- 相关推荐
加法交换律教案
作为一位兢兢业业的人民教师,常常要写一份优秀的教案,教案是实施教学的主要依据,有着至关重要的作用。那么应当如何写教案呢?下面是小编整理的加法交换律教案,仅供参考,欢迎大家阅读。
加法交换律教案1
教材分析:
本教材是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律的基础。教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教材有意识地让学生运用已有经验,经理运算律的发现过程,让学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。
“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算律的理解;接着通过题组对比和凑整等练习,为学习简便计算作适当渗透。
教学目标:
1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的`意识、习惯。
教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。
教学准备:配套课件。
教学过程:
一、课前谈话。
有牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。引导学生得出:要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。
设计意图:由科学家从一个平常的现象得出伟大的发现,引导学生应注意观察身边的一些平常的、习以为常的现象,并从中的出一些规律,对学生进行良好学习习惯的教育。
二、教学加法交换律。
1、随着气候渐渐转凉,从下个月开始,同学们都将投入到冬季锻炼中去了。电脑出示第54页的例题,这是某个班级进行冬锻的情况,提问:从这张图片中,你获得了哪些数学信息?
你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,电脑依次出示:①参加跳绳的一共有多少人?
②参加活动的女生一共有多少人?
③跳绳的男生和踢毽子的女生一共有多少人?
④参加活动的一共有多少人?
设计意图:从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生的发散性思维,并培养学生的问题意识。同时,也符合新课程“创造性使用教材”的理念。
2、今天这节课,我们就一起来研究其中的这两个问题:
在黑板上张贴:参加跳绳的一共有多少人?
参加活动的一共有多少人?
我们先来解决第一个问题:参加跳绳的一共有多少人?
3、你们能马上口头列式并口算出结果吗?
指名回答,教师板书:28+17=45,追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:17+28 =45(人)
为什么这两个算式的结果一样?
4、你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28
仔细地观察一下这两个算式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?
5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?
6、我们再仔细的观察这几个算式,从中你们有什么发现?你们能用一个算式来表示你们的发现吗?
教师巡视,并作相应的辅导,在学生交流后板书出示:两个数相加,交换加数的位置,它们的和不变。并板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?
7、同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。
8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。
小结研究方法:刚才我们在研究加法法交换律的时候,我们是怎样一步一步开展研究的?引导学生能得出:列式计算——观察思考——猜测验证——得出结论。
9、练习:
完成想想做做第一题前面两小题。
设计意图:教师是教学的组织者和引导者,而不仅仅是解题指导者。本环节的设计,层层递进,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用字母表示,最后还归纳出了研究方法,都让学生有一种成就感。
三、学习加法结合律。
1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?
2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。
3、学生回答,教师有意识地板书:
(28+17)+23=68(人)
28+(17+23)
(28+23)+17
28+(23+17)
(23+17)+28
23+(17+28)
让回答的同学说说这么列式是怎么思考的?
下面,我们就来针对这两个算式开展研究:(28+17)+23 28+(17+23)
设计意图:本环节又是“用教材教”的一个很好体现,比较好地注意了关注学生的生成与教师预设之间的联系,并很好地引导到需要的算式。
4、根究研究方法,接下来我们应该进行哪一步?(观察思考)那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:
(28+17)+23=28+(17+23)
5、电脑出示:下面的Ο里能填上等号吗?
(45+25)+13Ο45+(25+13)
(36+18)+22Ο36+(18+22)
学生回答,教师板书:(45+25)+13=45+(25+13)
(36+18)+22=36+(18+22)
6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后大堂再交流,教师张贴:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。
7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。
板书:(a+b)+c=a+(b+c)
教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。
8、完成“想想做做”第1题的后面两个小题。
设计意图:通过引导学生运用得到的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。
四、巩固练习。
1、完成“想想做做”第2题。
第4小题引导学生发现是运用了加法交换律和加法结合律。
2、完成“想想做做”第3题第1行。
3、插入“朝三暮四”的故事,让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老头采用了加法交换律。
4、完成“想想做做”第4题。
使学生初步感受应用加法运算律可以使计算简便。
设计意图:几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。
五、课堂总结。
通过本节课的学习,你有什么新的收获?
设计意图:体现了教师的主导作用和学生的主体作用,使学生在自己的整理总结中再次巩固了本节课的重难点。
板书设计: 运算律
加法交换律 加法结合律
28+17=45(人) 17+28=45(人) (28+17)+23 28+(17+23)
28+17=17+28 =45+23 =28+40
(学生说的算式) =68(人) =68(人)
(28+17)+23=28+(17+23)
(45+25)+13=45+(25+13)
(36+18)+22=36+(18+22)
a+b=b+a (a+b)+c=a+(b+c)
加法交换律教案2
教学目标
1、经历加法交换律和乘法交换律的探索过程,会用字母表示加法交换律和乘法交换律,培养发现问题和提出问题的能力,积累数学活动经验。
2、通过列举生活实例解释加法交换律和乘法交换律的过程,认识运算律丰富的现实背景,了解加法交换律和乘法交换律的用途,发展应用意识。
教学重难点
教学重点:理解并掌握加法交换律和乘法交换律的意义以及运用。
教学难点:会用符号或字母表示加法交换律和乘法交换律。
教学过程
一、练习导入、感受交换的好处
首先出示加法和乘法的计算题让学生快速口算出答案,接着给出两个复杂的算式。现在还能马上口算出答案吗?针对这两个算式你有什么想法?
二、合作探究,探索新知
1、将加法和乘法算式同时呈现,让学生一组一组观察,每组中的两个算式有什么相同和不同的地方?为什么可以把等号连起来?你还发现了什么?
2、通过模仿创造出几组加法和乘法算式,加以验证。观察教师的例子、自己仿写的以及书本中淘气和笑笑写的算式,和同伴交流自己的发现。
3、总结;课件出示内容;
4、寻找生活中的事例解释所发现的规律。
5、我会接着追问:关于交换律的'算式和事例学生们能举的完吗?你们能创造一个更简单的方法来表达发现的规律吗?
6、选择方法进行投影对比,让学生解释自己的方法,P23在对比评价中得出更简便的字母表示法(板贴a+b=b+a;a.b=b.a)这里要注重说清楚ab各表示什么,以及两个运算律的异同。
三、巩固规律
1、规则是我说算式,学生说交换后的算式,适时加入减法和除法,在学生产生冲突时继续追问:a+b=b+a;a.b=b.a那么a-b=b?a÷b=?。
四、深化练习,拓展提高
1、结合下面的例子说明等式为什么成立。通过现实背景理解交换律的实际意义。
2、运用规律填一填,了解学生对交换律的掌握情况。
3、计算下列各题,并运用规律进行验算,通过比较,发现利用交换律在计算中可以选择符合习惯的方式列竖式,还具有验算的作用
4、接着出示课始的复杂运算鼓励学生运用所学的交换律使问题简单化。
五、全课小结
说说本节课有哪些收获?
加法交换律教案3
教学目标:
1.在解决实际问题的过程中,发现加法交换律和结合律,学会用字母表示加法交换律和结合律。
2.在探索运算律的过程中,发展学生的分析比较、归纳概括的能力,渗透建模的数学思想,培养学生的符号感。
教学重点:理解并掌握加法交换律、结合律。
教学难点:归纳、概括出加法交换律和结合律。
教学准备:课件
教学过程:
一、谈话引入
1.师生谈话。
同学们,你们喜欢跳绳和踢毽子吗?我们班哪位同学跳绳比较强?谁踢毽子比较强?
学生自由发言。
2.课件出示教材第55页例题1情境图,你能从图中获取哪些数学信息?(学生自由说)
追问:你能根据这些信息,提出哪些用加法计算的问题?
(1)跳绳的有多少人?
(2)参加活动的女生有多少人?
(3)参加活动的一共有多少人?
3.导入新课。
在过去的学习中,我们进行过很多的加法运算,你知道在加法运算里有哪些基本规律吗?今天我们就一起来探索加法中
的运算规律。(板书课题)
二、交流共享
1.加法交换律。
(1)提出问题:求跳绳的有多少人,应该怎样列式计算?
