当前位置:9136范文网>教育范文>教案>《比例的意义》教案

《比例的意义》教案

时间:2024-07-07 17:09:08 教案 我要投稿

《比例的意义》教案

  作为一位杰出的教职工,往往需要进行教案编写工作,教案是教学活动的总的组织纲领和行动方案。怎样写教案才更能起到其作用呢?下面是小编整理的《比例的意义》教案,仅供参考,希望能够帮助到大家。

《比例的意义》教案

《比例的意义》教案1

  一、教学目标

  1.使学生理解并掌握反比例函数的概念

  2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式

  3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想

  二、重、难点

  1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式

  2.难点:理解反比例函数的概念

  3.难点的突破方法:

  (1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解

  (2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x≠0的一切实数;看函数y的取值范围,因为k≠0,且x≠0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k≠0),比较二者解析式的相同点和不同点。

  (3)(k≠0)还可以写成(k≠0)或xy=k(k≠0)的形式

  三、例题的意图分析

  教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

  教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的.“变化与对应”的思想,特别是函数与自变量之间的单值对应关系。

  补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。

  四、课堂引入

  1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?

  2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?

  五、例习题分析

  例1.见教材P47

  分析:因为y是x的反比例函数,所以先设,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。

  例1.(补充)下列等式中,哪些是反比例函数

  (1)(2)(3)xy=21(4)(5)(6)(7)y=x-4

  分析:根据反比例函数的定义,关键看上面各式能否改写成(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是,分子不是常数,只有(2)、(3)、(5)能写成定义的形式

  例2.(补充)当m取什么值时,函数是反比例函数?

  分析:反比例函数(k≠0)的另一种表达式是(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误

《比例的意义》教案2

  教学目标:

  1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。

  2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。

  3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

  4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。

  教学重、难点:

  重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

  难点:自主探究比例的基本性质。

  教学准备:CAI课件

  教学过程:

  一、复习、导入

  1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?

  2、 课件显示:算出下面每组中两个比的比值

  ⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9

  ⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27

  [评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]

  二、认识比例的意义

  (一)认识意义

  1、 指名口答上题每组中两个比的比值,课件依次显示答案。

  师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)

  2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。

  (课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)

  最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)

  数学中规定,像这样的一些式子就叫做比例。(板书:比例)

  [评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的.衔接。]

  3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?

  (生答:想研究比例的意义,学比例有什么用?比例有什么特点……)

  5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?

  (根据学生的回答,教师抓住关键点板书:两个比 比值相等)

  同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

  课件显示:表示两个比相等的式子叫做比例。

  学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  [评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]

  (二)练习

  1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

  第一次

  第二次

  买练习本的钱数(元)

  1.2

  2

  买的本数

  3

  5

  (1)学生独立完成。

  (2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

  2、完成练习纸第一题。

  一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

  ⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

  ⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

  [评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]

  3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

  (引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

  4、教学比例各部分的名称

  (1) 课件出示: 3 : 5

  前项 后项

  (2) 课件出示:3 : 5 = 18 : 30

  内项

  外项

  (3) 如果把比例写成分数的形式,你能指出它的内、外项吗?

  课件出示:3/5=18/30

  [评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]

  5、小结、过渡:

  刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

  三、探究比例的基本性质

  1、课件先出示一组数:3、5、10、6

  再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)

  2、 独立思考,并在作业本上写一写。

  学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

  根据学生回答板书: 3×10=5×6 3:5=6:10

  3:6=5:10

  5:3=10:6

  6:3=10:5

  3、 引导发现规律

  (1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)

  乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)

  (2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?

  (3)学生先独立思考,再小组交流,探究规律。

  (板书:两个外项的积等于两个内项的积。)

  [评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]

  4、验证:是不是任意一个比例都有这样的规律?

  ⑴课件显示复习题(4组),学生验证。

  ⑵学生任意写一个比例并验证。

  ⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  [评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]

  5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。

  6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

  四、 综合练习

  完成练习纸2、3、4

  附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

  14 :21 和 6 :9

  1.4 :2 和 5 :10

  3、判断下面哪一个比能与 1/5:4组成比例。

  ①5:4 ② 20:1

  ③1:20 ④5:1/4

  4、在( )里填上合适的数。

  1.5:3=( ):4

  =

  12:( )=( ):5

  [评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]

  五、全课总结(略)

《比例的意义》教案3

  教学内容:教科书第22—24页反比例的意义,练习六的第4—6题。

  教学目的:

  1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

  2.使学生进一步认识事物之间的相互联系和发展变化规律。

  3.初步渗透函数思想。

  教具准备:投影仪、投影片、小黑板。

  教学过程():

  一、复习

  1.让学生说说什么是成正比例的量:

  2.用投影片出示下面的题:

  (1)下面各题中哪两种量成正比例?为什么?

