  (1)画图:(投影显示)

  教师点拨,学生边学边画图。

  (2)实验

  让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)

  这里一定要让学生动手操作。

  (3)公理

  启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)

  作用:是证明两个三角形全等的依据之一。

  应用格式:

  强调:

  1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

  2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的`(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看。

  3、平面几何中常要证明角相等和线段相等,其证明常用方法:

  证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地。

  证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质。

  2、公理的应用

  (1)讲解例1。学生分析完成,教师注重完成后的总结。

  分析:(设问程序)

  “SAS”的三个条件是什么?

  已知条件给出了几个?

  由图形可以得到几个条件?

  解:(略)

  (2)讲解例2

  投影例2:

  例2如图2,AE=CF,AD∥BC,AD=CB,

  求证:

  学生思考、分析,适当点拨,找学生代表口述证明思路

  让学生在练习本上定出证明,一名学生板书。教师强调

  证明格式:用大括号写出公理的三个条件,最后写出

  结论。(3)讲解例3(投影)

  证明:(略)

  学生分析思路,写出证明过程。

  (投影展示学生的作业,教师点评)

  (4)讲解例4(投影)

  证明:(略)

  学生口述过程。投影展示证明过程。

  教师强调证明线段相等的几种常见方法。

  (5)讲解例5(投影)

  证明:(略)

  学生思考、分析、讨论,教师巡视,适当参与讨论。

  师生共同讨论后,让学生口述证明思路。

  教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

  3、课堂小结:

  (1)判定三角形全等的方法:SAS

  (2)公理应用的书写格式

  (3)证明线段、角相等常见的方法有哪些?

  让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

  6、布置作业

  a书面作业P56#6、7

  b上交作业P57B组1

  思考题:

  板书设计

  探究活动

全等三角形教案13

  教学目标:

  1、知识目标:

  (1)知道什么是全等形、全等三角形及全等三角形的对应元素;

  (2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;

  (3)能熟练找出两个全等三角形的对应角、对应边。

  2、能力目标:

  (1)通过全等三角形角有关概念的学习,提高同学数学概念的辨析能力;

  (2)通过找出全等三角形的对应元素,培养同学的识图能力。

  3、情感目标:

  (1)通过感受全等三角形的对应美激发同学热爱科学勇于探索的精神;

  (2)通过自主学习的发展体验获取数学知识的感受,培养同学勇于创新,多方位审视问题的创造技巧。

  教学重点:

  全等三角形的性质。

  教学难点:

  找全等三角形的对应边、对应角

  教学用具:

  直尺、微机

  教学方法:

  自学辅导式

  教学过程:

  1、全等形及全等三角形概念的引入

  (1)动画(几何画板)显示:

  问题:你能发现这两个三角形有什么美妙的关系吗?

  一般同学都能发现这两个三角形是完全重合的。

  (2)同学自己动手

  画一个三角形:边长为4cm,5cm,7cm.然后剪下来,同桌的两位同学配合,把两个三角形放在一起重合。

  (3)获取概念

  让同学用自己的语言叙述:

  全等三角形、对应顶点、对应角以及有关数学符号。

  2、全等三角形性质的发现:

  (1)电脑动画显示:

  问题:对应边、对应角有何关系?

  由同学观察动画发现,两个三角形的三组对应边相等、三组对应角相等。

  3、找对应边、对应角以及全等三角形性质的应用

  (1)投影显示题目:

  D、AD∥BC,且AD=BC

  分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此AD=BC。C符合题意。

  说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角。

  分析:对应边和对应角只能从两个三角形中找,所以需将从复杂的图形中分离出来

  说明:根据位置元素来找:有相等元素,其即为对应元素:

  然后依据已知的对应元素找:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。

  说明:利用“运动法”来找

  翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素

  旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素

  平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素

  求证:AE∥CF

  分析:证明直线平行通常用角关系(同位角、内错角等),为此想到三角形全等后的性质――对应角相等

  ∴AE∥CF

  说明:解此题的关键是找准对应角,可以用平移法。

  分析:AB不是全等三角形的对应边,

  但它通过对应边转化为AB=CD,而使AB+CD=AD-BC

  可利用已知的AD与BC求得。

  说明:解决本题的关键是利用三角形全等的性质,得到对应边相等。

  (2)题目的解决

  这些题目给出以后,先要求同学独立思考后回答,其它同学补充完善,并可以提出自己的看法。教师重点指导,师生共同总结:找对应边、对应角通常的几种方法:

  投影显示:

  (1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;

  (2)全等三角形对应边所对的`角是对应角,两条对应边所夹的角是对应角;

  (3)有公共边的,公共边一定是对应边;

  (4)有公共角的,角一定是对应角;

  (5)有对顶角的,对顶角一定是对应角;

  两个全等三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小的角角)是对应边(或对应角)

  4、课堂独立练习,巩固提高

  此练习,主要加强同学的识图能力,同时,找准全等三角形的对应边、对应角,是以后学好几何的关键。

  5、小结:

  (1)如何找全等三角形的对应边、对应角(基本方法)

  (2)全等三角形的性质

  (3)性质的应用

  让同学自由表述,其它同学补充,自己将知识系统化,以自己的方式进行建构。

  6、布置作业

  a.书面作业P55#2、3、4

  b.上交作业(中考题)

全等三角形教案14

  教材内容分析:

  本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。

  全等三角形中严密的对应关系能够锻炼学生的观察力和推理能力,对它的深入研究有助于学生理解数学的本质,提升思维水平。

  教学目标:

  1.了解全等形、全等三角形的概念;理解全等三角形的性质; 2.能够准确找出全等三角形的对应元素,逐步培养学生的识图能力;

  3.让学生通过观察生活中的全等形和动手操作获得全等三角形的体验,在探究和运用全等三角形性质的过程中感受到数学活动的乐趣。

  教学重难点及突破:

  重点:全等三角形的概练和性质;

  难点:能在全等变换中准确找到对应角、对应边。

  教学突破:通过生活中的'实例观察、感受全等形和全等三角形,动手操作、合作交流,亲身体验创造全等三角形,加深全等三角形的有关概念的理解。

  教学准备:

  1.教师准备:多媒体课件、剪刀、白纸等; 2.学生准备:白纸、剪刀等。

  教学流程:创设情境,引入新知→合作交流,探索新知→手脑并用,理解新知→合作交流,应用新知→课堂练习,巩固新知→师生互动,小结新知。

  教学过程设计:

  一、创设情境,引入新课。

  1、与学生谈话,努力走近学生之中。

  2、游戏情景,引入新课出示课件:大家来找茬游戏

  引导:

  1、观察两副图形在形状、大小、位置方面的共同点

  2、两副图形形状、大小若相同该如何检验?

  引导:什么样的图形叫做全等形?

  定义:能够完全重合的两个图形叫做全等形;列举生活中的实例(一百元人民币)感知全等形。

  二、合作交流,探索新知。

  1、手脑并用,感受新知

  用剪刀在一张纸上剪出两个形状、大小完全一样的三角形,引出全等三角形教学。

  2、观察诱导,探究新知。 (1)全等三角形相关概念

  引导观察:课件操作演示两个三角形完全重合。引导学生类比得出全等三角形定义;

  中国人民邮政

  能够完全重合的两个三角形叫做全等三角形引导学生概括对应顶点、对应边、对应角定义;

  全等三角形中,互相重合的顶点叫对应顶点.互相重合的边叫对应边.互相重合的角叫对应角。

  (2)全等三角形的表达式

  引导学生书写全等三角形的表达式:△ABC≌△DEF,读作:△ABC全等于△DEF。

  温馨提示:

  ①记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。 ②全等符号“≌”中“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同、大小相等,即全等。

  引导学生感悟:三角形全等表达式充分体现出数学的秩序性和精确性,使用规范的表达式将有助于解决相关的问题

  (3)全等三角形性质

  引导学生观察并概括全等三角形性质

  全等三角形的性质:全等三角形的对应边相等,对应角相等。用几何语言表达全等三角形性质:∵△ABC≌△DEF(已知) ∴AB=DE,AC=DF,BC=EF;

  ∠A=∠D,∠B=∠E,∠C=∠F(全等三角形的对应边相等,对应角相等)

  3、合作交流,探究新知(1)手脑并用,体验新知

  利用刚才剪下的两个全等三角形,在课桌上摆出不同形状的图形,再与同伴合作交流,探究如何通过操作其中一个三角形使它们再次重合?