(2)列式解答。
指名学生回答,教师板书:28+17=45(人)
追问:还可以怎样列式?
教师板书:17+28=45(人)
(3)观察发现。
提问:这两道算式都是求什么的人数?结果都是多少?再观察算式,说说它们有何相同点和不同点。
引导学生发现:这两道算式都是求跳绳的总人数,加数相同,得数也一样,只不过是把两个加数的位置调换了一下。
引导:我们可以用什么符号将这两道算式连起来呢?(等号)
师板书:28+17=17+28
(4)照样子写一写。
让学生试写等式,并投影展示。
提问:观察这些等式,你有什么发现?
(两个加数交换位置,和不变)
(5)指导学生用自己喜欢的方法表示出这种规律。
学生在各自的'练习本上表示规律后,交流各自的表示方法。
(6)用字母表示加法交换律。
明确:如果用字母a、b分别表示两个加数,上面的规律可以写成:
a+b=b+a
教师指出:两个数相加,交换两个加数的位置,和不变。这就是加法交换律。(板书:加法交换律)
2.加法结合律。
(1)课件出示问题:跳绳和踢毽子的一共有多少人?
(2)学生独立列式计算。教师巡视,注意不同的解答方法,并指名两人板演不同的方法。
(3)组织汇报交流。
解法一:先算出跳绳的有多少人。
(28+17)+23
=45+23
=68(人)
解法二:先算出女生有多少人。
28+(17+23)
=28+40
=68(人)
提问:这两道算式有什么相同的地方和不同的地方?
学生观察、比较这两个不同算式的计算结果。
追问:这两道算式的结果相同,我们可以把它写成等式吗?怎样写?
根据学生的回答,师板书:(28+17)+23=28+(17+23)
(4)加深认识、探索规律。
①课件出示下面两道算式,让学生算一算,判断下面的○里能不能填等号。
(45+25)+16○45+(25+16)
(39+18)+22○39+(18+22)
②组织观察:这几组算式有什么共同的地方?有什么不同的地方?你从这些例子中可以发现什么规律?
学生交流得出:这两个算式中,三个加数分别相同,加数的位置也相同;先把前两个数相加,或者先把后两个数相加,
和不变。
追问:如果用字母a、b、c分别表示三个加数,这个规律可以怎样表示?
师板书:(a+b)+c=a+(b+c)
小结:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。这就是加法结合律。(板书:加法结合律)
三、反馈完善
1.完成教材第56页“练一练”。
让学生说说每个等式各运用了什么运算律及判断的依据。
第三小题既交换了位置,又改变了运算顺序,所以该小题运用了加法交换律和加法结合律。
2.完成教材第58页“练习九”第1、2、3题。
(1)第1题中的最后一小题运用了加法交换律和加法结合律。
(2)第2题是运用加法交换律进行验算,这在过去的计算过程中有学习过,通过这几题的练习加深学生的认识。
(3)第3小题让学生通过计算和观察、比较,进一步认识加法交换律和结合律。
让学生计算,并说说每组中两题的联系。
比较每组中的两题,说说哪一题计算起来更加简便。
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
加法交换律教案4
教学目标:
1.理解和掌握加法结合律,并应用加法结合律使计算简便。
2.培养观察、归纳、概括的潜力。
教学重点:
理解并掌握加法结合律。
教学难点:
加法结合律的推导。
教学过程:
一、复习导入
20+34=()+()
36+()=64+()
A+700=+
二、新授
1.出示准备题:
37+26+63、37+(26+63)
59+38+732和59+(38+732)
讨论:比较两式题的`异同。刚才的两个例子说明了什么?
2.上述两题贴合猜想,可能是偶然。请同学们自己来找一找贴合猜想的式题。
(学生自由举例,小组交流结果。汇报结果,找到许多式题贴合猜想。
3.能证明猜想正确,还有我们身边的一些生活实例。
请同学们用多种方法解决问题:李叔叔骑车旅行第一天骑了88千米,第二天骑了104千米,第三天骑了96千米,这三天李叔叔一共骑了多少千米?
三、小组展示
1.学生先汇报
A.口头列式:
(88+104)+96
88+(104+96)
B.分别说说先求什么,再求什么?
C.决定,得数会相同吗?(相同)
D.计算结果。得出(88+104)+96=88+(104+96)
2.提问:以上几个加法算式中,每个算式等号的左边和右边有什么相同和不同的地方?
3.用字母表示加法结合律。
(1)谁能用符号(任意选3个符号)表示加法结合律?如:(□+△)+○=□+(△+○)
(2)如果用字母a、b、c分别表示3个加数,怎样表示加法的结合律呢?
三、练习
1.下面哪些等式贴合加法结合律?
a+(20+9)=(a+20)+9
15+(7+b)=(20+2)+b
(10+20)+30+40=10+(20+30)+40
2.简便计算。
273+352+648
64+36+81+19
3.五(1)班有学生51人,四(1)班有学生47人,四(2)班有学生41人,三个班共有学生多少人?(用两种方法解答)
板书设计:
加法结合律
37+26+63=37+(26+63)
59+38+732=59+(38+732)
(88+104)+96
88+(104+96)
加法结合律:(a+b)+c=a+(b+c)
加法交换律教案5
【教学内容】
国标本苏教版四年级上册P56—57例题,完成P58的“想想做做”。
【教学目标】
1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。
2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。
3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。
【教学过程】
一、故事导入,激发兴趣
(播放《朝三暮四》视频)师:同学们,听了这个故事你想说什么?猴子很笨,同学们很聪明,栗子的总颗数有没有变化呢?什么发生变化?
引入:这个故事的名字叫《朝三暮四》,在数学中也有类似《朝三暮四》故事里的规律,同学们想不想研究一下?
二、创设情境,联系生活
谈话:天气渐渐转凉,学校要组织大家参加冬季比赛了,看,四年级同学正在操场上开展体育活动。
(课件出示例题情境图)
提问:从图中你了解到哪些数学信息?(指名说一说)
提问:你能提出用加法计算的问题吗?
学生提到的问题可能有:跳绳的有多少人?女生有多少人?参加活动的一共有多少人?
谈话:同学们提出的问题都非常好,下面我们先来解决第一个问题。
三、探索加法交换律,初步感知
课件出示问题(1)要求参加跳绳的有多少人?
提问:应该怎样列式?
指名口答,教师板书:28+17=45(人)
提问:还可怎么列式?板书:17+28=45(人)
提问:这两道算式都是求什么的人数?(跳绳的人数)结果都是多少?
谈话:既然得数相同,我们就可以把这两个算式用“=”连接起来。改写成28+17=17+28
板书:28+17=17+28(学生齐读这个等式)
提问:比较这两个算式,你有什么发现?(引导学生说出:加数相同,得数也一样,只不过是把加数的位置调换了一下)。
提问:你能照样子再写出几个像这样的等式吗?试试看。(学生动笔写,指名学生回答,教师把学生说的等式有序地板书在黑板上,板书三个)。
提问:像这样的等式你能写得完吗?
谈话:既然写不完,可以用省略号表示(板书省略号)
提问:请同学们仔细观察这些等式,你发现每一组的两个算式都有什么共同的地方?有什么不同的地方(同桌交流)?
提问:你能用自己喜欢的方法表示出像这样的等式吗?可以用符号、字母、文
字等等表示,试试看。
学生写在练习本上,教师巡视,并作相应辅导。教师实物投影出学生写得情况。
师:在数学上,我们通常是用字母a、b来表示两个加数,说来说说怎么表示?
生:a+b=b+a
提问:a和b分别代表什么?
小结:两个数相加,交换这两个加数的位置,和不变。这是加法运算律中的一条很重要的规律,我们这节课就是来研究加法运算中的规律。
板书课题:加法的运算律
师:下面老师想考考大家。
考考你:(1)您能在()里填上合适的数字吗?
96+35=35+()204+57=()+204
指名回答,为什么?
(2)下面的.等式符合加法交换律吗?为什么?