  ①笔记本单价一定,数量和总价:

  ⑨汽车行驶速度一定.行驶的路程和时间。

  ②工作效率一定.’工作时间和工作总量。

  ①一袋大米的重量一定.吃了的和剩下的。

  (2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。在什么条件下,其中两种量成正比例?

  二、导入新课

  教师:如果加工零件总数一定。每小时加工数和加工时间会成什么样的变化.关系怎样?就是我们这节课要学习的内容。

  三、新课

  1.教学例4。

  出示例4;丰机械厂加工一批机器零件。每小时加工的数量和所需的加工时间如下表。

  让学生观察这个表,然后每四人一组讨论下面的问题:

  (1)表中有哪两种量?

  (2)所需的加工时间怎样随着每小时加工的个数变化?

  (3)每两个相对应的数的乘积各是多少?

  学生分组讨论后集中发言。然后每个小组选代表回答上面的问题。随着学生的回答,教师板书如下:每小时加工数加工时间

  10 × 60 =600。

  30 × 20 =600。

  40 × 15 =600,

  “这个积600。实际上是什么?”在“加工时间”后面板书:零件总数

  “积一定,就说明零件总数怎样?”在零件总数后面板书:(一定)

  “每小时加工数、加工时间和零件总数这三种量有什么关系呢?”

  学生回答后,教师小结:通过刚才的观察分析.我门可以看出。表中每小时加工零件数和所需的加工时间是两种相关联的量。所需的加工时间是随着每小时加工数量的变化而变化的,每小时加工的数量扩大。所需的加工时间反而缩小3每小时加工的数量缩小,所需的加工的时间反而扩大。它们扩大、缩小的规律是:每小时加工的零件的数量和所需的加工时间的积都等于600,即总是一定的:我们把这种关系写成式子就是:每小时加工数×加工的时间=零件总数(一定)。

  2.教学例5。

  用小黑板出示例5用600页纸装订成同样的练习本,每本的页数和装订的本数有什么关系呢?请你先填写下表。

  (1)理解题意,填写装订本数。

  “谁能说说表中第一栏数据的意思?”(用600页纸装订练习本,如果每本练习本15页,可以装订40本。)

  “这40本是怎么计算出来的?”(用600÷15)

  “如果每本练习本是20页,你能计算出可以装订多少这样的练习本吗?如果每本是25页呢?……请你把计算出来的本数填在教科书第23页的表中。”教师把学生报出的数据填在黑板上的表中。

  (2)观察分析表中两种量的变化规律。

  让学生观察上表,回答下面的问题:“表中有哪两种量?”(板书:每本的页数装订的本数)

  “装订的本数是怎样随着每本的页数变化的?”随着学生的回答,板书如下:每本的页数 装订的本数

  15 40

  20 30

  25 24

  一’然后让学生判断下面每题中的`两种量成不成比例,是成正比例还是成反比例。

  1,单价一定.数量和总价。

  2,路程一定,速度和时间。。

  3,正方形的边长和它的面积。

  1.时间一定,工效和工作总量。

  二、导入新课

  教师:我们在前两节课分别学习了成正比例的量和成反比例的量。初步学会判断

  两种量是不是成正比例或反比例的关系,发现有些同学判断时还不够准确。这节课我

  们要通过比较弄清成正比例的量和成反比例的量有什么相同点和不同点。

  板书课题:正比例和反比例的比较

  三、新课

  1.教学例7。

  出示例7的两个表:

  表1 表2

  让学生观察上面的两个表,然后根据两个表所提的问题,分别在教科书上填空。订正时。指名说出自己是怎样填的,教师板书:

  在表l中: 在表2中:

  相关联的量是路程和时间. 路程随着相关联的量是速度 路程随 时间变化,速度是 和时间,速度随着时间变化

  一定。因此,路程和时间 ,路程是一定的。因此,速

  成正比例关系。 度和时间成反比例关系

  然后提问:

  (1)从表1,你怎样发现速度是一定的?你根据什么判断路程和时间成正比例/

  (2)从表2,你怎样发现路程是一定的?你根据什么判断速度和时间成反比例?

  教师:路程、速度和时间这三个量中每两个量之间有什么样的比例关系?

  板书:速度×时间=路程

  =速度 =速度

  教师:当速度一·定时,路程和时间成什么比例关系?

  教师:当路程一定时,速度和时间成什么比例关系?

  教师:当时间一定时。路程和速度成什么比例关系?