  通过课件展示引导学生理解只要两个三角形的形状大小相同,不管位置怎样变化,都能通过平移旋转翻折的方式使之重合。

  (2)观察交流,探究新知

  引导学生观察,交流探索规律。在全等三角形中,一般是:1.有公共边,则公共边为对应边; 2.有公共角,则公共角为对应角;

  3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;

  引导学生观察,交流发现规律。

  针对所得的对应角、对应边情况引导学生总结:规范地写出全等三角形表达式具有重要的意义,根据表达式中字母的对应情况就能够,准确判断出全等三角形的对应顶点、对应边、对应角。

  三、合作交流,应用新知。

  例:如图,△ABO≌△DCO,指出所有的对应边和对应角。

  解:∵△ABO≌△DCO (已知) ∴AB=DC,BO=CO,AO=DO (全等三角形的对应边相等)

  ∠A=∠D,∠ABO=∠DCO,∠AOB=∠DOC (全等三角形的对应角相等)变式:若上图中△ABC≌△DCB,试写出这两个三角形中相等的边和相等的角。

  解:∵△ABC≌△DCB (已知) ∴AB=DC,BC=CB,AC=BD (全等三角形的对应边相等)

  ∠A=∠ D,∠ABC=∠DCB,∠ACB=∠DBC (全等三角形的对应角相等)

  四、课堂练习,巩固新知。

  (1)如图,△ABD≌△EBC,AB=3cm,BC=5cm,求DE的长.

  解:∵△ABD≌△EBC,且AB=3cm,BC=5cm (已知)

  ∴AB=EB=3cm,BC=BD=5cm (全等三角形的对应边相等) ∴DE=BD-EB=5-3=2cm

  (2)如图,已知△ABC≌△ADE,想一想: ∠ BAD= ∠ CAE吗?为什么?

  解:相等,

  ∵△ABC≌△ADE(已知) ∴∠BAC=∠DAE(全等三角形对应角相等) ∴∠BAC—∠DAC=∠DAE—∠DAC(等式性质)即∠BAC=∠DAE

  五、师生互动,小结新知。

  学习了这堂课你有哪些收获?并把它与同伴一起分享。

  1、全等形的定义:能够完全重合的两个图形,叫做全等形。

  2、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。

  3、全等三角形的性质:全等三角形对应边相等,对应角相等。

  4、寻找全等三角形的对应边、对应角得规律。 (1)观察图形特点;

  (2)观察表达式(对应关系)

  六、布置作业。

  课本P92习题15.1,第

  2、4题。

  七、教后感

  ······

  板书设计:

  15.1全等三角形

  定义:

  表示性质:

  (学生板书)

全等三角形教案15

  〖教学目标〗

  ◆1、探索两个直角三角形全等的条件.

  ◆2、掌握两个直角三角形全等的条件(hl).

  ◆3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用.

  〖教学重点与难点〗

  ◆教学重点:直角三角形全等的判定的方法“hl”.

  ◆教学难点:直角三角形判定方法的说理过程.

  〖教学过程〗

  一、创设情境,引入新课:

  教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?

  二、合作学习:

  1.回顾:判定两个直角三角形全等已经有哪些方法?

  2.有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。不限定方法。

  “斜边和一条直角边对应相等的两个直角三角形全等(hl)。”

  教师归纳出方法后,要学生注意两点:

  <1>“hl”是仅适用于rt△的特殊方法。

  三、应用新知,巩固概念

  例:已知:p是∠aob内一点,pd⊥oa,pe ⊥ob,d,e分别是垂足,且pd=pe,则点p在∠aob的平分线上,请说明理由。

  分析:引导猜想可能存在的rt△;构造两个全等的rt△;要说明p在∠aob的平分线上,只要说明∠dop=∠eop

  小结:角平分线的又一个性质:(判定一个点是否在一个角的平分线上的方法)

  角的内部,到角的'两边距离相等的点,在这个角的平分线上。

  四、学生练习,巩固提高

  练一练:课本p82课内练习

  五、小结回顾,反思提高

  (1)你认为有没有其他的方法可以证明直角三角形全等(勾股定理)?

  (2)你现在知道的有关角平分线的知识有哪些?

  六、作业:

  1.作业本2.82.课后作业

【全等三角形教案】相关文章:

全等三角形教案09-07

《全等三角形的判定》教案09-05

三角形全等的判定教案12-28

数学全等三角形教案12-30

初二全等三角形教案03-16

数学全等三角形教学设计09-21

《三角形全等的判定》教学反思03-15

《三角形全等的复习》教学反思03-15

数学《全等三角形性质》教学反思02-11