75+25=25+75 46+59=46+59 90+10=5+95
(没有交换加数的位置;等号两边的加数不同。)
(3)同学们学的真不错,接下来我们来玩个游戏,看看同学们的反应快不快。
游戏:对口令
师:83+17=生:17+83=
97+44=35+65=
88+75=300+600=
a+b=785+68=
(4)提问:同学们,想一想:过去我们学过的计算中,哪些地方应用过加法交换律?
下面一道题357+218,请同学们计算并用加法交换律进行验算。
四、探索加法结合律,自主合作
谈话:同学们,刚才我们通过解决“跳绳的有多少人”这个问题,得到了加法交换律,现在我们再来研究其他同学提到的问题,看看有什么发现。
出示问题(2):参加活动的一共有多少人?
提问:你会列综合算式解决这个问题吗?
指名回答,教师板书:28+17+23
加法交换律教案6
课题一:加法的意义和加法交换律
教学内容:教科书第48—49页的内容,练习十一的第1—4题。
教学目的:
1.使学生在已学过的加法知识的基础上,概括出加法的意义,对加法的认识从感性上升到理性。
2、使学生理解并掌握加法交换律。
教学重点:加法的意义
教学难点:加法交换律
教具准备:小黑板
教学过程:
一、教学加法的意义
教师:我们在前三年已经学过加法的计算方法,现在要进一步学习、掌握加法的一些规律性知识,这些知识对以后学习有很大帮助。
1、加法的意义。
(1)教学例1。
教师出示例1,让学生读题,边指名说出条件和问题,教师边用线段图表示出数量关系。
137千米 357千米
北京 天津 济南
然后让学生自己解答,解答后,说一说为什么用加法计算。(因为已知北京到天津的铁路长137千米,又知道天津到济南的铁路长357千米,要求北京到济南的铁路长,就要把两段铁路长合并起来,出就是要把137和357合并起来,所以要用加法计算。)教师边重述用加法算的理由,边板书出算式和答案。现进一步提问:
“加法是什么样的运算?”
在此基础上,教师给出加法的意义:把两个数合并成一个数的运算叫做加法。
(2)做练习十一的第1题。
要让学生应用加法的意义说明各题为什么用加法计算。如第1小题,可以启发学生说出:因为已知小强和小明邮票的`张数,要求小强和小明一共有多少张邮票,就要把他俩的邮票张数合并起来,加法就是把两个数合并成一个数的运算,所以这道题要用加法计算。
2.加法各部分的名称。
教师指着137+357=494,提问:
137和357在加法算式中叫什么数?(加数。)
它们相加得到的结果494叫什么?(和。)
然后教师联系的意义说明:相加的两个数叫做加数,加得的数也就是合并的结果叫做和。边说边对应地板书出:
1 3 7 + 3 5 7 = 4 9 4
加数+加数= 和
提问:
“我们上面做的加法,两个加数是什么样的数?”(自然数。)
“任何两个自然数相加得到的和都比加数怎样?”(大。)
“一个自然数和0相加得到的和怎样呢?”(还得原数。)
“你能举出一个自然数和0相加的几个例子吗?”
教师把学生举出的例子板书出来。(如,3+0=3,0+4=4,0+0=0)
然后接着问:
“0和0相加会怎样?”(还得0。)
“人上面的例子我们可以看出一个自然数和0相加还得这个自然数,0和0相加还得0,也就是说任何数和0相加都怎样?”(得原数。)
二、教学加法交换律
教师:加法运算有一些基本性质,对我们以后的计算很有用。下面我们就来学习加法的一个运算定律。
1、结合例1的两种解法,引导学生比较它们的特点。
提问:
“上面”的例1,求北京到济南的铁路长是怎样列式计算的?”
“如果求济南到北京的铁路长该怎样列式计算?”(如果学生说仍用原来的算式,教师可以引导学生想还可以怎样列式计算。)
学生回答后,教师板书出:357+137=494(千米),并让学生说一说为什么用加法计算。
接着让学生观察、比较两种解法的结果怎样,启发学生说出:137+357和357+137的结果相等。教师板书:137+357=357+137
然后让学生比较一下等号两边的算式的相同点是什么?(都是137和357两个数相加)不同点是什么?(等号左边是137加357,等号右边是357加137。)
引导学生回答后,教师归纳:137和357与357和137的得数一样,出就是和不变。
2.再出两组算式,引导学生比较,加以概括。
提出:能不能只从这一个例子就得出“相加的两个数交换位置,和不变”?
教师指出:不能只根据一个例子就做出一般结论,我们必须多考察几组不同的算式。下面我们观察一下这几组算式,看一看它们有什么样的关系。
教师板书出下面的算式:
18+17 17+18
124+235 235+124
让学生算一算,再提问:
“每组算式有什么关系? 里应填什么?这几组算式有什么共同特点?你发现了什么规律?从这几组算式你能得出什么结论?”
3.比较三个等工,归纳出一般规律。
引导学生归纳,突出以下几点:
(1)这三个等式中,每组算式有几个加数?(两个加数)
(2)每个等式中,左右两边的加数的位置怎样?左右两边的和怎样?请几个学生试着把发现的规律说一说,然后教师完整地叙述一遍,说明这一规律叫做加法交换律。再看看教科书第48页方框里的话。
4.用字母表示加法交换律。
教师提出:用语言表述加法交换律比较麻烦,大家想一想怎样能把这一规律表示得既简单又清楚?
学生回答后,教师肯定地说明用字母表示可以做到这一点。然后提出:如果用字母a或b分别表示两个加数,怎样表示加法交换律?(同时说明a、b是拉丁字母,通常读作“ei”“bi”,不要按汉语拼音来读,并领读几遍。)
学生回答后,教师板书:a+b=b+a
说明:a和b可以表示0、1、2、3、……中的任意一个数;一个用数字表示的等式只能表示两个具体的数交换位置,和不变,不能表示任意的两个数交换位置,和不变,而用“a+b=b+a,就可以表示任意两个数相加,交换加数的位置,和不变。比如,“a+b=b+a”可以表示2+1=1+2,137+357=357+137,18+17=17+18等等。
接着教师提问:
“想一想我们在以前学过的哪些计算中用到了加法交换律?”
使学生明确以前学过的用交换加数的位置再加一遍的方法来验算加法,就是用加法交换律的。
5.做第48页的“做一做”。
第1题,让学生在方框里填上适当的数,订正时,说一说是根据哪个规律填写的。
第2题,验算的竖式可以直接写在原始的右边。
三、巩固练习
做练习十一的第2—4题。
1.第2题,要注意让学生清根据哪个运算定律来填数,对有困难的学生可以对照运算定律的结语及字母表达式帮助理解,对于运算定律的表述,只要求表达得清楚没有错误,不要求学生一字不差地背下来。
2.第3题,让学生根据运算定律来判断每个等式是不是符合运算定律的要求。如230+370=380+220,虽然左右两边的得数相等,但由于两边的加数不同,所以不符合加法交换律。又如,30+50+40=50+30+40,虽然是三个数相加,但是前两个加数交换了位置,加得的和不变,还是符合加法交换律的。
四、小结
教师:今天我们学习了加法的意义和加法的一个运算定律——加法交换律。谁能结合具体的题目说一说加法的意义和加法交换律的含义?
加法交换律教案7
教学目标
1。使学生理解加法的意义,并会应用解答实际问题。
2。进一步认识加法算式中各部分的名称以及明确0在加法中的特殊性。
3。使学生理解并掌握加法交换律并能运用这一定律进行验算。
教学重点
使学生对加法的意义的建立,加法交换律的概括及对它们的理解、掌握。
教学难点
学生对加法意义、加法交换律运用。
教学步骤
一、铺垫孕伏。
1、口算。
44+56 37+23 180+20 42+8+10
12+0 0+17 386+124 124+235
2、导入:以前我们学过了加法的计算方法,这节课我们还要进一步学习、掌握加法的一些规律性知识,这将对我们以后的学习有很大帮助。
二、探究新知。
(一)教学加法的意义。
1、加法的意义。
(1)例1 一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米。北京到济南的铁路长多少千米?