  2.比较正比例和反比例关系。

  教师:结合上面两个例子,比较——下正比例关系和反比例关系,你能写出它们的相同点和不同点吗?试试看。组织讨论,教师归纳并板书:

  四、巩固练习

  1.做教科书第28页“做一做”中的题目。

  让学生自己填,并说一说为什么。

  2.做练习七的第1—2题。

  教师巡视,个别辅导,最后订正。

  五、小结

  教师:请同学们说说正比例和反比例关系有什么相同点和不同点?

《比例的意义》教案4

  教学内容

  教科书第48~50页例1、例2,课堂活动及练习十一1,2题。

  教学目标

  1.理解比例的意义,认识比例各部分的名称。

  2.让学生经历探讨两内项之积等于两外项之积的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质,判断两个比能否组成比例,会组比例。

  3.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

  教学重点

  理解比例的意义和基本性质。

  教学难点

  应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学准备

  课件,扑克牌10张(2~10以及A),圆规一个。

  教学过程

  一、复习准备

  (1)一辆汽车4时行160 km,路程和时间的比是多少?这个比表示什么?

  (2)求下面各比的比值,你发现了什么?

  12∶16 34∶18 4.5∶2.7 10∶6

  教师:同学们发现4.5∶2.7和10∶6的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。

  二、探究新知

  1.提出问题

  这节课我们在比的知识基础上,进一步学习新知识。

  揭示课题--比例的意义和基本性质。板书:比例的意义和基本性质

  2.探究比例的意义

  课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:

  竹竿长26

  影子长39

  教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。

  学生讨论并写出比,完成后抽几个学生的作业在视频展示台上展示,教师选几个有代表性的比在黑板上板书。

  教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。

  学生口答,教师板书:3∶2=9∶6,6∶2=9∶332=96,62=93

  教师:这些都是比例。你能用自己的语言说一说什么是比例吗?

  引导学生用自己的语言归纳比例的意义。(板书:比例的意义)

  教师:2∶9和3∶6能组成比例吗?你是怎么知道的?

  指导学生说出判断两个比能不能组成比例,要看他们的比值是否相等。再判断2∶5和80∶200能否组成比例?并说明理由。

  组织并指导学生完成书上第50页的课堂活动。

  3.认识比例的各部分

  教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。

  指导学生看书后汇报。

  教师:请同学们分别找出3∶2=9∶6和6/2=9/3的内项和外项。

  学生找出后,随学生的汇报教师板书:

  要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。

  4.教学比例的基本性质

  教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?

  学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?

  教师:同学们通过多个比例的.探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?

  指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。

  5.运用比例的基本性质判断两个比是否能组成比例

  教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0.4∶25能否和1.2∶75组成比例?为什么?

  学生讨论后回答:因为0.475=251.2,所以0.4∶25和1.2∶75能组成比例。

  三、巩固提高

  (1)说一说比和比例有什么区别。

  讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。

  (2)在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()()=()()。

  (3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。2,3,4和6

  四、全课总结

  先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

  五、课堂作业

  (1)指导学生完成练习十一的第1题。

  要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。

  (2)学生独立完成练习十一的第2题,教师订正。

《比例的意义》教案5

  教学内容:比例的意义、基本性质,比例各部分名称,组比例。

  教学目标:

  1. 使学生理解比例的意义,认识比例各部分的名称。

  2. 能运用比例的意义判断两个比能否组成比例,并会组比例。理解并掌握比例的基本性质。

  教学重点:比例的意义和基本性质。

  教学难点:理解比例的基本性质。

  教学过程:

  一、 复习

  1、 提问:什么是比?一辆汽车4小时行160千米,说出路程和时间的比。

  2、 求下面各比的比值,哪些比的比值相等?

  12:16 : 4.5:2.7 10:6

  二、 新授

  提示课题:这节课我们在过去学过比的知识的基础上,学一个的知识:比例的意义和基本性质。

  1、 比例的意义

  出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

  时间(时) 2 5

  路程(千米) 80 200

  从上不中可以看到,这辆汽车:

  第一次所行台的路程和时间的比是____;

  第二次所行驶的路程和时间的'比是____;

  这两个比的比值各是多少?它们有什么关系?

  (1) 根据学生回答,师板书结果后,师指出:这两个比的比值都是40,所以这两个比是相等的,可以用等号将两个比连起来写成下面的等式。

  板书:80:2=200:5 或 =

  师:这样的式子,我们给它一个名字叫做比例。

  (2) 口答

  A、把复习第2题中两个比值相等的比用等号连起来。

  B、用等号连接起来的式子叫做什么?