教师提问:这题怎样解答?
(因为已知北京到天津铁路长是137千米,又知道天津到济南的铁路长是357千米,要求北京到济南的铁路长,就是把137与357合起来,所以要用加法计算。)
教师提示:把137与357合并起来用加法计算,加法是什么样的运算呢?
(板书:两个数合并成一个数的运算就叫加法)
教师明确:这就叫加法的意义。
(板书:加法的意义)
(2)练习:小强有125枚邮票,小明有75枚邮票。小强和小明一共有多少枚邮票?
说明理由:已知小强与小明的邮票张数,要求小强与小明共有多少张邮票,就是把两人的邮票数合并起来。加法就是把两个数合并成一个数的运算,所以这道题要用加法计算。
2、加法等式中各部分名称。
教师提问:我们已经学过加法各部分的名称,在137+357=494算式中,各部分的名称是什么?(板书:加数 加数 和)
3、有关0的加法。
教师提问:一个自然数和0相加,得到的和与加数比较会怎样呢?有关0的加法可有
哪几种情况呢?
小结:任何数和0相加都得原数。
(二)教学加法交换律
1、教师谈话:通过以上学习,我们知道了加法的意义,加法各部分的名称以及有关0的加法的特殊性。除此之外,关于加法的运算还有一些基本性质,它对我们以后的'计算将起到很大的作用。
2、教师提问:137+357=494(千米),表示求的是什么?
如果要求济南到北京的铁路长又该怎样列式计算呢?
357+137=494(千米)
3、引导学生观察,比较两种解法的结果。
教师板书:137+357=357+13
4、出示例2,引导学生归纳规律。
18+17○17+18
124+235○235+124
0+25○25+0
规律:
①每个等式中,每组算式中有两个加数,而且两个加数相同,只是交换了位置。
②每个等式中,左右两边的加数的和相等。
教师说明:两个数相加,交换加数的位置,它们的和不变,这叫做加法交换律。
教师强调:我们要看一些等式哪些符号不符合加法交换律就必须看两个加数的位置变不变,它们的和变不变。当然前提是等号两边的两个加数必须相同。
5、练习:判断:下面各等式运用了加法交换律,对吗?为什么?
9+7=7+9 10+1=10+1
20+8=2+26 2+0=0+2
6、用字母表示加法交换律。
教师指出:以上我们学习了加法的交换律,并运用它做了练习,这一定律若用字母该怎样表示呢?
教师强调:用字母表示这一运算定律更简单清楚。如果用字母a和b分别表示两个加数(注意:a、b是拉丁字母),在这我们读作“ei”和“bi”,(教师领读几遍,提醒学生不要按汉语拼音来读)
教师板书:a+b=b+a
提醒注意:a与b可以表示0、1、2、3、……中任意整数,如1+2=2+1,9+20=20+9等,所以a+b=b+a表示任意两个数相加,交换加效的位置,和不变。而像这些(指其中的等式)一个用数字表示的等式只能表示两个具体的数,交换位置,和不变。a+b=b+a这一公式表示的一类所有符合条件的式子,交换加数位置,和不变。
7、学生分组自由举例说明加法交换律。
8、学习、掌握了加法的交换律,目的在于更好地运用。实际上,在以前我们早就应用它解决计算问题。同学们想一想:在哪些计算中都用了加法交换律呢?(验算)
9、练习:运用加法交换律,在下面的□里填上适当的数。
766+589=589+□ 257+□=474+257 a+15=15+□
三、巩固发展。
1、填空。
(1)把( )数合并成( )数的运算叫做加法。
(2)一个数加0,还得( )。如12+0=( )。
2、下面各等式哪些符合加法交换律?符合的画“√”。
230+370=380+220 30+50+40=50+30+40
a+10=100+a 230+420=430+220
四、课堂小结。
今天我们学习了加法的意义和加法的一个运算定律——加法交换律。谁能结合具体的题目说一说加法的意义和加法交换律的含义?
五、布置作业。
1、根据运算定律在下面的□填上适当的数。
48+□=72+□ 29+35=□+29
a+38=□+□ □+55=55+42
2、口算下面各题,说一说是怎样应用运算定律的。
91+89+11 85+41+15+59
168+250+32 282+53+37+18
六、板书设计
加法的意义和运算定律
例1、一列火车从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米。北京到济南的铁路长多少千米?
137+357=494(千米)
357+137=494(千米)
答:北京到济南的铁路长494千米。
意义:把两个数合并成一个数的运算叫做加法。
7+0=7 0+7=7 0+0=0
例2 加法交换律:
137+357=357+137
18+17=17+18
24+235=235+24
加法交换律教案8
设计说明
加法交换律的学习是在学生已经掌握了加法的意义,积累了大量的用交换两个加数的位置进行验算的知识经验的基础上进行教学的,因此,本节课的学习对于学生来说并不困难。本节课的教学教师注重唤醒学生的已有认知,借助归纳和演绎推理,引导学生自主发现加法交换律。具体设计如下:
1.创设情境,唤醒认知经验。
数学知识的学习是螺旋上升的,任何一个新知的学习都能在旧知的基础上找到生长点,因此,数学的学习实际就是同化和顺应的过程。新课伊始,教师为学生呈现“李叔叔骑车旅行”的生活化情境,并引导学生根据数学信息,借助已有的加法知识提出数学问题:李叔叔今天一共骑了多少千米?并提出不同的列式解答方法。学生在熟悉的情境中,自觉调动已有认知经验解决问题,使新知的学习植根于学生已有的知识基础上。
2.遵循教学主线,教给学生学习方法。
遵循这样一条教学主线:发现规律—验证规律—应用规律。在教学加法交换律时,先引导学生从解决情境图的`实际问题中发现规律,再引导学生验证这个规律,最后应用规律来解决一些问题,这也是学习数学的一种很好的方法。学生如果能真正掌握这种方法,并能把这种方法应用到以后的学习生活中去,可以受益终生。
3.关注运算定律的形式化表达,培养学生的抽象能力和模型思想。
让学生用自己喜欢的方式把加法交换律表示出来,用文字、符号、字母都可以,并不加以限制,这样有利于培养学生的符号意识,提高学生的抽象概括能力,为以后学习用字母表示数打下基础,同时,也有助于学生发散性思维的训练。
课前准备
教师准备 多媒体课件
教学过程
⊙创设情境,导入新课
师:同学们,你们喜欢旅游吗?(喜欢)
师:你们打算去什么地方旅游呢?(生汇报)
师:看来喜欢旅游的同学还真不少,有谁骑车旅行过呢?(生举手表示)骑车旅行不仅能锻炼身体,还能开阔视野,给我们带来好心情。瞧,李叔叔正骑车旅行呢!(播放课件)
你从中获取了哪些信息?和你的同桌互相说一说。(同桌交流)
师:谁愿意把你获取的信息和大家分享一下?
预设
生1:李叔叔准备骑车旅行一个星期。
生2:李叔叔今天上午骑了40 km,下午骑了56 km。要求李叔叔今天一共骑了多少千米。
师:说得不错!今天我们就来解决这个问题。
设计意图:从创设贴近学生生活实际的情境出发,让学生观看情境图并自主搜集信息,可以培养学生看图搜集信息的能力。
⊙自主探究,寻找规律
(课件出示例1)
1.解决问题,发现规律。
(1)独立计算,汇报结果。
师:在练习本上算一算李叔叔今天一共骑了多少千米。(学生独立计算)
师:谁来汇报一下自己解决问题的方法和结果?
(生汇报,教师板书)
预设
生1:用李叔叔上午骑的路程加上他下午骑的路程就是他今天一共骑的路程。40+56=96(km)。
生2:用李叔叔下午骑的路程加上他上午骑的路程也是他今天一共骑的路程。56+40=96(km)。
(2)引导学生观察算式,比较这两种算法。(出示课堂活动卡)
师:请同学们观察这两个算式,说说你有什么发现。
(相同点:两个算式都可以求出李叔叔今天一共骑了多少千米;不同点:两个算式的加数交换了位置)
(3)思考:你能表示出这两个算式的关系吗?