  C、根据刚才的回答,你能说出什么叫比例吗?

  (3) 小结。

  A、表示两个比相等的式子叫做比例,两个比的比值相等也就是这两个比相等。

  B、要判断两个比能否组成比例,可以看这两个比的比值是否相等。比值相等的两个比可以组成比例,比值不相等的两个比就不能组成比例。

  (4) 练习,课本第10页做一做。

  2、 比例的基本性质。

  (1) 比例各部分的名称。

  引导学生观察黑板上的例题:80:2=200:5

  并自学课本

  提问:什么叫做比例的项?什么叫前项?什么叫后项?什么叫内项?什么叫外项?这四项分别在等号的什么位置?

  (2) 说出下面各比例的外项和内项?

  6:10=9:15 8:3=3.2:1.2 1/3:1/6=16:8

  (3) 计算:上面比例中的外项积与内项积。

  (4) 引导学生观察每个比例中的计算结果,发现这两个乘积有怎样的关系?

  师:想一想,如果把比例写成分数形式,等号两端的分子分母交叉相乘的积有什么关系?

  (5)你能得出什么结论?

  三、 巩固练习

  1、 完成第2页的做一做。

  2、 完成第3页的做一做第1题。

  四、 总结

  1、 比例的意义和基本性质是什么?

  2、 怎样判断两个比能否组成比例?

  五、 作业

  1、 完成练习四的第1-3题。

《比例的意义》教案6

  教学要求:

  1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

  2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

  教学重点:

  认识反比例关系的意义。

  教学难点:

  掌握成反比例量的变化规律及其特征。

  教学过程:

  一、铺垫孕伏:

  1.正比例关系的意义是什么?怎样用字母表示这种关系?

  判断两种相关联量成不成正比例的关键是什么?

  2.下面哪两种量成正比例关系?为什么?

  (1)时间一定,行驶的速度和路程。

  (2)数量一定,单价和总价。

  3.说一说工作效率、工作时间和工作总量之间的数量关系。(学生回答后老师板书)在什么条件下,其中两种量成正比例?

  4.引入新课。

  如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)

  二、自主探究:

  1.教学例1。

  出示例1某运输公司要运一批300吨的货物。让学生计算并完成填表任务。

  每天运的数量(吨) 10 20 30 40 50

  所需的天数 30 15 10 7.5

  在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的'方法观察表里内容,相互之间讨论,发现了什么。

  指名学生口答 讨论结果得出:

  (1)每天运的吨数和需要的天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。

  (2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。

  (3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是300。提问:这里的300是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)

  2.教学例2

  出示例2

  请同学们按照刚才学习例1的方法,自己学习例2,仔细想想你发现了些什么?学生观察思考后,小组讨论:长方形的面积不变,当长发生变化时,长方形的宽发生变化吗?变化的规律是怎样的?

  3.概括反比例的意义。

  (1)综合例1、例2的共同点。

  提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?

  (2)概括反比例意义。

  例1、例2里两种相关联的量,它们是什么关系的量呢?说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。

  4.具体认识。

  (1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,

  例2里的两种量成反比例关系吗?为什么?

  (2)提问:看两种相关联的量成不成反比例,关键要看什么?

  (3) 判断。

  现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,那它们就是成反比例的量,相互之间的关系就是反比例关系。

《比例的意义》教案7

  教学过程:

一、揭示课题

  提问;我们这一单元学习了什么内容?

  说明:我们已经学习了比例的知识,这节课复习比例的意义和性质以及比例

  二、整理比和比例的意义

  (1)提问:什么叫做比?请举一个比的例子?(两个数相除又叫做两个数的比)

  (2)提问:什么叫做比例?请举一个比例的例子?(表示两个比相等的式子叫做比例)

  比和比例有什么不同?(比表示两个数的关系,比例表示两个比的相等的关系)

  (3)比的基本性质是什么?比例的基本性质是什么?

  比

  比例

  意义

  两个数相除又叫做两个数的比

  表示两个比相等的式子叫做比例

  各部分名称

  基本性质

  比的前项和后项都乘以或除以相同的数(0除外),比值不变。例如:3:4=12:16

  两个内项的积等于两个外项的积。例如:3:4=9:12

  4×9=3×12

  2、练习

  (1)下面每组里两个比能不能组成比例?为什么?