[课件出示:40+56( )56+40]
师:想一想,( )里能填什么符号?(课件出示:=)
设计意图:引导学生观察,发现两种算法的相同点与不同点,从而确定这两个加法算式的关系,进而使学生对加法交换律有了感性认识,培养了学生的发现意识。
2.验证、总结加法交换律。
(1)思考:这一组算式交换了两个加数的位置,它们的和没有变,是不是任意两个数相加,都有这样的规律呢?谁能任意说出一个加法算式来验证一下呢?(18+17=17+18)
(2)验证。
师:这两个数相加符合这个规律,其余的数是不是也符合这个规律呢?请同学们在练习本上举几个例子并验证,然后在小组内交流一下。(小组内交流汇报,教师板书)
预设
生1:28+71=71+28,这两个算式的加数相同,只是交换了位置,它们的和都是99,所以这两个算式用等号连接。
生2:36+54=54+36,加数相同,位置不同,但是这两个算式的结果都是90,所以这两个算式用等号连接。
加法交换律教案9
教学内容:
P17:例1 “做一做” 、练习五:2、3。
教学目标
1、知识与技能:结合具体的情境,引导学生认识和理解加法交换含义。
2、过程与方法:能用字母式子表示加法交换律,初步学会应用加法交换律进行一些简便运算。
3、情感态度与价值观:体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。培养学生观察,比较,抽象,概括的初步思维能力。
教学重点:认识和理解加法交换律含义。
教学难点:引导学生抽象概括加法交换律。
教具学具:多媒体课件
教学过程
一、创设情境
1.引入谈话。
在我们班里,有多少同学会骑车?你最远骑到什么地方?
骑车是一项有益健康的运动,这不,这里有一位李叔叔正在骑车旅行呢!(多媒体演示:李叔叔骑车旅行的场景。)
2.获得信息。
问:从中你可以得到哪些信息?(学生同桌交流,然后全班汇报。)问题是什么?
3.解决问题。
问:能列式计算解决这个问题吗?(学生自己列式并口答。)
二、探索规律
1.加法交换律。
(1)解决例1的'问题。根据学生回答板书:40+56=96(千米)56+40=96(千米)问:两个算式都表示什么?得数怎样?○里填什么符号?40+56○56+40
(2)你能照样子再举几个例子吗?
(3)从这些例子可以得出什么规律?请用最简洁的话概括出来。
(4)反馈交流。两个加数交换位置,和不变。
(5)揭示定律。
问:
①知道这条规律叫什么吗?
②把加数换成其他任意的数,交换律还成立吗?
③怎样表示任意两数相加,交换加数位置和不变呢?请你用自己喜欢的方式来表示,好吗?(同桌轻声交流)
④交流反馈,然后看书:看看课本上的小朋友是怎么说的。
⑤根据加法交换律对口令。师:25+65=______ 78+64=______
⑥完成课本第18页下面的“做一做”
三、巩固提高
1、运用加法交换律填上合适的数
830+420=()+()()+200=()+37
27+29=29+()A+()=20 +()
2、完成P19“练习五”第2题。
3、完成P19“练习五”第3题。
四、课堂小结:你有什么收获?
板书设计加法交换律
加法交换律:两个加数交换位置,和不变。
加法交换律用字母表示为:A+b=b+A
加法交换律教案10
教学目标:
1、使学生理解加法的意义,并能在实际计算中应用.
2、使学生掌握加法交换律,并会应用定律进行验算.
3、培养学生观察、比较、概括推理的能力.
教学重点:
由于学生对加法的计算已经比较熟悉,对加法的意义及加法交换律也有了感性认识,所以这节课就是要明确地概括出加法的意义及加法交换律,使学生的认识由感性上升到理性.因此教学重点应放在引导学生概括、总结加法的意义及加法交换律的过程中.
教学难点:
由于学生对抽象概括定义、定律重视不够,又不习惯于用加法意义进行说理,因此这也是教学的难点.
教学过程:
一、复习准备
1.口算.
39+47 83+15 420+180
47+39 15+83 180+420
2.口答.
(1)小明栽了18棵杨树和14棵柳树,他一共栽了多少棵树?
(2)小敏做了25朵红花,做的黄花比红花多5朵.做黄花多少朵?
(3)赵强读一本书,已经读了46页,还有58页没读,这本书共有多少页?
二、学习新课
师:我们已经学过了加法的计算方法,今天要在学加法知识的基础上,明确概括出加法的意义,并且能应用它解答实际问题.(板书:加法的意义和运算定律)
1.教学加法的意义.
(1)例 一列火车从北京过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?
读题后,师生共同完成线段图:
学生独立解答:
137+357=494(千米)
加数加数和
答:北京到济南的铁路长494千米.
提问:
①这道题为什么用加法计算?
②加法是一种什么样的运算?
③要合并的两个数指的是什么数?合并成的一个数指的是什么数?
引导学生明确:要求北京到济南铁路的长度,就要把北京到天津的铁路长137千米和天津到济南的铁路长357千米这两个数合并起来,所以要用加法计算;加法是求两个数合并成一个数的运算;要合并的两个数是137千米和357千米,合并成的一个数是494千米.
启发提问:加法的意义是什么?说说看.
引导学生概括出加法的意义:“把两个数合并成一个数的运算,叫做加法”.
教师板书加法的意义.
练一练
练习十一第1题,应用加法的意义说明各题为什么用加法计算.
在学生独立计算的基础上,教师强调要合并的两个数和合并成的一个数分别指的是什么数,从而让学生更深刻理解加法意义,并会运用它解决实际问题.
(2)教学加法各部分名称.
提问:例1中的137和357在等式中叫什么数?(加数)它们相加得到的494叫什么数?(和)
教师板书.(写在例1算式的下面)
教师联系加法意义说明:相加的两个数也就是要合并的两个数,叫做加数,加得的数也就是合并的结果,叫做和.
反馈提问:你能根据加法的意义说明72+28=100这个算式的各部分名称吗?
(3)加法中有关0的问题.
提问:
①我们例1做的加法,两个加数是什么样的数?(是自然数)
②任何两个自然数相加的和与加数比较会怎样?(相加的和会比原自然数大)
③0和一个自然数相加的和会怎样呢?(0和自然数相加还得原来的自然数)
引导学生讨论:
0的加法可能有哪几种情况?举例说明.
在学生讨论的基础上,使学生明确:一个数加上0,还得原数.
(4)阅读课本第47页“加法的意义”.
2.教学加法交换律.
根据加法的意义引出加法交换律.
提问:
(1)我们刚才计算例1时,求济南到北京的铁路长用137+357,根据加法的意义还可以怎么算?(还可用357十137)
(2)观察比较一下,这两种解法的结果,能得出什么结论?(可以得出:相加的两个加数交换位置,和不变.也可说出这是两个相等的式子,写成137+357=357+137)
教师指出:我们不能只根据一个例子就得出结论,我们必须多参考几组不同的数目.
(3)出示18+17○17+18
350+150○150+350
274+100○100+274
873+127○127+873
提问:
①观察每组算式有什么关系?○里应填什么符号?
引导学生明确:每组算式里加数是一样的,和也一样,每组两个算式是相等关系,○里应填“=”.
②这几组算式有什么共同特点?你发现了什么规律?
引导学生明确:这几组算式的共同点是,两个数相加,其结果只与加数的大小有关,而与这两个加数的顺序无关.因此可以得出:交换加数的位置,它们的和不变.
教师明确:你们发现的这个规律,就叫做加法交换律.
板书:“两个数……,它们的和不变.”
教师继续指出:上述几组算式说明,每组等式只能表示两个具体的数交换位置和不变,但不能表示任意整数.大家想一想,怎样用字母把加法交换律表示得既简单又清楚呢?
学生看书自学:第48页.
反馈提问:
什么叫加法交换律?怎样用字母公式表示?过去在什么地方应用了这个定律?
教师板书加法交换律的字母公式:
a+b=b+a
引导学生小结出:过去学过的.加法的验算方法既可以用交换加数的位置再加一遍,也可以利用原来的竖式从下往上加一遍.
教师指出:学习了加法交换律,可以进行加法验算,要会运用定律.
练一练
现在用你们学过的知识做第48页的“做一做”.
订正题时要说出根据,以进一步巩固加法交换律的概念及其应用.
3.总结.
(1)说一说加法的意义是什么?
(2)什么叫加法交换律?它的字母公式是什么?怎样应用加法交换律?
三、巩固反馈
1.口答.(用加法意义说明算法)
玉门县要修一条公路,已经修了400千米,还有260千米没修,这条公路有多少千米?
2.下面各式哪些符合加法交换律?
140+250=260+130 260+450=460+250
20+70+30=70+30+20 a+400=400+a
3.根据运算定律在“□”里填上适当的数.
(1)□+55=55+42 (2)a+44=□+□
(3)38+35=□+38 (4)48+□=72+□
订正时,要求学生严格按照定义、定律来加以说明.
四、作业
练习十一第2~4题.
板书设计
加法的意义和运算定律
例1 一列火车,从北京经过天津开往济南,北京到天津的铁路长137千米,天津到济南的铁路长357千米.北京到济南的铁路长多少千米?
137+357=494(千米)
加数加数和
357+137=494(千米)
答:北京到济南的铁路长494千米.
把两个数合并成一个数的运算,叫做加法.
18+17 17+18
350+150 150+350
274+100 100+274
873+127 127+873
两个数相加,交换加数的位置,它们的和不变.这叫做加法交换律.字母公式:
a+b=b+a
五、教学后记:
学生能理解加法的意义,掌握了、加法的交换律并会用运算定律进行计计算。
加法交换律教案11
教学内容:加法交换律和乘法交换律
教学目标:
1.经历教法交换律和乘法交换律的探索过程,会用字母表示加法交换律和乘法交换律,培养发现问题和提出问题的能力,积累数学活动经验。
2.通过列举生活实例解释加法交换律和乘法交换律的过程,认识运算律丰富的现实背景,了解加法交换律和乘法交换律的用途,发现应用意识。
教学重点:经历观察、归纳、猜想、验证的过程,培养学生的观察、概括能力,
渗透归纳猜想的数学思想方法。
教学难点:归纳猜想的数学思想方法渗透。
教学过程:
一、导入阶段:
出示主题图,向学生介绍“爱心助学大行动”,某商店为帮助贫困山区学生特别举行义卖活动把营业额全部献给希望小学。看,小胖和小亚也来帮忙了
问:从图中你能获得哪些数学信息?
你还能提出哪些数学问题?
二、探究阶段:
1.投影演示:(果汁)师:小亚和小胖各有多少罐果汁?合起来桌上有几罐果汁?谁能列式计算?
师:谁能说出两道加法算式中各部分的名称?
提问:仔细观察一下,这两个算式有什么相同点和不同点?
(相同点是两个加数分别是8和18,和都是26,而不同处只是两个加数的位置不同)
师:因为8+18=2618+8=26所以8+18=18+8
师:有谁能模仿这道题目的形式举出类似的例子?同桌两组相互交流。
(1)根据我们举的例子你发现了什么?(小组交流)
提示:这些例子都是几个数相加?两者之间发生了什么变化?结果怎样?
归纳:两个数相加,交换加数的位置,它们的和不变。这叫做加法交换律。
(2)让学生用自己喜欢的方式表示加法交换律(启发学生用符号或字母)
例:◆+●=●+◆甲数+乙数=乙数+甲数a+b=b+a这里的a、b可以是哪些数?
加法交换律用字母表示:a+b=b+a
(3)竖式计算74+641
师:运用加法交换律,我们还可以验算加法的计算结果是否正确。
74验算:641
+641+74
715715
小结:验算时,可以将两个加数交换位置后再加一遍。也可以用原来的'竖式,把每一位上的数从下往上再一遍。
2.投影演示:
(1)图中小箱里共有几罐果汁?6×3=183×6=18
师:请学生分别读一下以上两个算式,因为这两个算式计算结果相等,所以我们可以把这两个算式用等号连接。
(2)根据我们举的例子你发现了什么?(小组交流)问题:等式左边各有什么相同的地方?
每一组等式的左右两边又有什么联系?
师:这就是我们这节课所要学习乘法交换律。刚才同学们已经用自己的话归纳了一下,那么什么是乘法交换律?(出示结论)
小结:两个数相乘,交换因数的位置,它们的积不变。这叫做乘法交换律。
(3)如果用字母a、b分别表示两个数,那么乘法交换律用字母可以怎样表示?仿这道题目的形式举出类似的例子?同桌两组相互交流。
(4)如果用字母a、b分别表示两个数,那么乘法交换律用字母可以怎样表示?
板书:a×b=b×a
三、运用阶段:
1.根据加法交换律填数
()+270=270+80400+500=()+()()+56=()+44a+()=b+()
2.根据乘法交换律,在()里填上适当的数
34×71=()×()25×976=976×()45×()=55×()303×786=()×303()×▲=()×■()×54=54×37()×()=c×Da×()=c×a
3.竖式计算
64验算:27
×27×64
四、总结:
今天这节课我们学习了加法交换律和乘法交换律,并且学会了用字母来表示。还学习了用这两个运算定律来验算加法和乘法。
板书设计:
加法交换律和乘法交换律
8+18=263×6=18
18+8=266×3=18
8+18=18+83×6=6×3
加法交换律:a+b=b+a乘法交换律:a×b=b×a
加法交换律教案12
课题:加法的意义和加法交换律(小学数学人教版第八册)
授课教师:王晓华(六里坪镇财神庙小学)
教学内容:教材第48、49页的例1和例2,练习十一的第1、2题。
教学要求:
1、使学生在已有加法知识的基础上,理解并概括加法的意义和加法交换律,能从感性认识上升到理性认识。
2、培养学生初步的归纳推理能力。
教学重点:加法交换律
教学难点:使学生在理解的基础上自己概括出加法的意义和归纳出加法交换律。
教学准备:小黑板
教学方法:启发式
教学过程
一、课题提示
我们学了几年数学,几乎每天都与加法打交道,谁能说说什么是加法吗?今天我们学习加法的意义。(板书课题:加法的意义)
二、教学新课
(一)、教学加法的意义。
1、出示例1。学生读题,指名说已知条件和问题,老师画线段图。
2、独立解答。指名学生说自己所列的算式及其得数(在图下板书)然后问:为什么要用加法算?
3、引导看线段图,老师辅以手势说明,我们用加法把137和357合并成了494这一个数,可见加法是一种运算。加法是一种怎样的运算呢?
4、说出式中的各部分的名称。什么是加数?什么是和?
5、刚才的加法中,加数中不含0;如果含有0,得多少呢?举例:7+0=7,0+7=7,0+0=0。…,得出结论,一个数加上0,还得原数。
(二)教学加法交换律。
1、看例1线段图,刚才我们求北京到济南的铁路长。如果要求济南到北京的铁路长还可以怎样列式?
2、为什么用加法算?
3、比较两个算式有什么样的关系?(板书:在两个算式间画上“=”)有什么相同点和不同点?
4、如果其他任意两个数相加时,交换一下两个加数的位置,相加的和是不是也不变呢?
5、出示例2两组式子,引导学生比较。讨论:两组算式有什么共同点?归纳并板书加法交换律。
6、加法交换律除了用文字语言进行叙述外,还可以用字母写成的式子来表示。如果用字母a和b分别表示两个加数,怎样表示加法交换律?
说一说a和b分别表示什么?比较一下文字叙述和字母表示的式子,哪一种简明好记。
7、巩固练习:教材第49页的“做一做”。(出示小黑板)
(1)填空。
①把两个数合并成( )个数的( ),叫着加法;相加的.两个数叫做( ),加得的数叫做( )。
②86+124=( )+86 ( )+25=25+a
③两个数相加,交换它们的位置,它们的( )不变。
④418+382=382+418,这是应用了加法的( )律。
⑤一个数加上( ),是原数。
(2)判断。(对的打“√”,错的打“×”)
①任意两个数的和,一定比这两个数大。( )
②下面哪些算式符合加法交换律?
430+270=280+420( ) 28+a=a+28
570+250=250+570( ) 40+30+10=40+10+30( )
③用字母a和b分别表示两个加数,加法交换律写成:a+b=a+c。( )
8、想一想,我们以前在哪里曾经用加法交换律?(加法验算)
三、课堂小结
说一说加法的意义和加法交换律的含义。
四、作业布置
练习十一的第1、2题。
附板书:
加法的意义和加法交换律
例1(略) 7+0=7 0+7=7 0+0=0
(画示意图) 一个数加上0,还得原数
137+357=494(千米)
137+357=494(千米) 137+357=357+137
加数 加数 和 18+17㈡17+18
答:(略) 两个数相加,交换加数的位置,它们的和不变,这就是加法交换律。
把两个数合并成一个数的运算,叫做加法。 a+b=b+a
加法交换律教案13
教学内容:
苏教版小学数学第七册第七单元运算律
第56――58页例题,“想想做做”的第1――5题。
教学目标:
1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会运用加法交换律进行加法验算,初步感受到应用加法交换律和结合律可以使一些计算简便。
2.在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。
3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心,初步形成独立思考、合作交流的意识和习惯。
教学重点:
发现规律,理解和掌握运算律。
教学难点:
概括运算律并用字母表示。
教学过程:
一、师生合作,探索加法交换律
1.创设情境,解决问题
(1)谈话:随着学校开展的“植根童趣,放飞童心”的活动以来,课间同学们的活动变得更加丰富多彩了。(出示挂图)
提问:从这张图片中,你获得了哪些数学信息?
(2)你能根据这些信息提出一些用加法计算的问题吗?
指名口答。
(3)今天这节课,我们就一起来研究其中的`这两个问题
(出示问题)
(4)先解决第一个问题:参加跳绳的一共有多少人?
①应怎样列式计算?
指名回答,教师板书:28+17=45(人)
②追问:还可以写成什么?
指名回答,教师板书:17+28=45(人)
2.观察、比较、发现规律
(1)这两道算式都是求什么的人数?结果都是多少?
(2)你能用一个符号把它们连接起来吗?
板书:28+17=17+28
(3)仔细地观察这个算式,在等号的两边,什么变了?什么不变?你有什么发现?
同桌交流
(4)你们能够自己模仿写出几个这样的算式吗?试试看。
追问:这样的算式能写几个?
指名回答,教师板书。
(5)你能用自己喜欢的方法把我们发现的规律简单明了地表示出来吗?可以用符号、字母、文字等。
学生试着写一写。
指名回答,教师板书。
(6)谈话:刚才同学们能用自己喜欢的方式表示了我们发现的规律,这些规律叫运算律。但是自己创造的符号只有自己明白,还要学习数学界公认的表示方法,那就是用字母a、b分别表示两个加数,我们发现的规律就可以写成a+b=b+a,这个规律我们给它起个名字叫加法交换律。
(7)谁来说说加法交换律用字母怎样表示?用语言怎样表达?
齐读。
(8)其实加法交换律我们早就会用了,想想看,什么时候我们用过?
指出:在验算加法时用的就是加法交换律。
3..练习:
96+35=35+()
204+57=()+204
a+45=45+()
二、学法迁移,探索加法结合律
1.解答例题,发现规律
(1)刚才通过解决第一个问题,我们得到了加法交换律,现在我们再来研究第二个问题,看看有没有新的发现?
(2)齐读问题。你会列式解决这个问题吗?
你打算先求什么?再求什么?
学生练习,教师巡视。
学生汇报,教师板书:(28+17)+23=68(人)
28+(17+23)=68(人)
(3)比较一下这两道算式,他们有什么相同点和不同点?
(4)这两道算式结果相同,我们可把它写成怎样的算式?
2.板书(28+17)+23=28+(17+23)
(5)练习:
下面的○里能填上等号吗?
(45+25)+23○45+(25+23)
(36+18)+22○36+(18+22)
(6)观察这三个等式,每组的两个算式有什么相同的地方?有什么不同的地方?你从这些等式中能发现怎样的规律,和你的同桌交流一下。
和不变,这就是我们今天所学的第二个运算律――加法结合律。
3.练习
(45+36)+64=45+(□+□)
560+(140+70)=(560+140)+□
a+(27+b)=(□+□)+b
三、组织练习
1.第58页想想做做第1题。
仔细观察,同桌交流后汇报。
重点讨论第四个等式,引导学生发现这里同时运用了两种加法运算律。
2.想想做做第3题。
学生计算第1小题,并用加法交换律验算,请学生板演。
评讲,让学生体会加法交换律的价值。
3.想想做做第4题
(1)下面我们来比一比谁做得对又快。
男生计算每组题中的第1小题,女生计算每组题中的第2小题。
(2)交换题目再来比一比。
(3)问:如果让你来选,你愿意做哪一题?为什么?
(4)小结:因为运用了加法运算律可以使计算简便,而每组中的第2小题都运用了加法运算律,所以第2小题做得快。
4.想想做做第5题
(1)谈话:在做第4题时,大家觉得先把和是100的两个数加起来,下一步就容易算了,那么什么样的两个数和是100呢?下面我们来做第5题,你能很快找出哪两片树叶上数的和是100吗?
(2)学生独立连线,同桌互相校对。
(3)提问:什么样的两个数和是100?
(4)小结:看来,在计算过程中,要有一双敏感的眼睛,看到数字就能很快地判断出能不能凑成整百数。
四、回顾总结
有个成语叫“学有所成”,请同学们说说看,这节课你学到了什么?有什么新的收获?
五、作业:想想做做第3题剩下的题目。
教学反思:这节课主要教学加法的交换律和结合律,创设学生熟悉的生活情境出发,让学生根据信息自由地提问,培养了学生的发散性思维,以及问题意识,同时也符合新课程“创造性地使用教材”的理念。在教学中通过对两个算式的观察比较,唤醒学生已有的知识经验,使学生感知加法交换律,组织学生写出类似的等式,帮助学生积累感性材料,丰富学生的表象,同时鼓励学生用自己最喜欢的方法总结出加法交换律和加法结合律,学生能较快的体会出这两种运算律,使学生体会到符号的简洁性和概括性,发展学生的符号感。通过几个层次的练习,使全体同学都参与到有趣的数学学习中,体会到数学的乐趣,又复习巩固了全课的内容,为以后教学应用运算律进行简便计算作好铺垫。
加法交换律教案14
第一课时:
教学内容:P28例1(加法交换律)P29/例2(加法结合律)
教学目标:
1.引导学生探究和理解加法交换律、结合律。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学过程:
一、主题图引入
观察主题图,根据条件提出问题
(1)李叔叔今天一共骑了多少千米?
(2)李叔叔三天一共骑了多少千米?
等等。
引导学生观察主题图
教师根据学生提出的问题板书。
二、新授
练习本上用自己的方法列出综合算式,解答黑板上问题。
教师巡视,找出课堂上需要的答案,找学生板演。
学生观察第一组算式,发现特点。
引导学生观察第一组算式,总结出:
40+56=56+40
试着再举出几个这样的例子。
根据学生的举例,进行板书。
通过这几组算式,你们发现了什么?
学生发现规律:两个加数交换位置,和不变。这叫做加法交换律。
教师根据学生的小结,板书。
你能用自己喜欢的方式表示出加法交换律吗?
板书:a+b=b+a
学生用多种形式表示。
符号表示:△+☆=☆+△
引导学生观察第二组算式,总结出:
(88+104+96)=88+(104+96)学生观察第二组算式,发现特点。
学生继续观察几组算式。
出示:
(69+172)+28
69+(172+28)
155+(145+207)
(155+145)+207
通过上面的几组算式,你们发现了什么?
学生总结观察到的规律。
教师板书:先把前两个数相加,或者先把后两个数相加,和不变。这叫做叫法结合律。
学生用自己喜欢的.方式表示加法结合律。
符号表示:(△+☆)+○=△+(☆+○)
教师板书:
(a+b)+c=a+(b+c)
学生根据这两个运算定律,举一些生活中的例子。
三、巩固练习
P28/做一做
P31/4、1
四、小结
学生小结本节课学习的加法的运算定律。
今天这节课你们都有什么收获?
你能把这些运用于以后的学习中吗?
五、作业:P31/3
板书设计:
加法的运算定律
(1)李叔叔今天一共骑了多少千米?(2)李叔叔三天一共骑了多少千米?
40+56=96(千米)56+40=96(千米)88+104+96104+96+88
=192+96=200+88
=288(千米)=288(千米)
40+56=56+40(88+104)+96=88+(104+96)
┆(学生举例)(69+172)+28=69+(172+28)
两个加数交换位置,和不变。155+(145+207)=(155+145)+207
这叫做加法交换律。先把前两个数相加,或者先把后两个数相加,
和不变。这叫做加法结合律。
a+b=b+a(a+b)+c=a+(b+c)
加法交换律教案15
一、说教材
1、教材地位:加法是数学中最基本的运算之一。在前三年半学生已经学会加法的计算方法。本节课是在学生已经学过加法知识的基础上,明确概括出加法的意义,学生学会整数加法的意义,为以后学习小数、分数加法的意义打下基础。加法运算定律的学习,不仅有助于加深理解加法的一般计算方法,还能使一些计算简便。同时也为以后学习用字母表示数打下初步基础。
2、教学目标:
知识和技能方面:理解加法的意义。理解并掌握加法交换律。
能力方面:培养学生观察、比较、归纳、概括等初步的逻辑思维能力。培养学生应用所学知识解决实际问题的能力。
思想品德方面:通过概括加法的意义,初步渗透辩证唯物主义思想。通过变式练习,培养学生良好的学习习惯。
发展性方面:通过日常生活中的事例,将数学知识应用于生活中,用数学的思想、方法分析生活中遇到的问题。
3、教学重点:理解加法的意义,掌握加法交换律及其应用。
难点:加法交换律的应用。
二、说教法
本节课设计的基本思路是:观察——比较——讨论——概括——应用,教学中以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与学习的全过程。根据本节课教学目标和教材特点,我采用以下几种教法:
1、情境教学法。我们知道创设问题情境,能使学生的学习兴趣得到激发,使学生融入到数学情境中去,积极动脑思考,使学生认识到数学来源于生活,又服务于生活。如:通过教师左右手分别出示铅笔,导入问题,求一共有多少支铅笔?用什么方法解答,从而“引出什么叫加法”,激起同学们的学习兴趣。为后面学习加法的意义做好认知准备。
2、直观引导观察法。理解加法的意义是本课的重点。将例题以线段图的形式出现,唤起学生的感性认识。从线段图上学生直接感受到求花的朵数,北京到济南的路程,就是要把两个数合并成一个数,所以要用加法计算。让学生用自己的语言表述为什么用加法算,既讲清楚两例题目的算理,又为加法意义的概括奠定良好的认知基础。
3、小组讨论交流法。掌握加法交换律及应用是本课重点也是难点。学习加法交换律,用四组加法算式为观察点,让学生个人探索,小组交流讨论,通过计算、观察、比较、讨论等一系列实践活动,从几组算式间的联系去发现并总结规律,逐步概括出加法交换律。最后抽象出用字母表示的定律。它是学生自己探索得到的,有实感才能有认识,认识深刻才能理解透彻,理解透彻才能熟练地应用。这样的设计基本体现了学生学习的主体性、积极性、创造性。
4、分层练习法。学生在理解了加法交换律后,就要应用它,这是本课的重点也是难点。《数学课程标准》指出:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。根据教学目标,练习分为基本练习、巩固练习、深练习等,这样既有助于学生掌握知识,又利于满足不同层次学生的需求。贯彻全面发展与因材施教相结合的教学原则?/SPAN>
5、教具:小黑板两块,铅笔13支。
三、说学法
“教会学生如何学习”,是当前教改研究热点。学生掌握了学习方法,就等于拿到了打开知识宝库的金钥匙。在教学过程中,应重视学习方法的指导,主要学法有:
1、个人自学法。加法各部分名称比较容易懂,通过学生自己看书,明确加法的各部分名称,从而培养学生的学习能力。
2、观察比较法。概括加法的意义是学习的重点,通过线段图引导学生观察、比较,从感性认识上升到理性认识,使学生对加法的意义有深刻的认知。
3、交流讨论法。学生个人探索,同桌交流,小组讨论。通过计算、观察、比较、讨论等活动,去发现并总结出加法交换律。发挥学生的主体作用,让学生敢想、敢说、敢问,培养学生初步的归纳推理能力。
4、练习法。练习是为了使学生更好掌握新知,深化理解。学生掌握了加法交换律,应用加法交换律是本课的难点。练习上采用基本练习、巩固练习、深化练习等。通过练习加深学生对加法交换律的理解,初步培养学生演绎推理能力。
四、说教学程序
㈠创设情境,导入新课。
师双手分别出示铅笔,问:求一共多少支?学生列式解答后,提出问题:为什么用加法算?引出课题:加法的意义。(板书)
(意图:使学生初步感知加法的意义。)
㈡直观观察,抽象概括。
1、学习加法的意义。
⑴出示两个线段图,列式解答。
⑵根据列式,说说为什么要用加法算?把自己用加法算的理由告诉大家。
教师引导学生概括出加法的意义。(板书)把两个数合并成一个数的'运算,叫做加法。找出关键字词。
(意图:通过两个线段图列式,并引导观察比较,概括出加法的意义。)
⑶应用加法的意义。
用小黑板出示练习十一第1题。先指名说,再同桌说。
(意图:加深巩固什么是加法?什么样的运算是加法。)
2、学生自学加法各部分的名称。
⑴看书P47自学后,师问生答师板书(加数、和)。
⑵观察比较讨论。
观察比较:加法算式中的和与其中一个加数比较,你发现了什么?
讨论:是不是任何一个加法算式中的和都比其中一个加数大呢?
引出:任何自然数相加的和都比一个加数大。
一个数加上0,还得原数。举例:0+7=7,7+0=7。
0和0相加得0。0+0=0。
㈢探索加法交换律。
1、(出示四组算式)计算各式,并根据结果探索加法交换律。
学生计算后,观察每组算式的结果,发现了什么?比较它们的相同点和不同点。引导得出结论:(板书)两个数相加,交换加数的位置,它们的和不变。学生举例。
2、用字母表示加法交换律。
a+b=b+a(板书),说说用字母表示加法交换律有什么好处?
㈣巩固练习,深化理解。
1、基本练习,体现知识的目的性。
(小黑板出示)填空:
⑴把两个数成一个数的运算。叫做加法。
⑵相加的两个数叫做,加得的数叫做。
⑶两个数相加,加数的位置。它们的不变。
⑷用字母表示加法交换律:。
2、巩固练习,体现知识的层次性。
用小黑板出示P48做一做的第1题。
3、深化练习,体现知识的灵活性。
用小黑板出示练习十一第3题。
㈤课堂小结。
今天学习了什么知识?你懂得了些什么?
㈥布置作业。
P48做一做的第2题,练习十一的第2、4题。
板书设计:
加法的意义和加法交换律
例⑴25+20=45(朵)⑴20 +30 =30+20
加数 加数和⑵125+243=243+125
⑵137+357=494(千米)⑶14 +80 =80+14
把两个数合并成一个数⑷23 +505=505+23
的运算,叫做加法 。a+b=b+a
两个数相加,交换加数的位置,它们的和不变。
这叫做加法交换律
【加法交换律教案】相关文章:
《加法交换律》教学反思03-25
加法交换律教学反思10-25
加法交换律教学设计01-18
数学加法交换律教学反思10-26
加法交换律加法结合律教学设计11-12
加法交换律教学反思合集15篇11-20
乘法交换律教案09-12
《加法的认识》的教案09-07
《认识加法》教案08-23