  1:2和2.5:5(2.5:5=1:2成比例)

  1.2:0.3和6:1.5(1.2:0.3=4:16:1.5=4:1成比例)

  3:1/3和2:1/2(不成比例)

  小结:判断两组比是否成比例,我们可以分别求比值,比较比值是否相等;还可以根据比例的性质:两个内项的积和两个外项的积相等来判断。

  3、解比例

  75:16=25:XX/8=0.3/2X:5/12=60:103/4:1/10=X/12

  小结:解整数和小数的比例,先约分再移项计算;解分数的比例先移项后约分

  4、复习比例尺

  提问:什么叫做比例尺?(把图上距离和实际距离的比叫做这幅图的比例尺)

  板书:图上距离:实际距离=比例尺

  图上距离/实际距离=比例尺

  (1)说说下面各比例尺的意义

  1:40001/360

  (2)求比例尺

  在某城市的旅游图上,用15厘米表示实际距离60千米,这幅图的比例尺是多少?

  60千米=60000000厘米15/6000000=1/400000

  在电子显微镜拍摄的'细胞照片上量得一细胞长1.5厘米,已知该细胞实际长0.5毫米,求这幅照片的比例尺是多少?

  1.5厘米=15毫米15:0.5=30:1

  (5)比例尺是1:3000的平面图上,量得一座大桥的长度是7厘米,这座大桥的实际长度是多少米?

  倍数解:7×3000=21000厘米=210米

  解比例:7/X=1/3000X=2100021000厘米=210米(学生不讲可以不提)

  板书:实际距离=图上距离÷比例尺7÷1/3000=21000厘米

  (6)在比例尺200:1的手表图纸上,量得一个圆形零件的直径为3厘米,求该零件的实际直径是多少毫米?

  3÷200/1=0.015厘米=0.15毫米

  (7)从北京到上海实际距离大约是1050千米,画在1:25000000的地图上,应画多少厘米?

  1050千米=105000000厘米

  板书:图上距离=实际距离×比例尺105000000×1/25000000=4.2厘米

  用解比例:X/105000000=1/25000000X=4.2

  (8)一手机实际长10厘米,在比例尺30:1的该手机海报上,手机长多少米?

  10×30/1=300厘米=3米

  (9)一幅地图上比例尺如下:

  ①换成数值比例尺怎样表示?

  ②量得杭州到北京的距离为10厘米,求杭州到北京的实际距离是多少?10×150

  ③北京到上海的距离是1050千米,在这幅地图上该画多少厘米?1050÷150

  三、巩固提高

  (10)一块操场实际长200米,图上量得该操场长5厘米,宽3厘米,求该幅图的比例尺是多少?这块操场的实际面积是多少?

  比例尺:1/4000

  面积:3÷1/4000=12000厘米=120米120×200=24000平方米

  (11)在比例尺1:1000的图上量得一座大桥长14厘米,那么在比例尺是1:500的图上该桥长多少厘米?

  14÷1/1000=14000厘米

  14000×1/500=28厘米

  四、完成复习第1题

  五、作业

  P552、3

《比例的意义》教案8

  教学目标:

  1、学生根据具体情境教学,结合实例认识正比例,理解正比例的意义,正比例的意义教学设计。

  2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

  3、结合丰富的事例,认识正比例,体会数学源于生活,进一步提高学习兴趣。教学重点:

  结合丰富的事例,认识正比例。能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学难点:

  能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学关键:

  理解成正比例的两个量的意义。

  教学过程:

  一、复习准备:

  口答

  1、已知路程和时间,怎样求速度?

  2、已知总价和数量,怎样求单价?

  3、已知工作总量和工作时间,怎样求工作效率?

  二、数学活动。在学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

  活动一:在情境中感受两种相关联的量之间的变化规律。

  (一)情境一:

  课件出示:

  1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考讨论,教案《正比例的意义教学设计》。正方形的面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?说说从数据中发现了什么?

  3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是一定的。

  特点是:

  ①两种相关联的量

  ②一种量扩大(或缩小)另一种量也扩大(或缩小)

  ③两种量中相对应的两个量的比的比值是一定的。

  4、正方形的面积与边长的比是边长,是一个不确定的值。

  学生在小组内练说发现的规律,初步感知正比例的判定。

  (二)情境二:

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

  2、请把下表填写完整。3、从表中你发现了什么规律?说说你发现的规律:路程与时间的比值(速度)相同。

  (三)情境三:1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2、把表填写完整。3、从表中发现了什么规律?应付的钱数与质量的比值(也就是单价)相同。

  3、说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,应付的钱数与质量的比值相同。

  4、正比例关系:观察思考成正比例的量有什么特征?

  小结:

  (1)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们今天要学习的内容。

  追问:判断两种相关联的量成不成正比例的关键是什么?(比值是不是一定)

  (2)字母表达关系式。

  如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?=k(一定)

  (3)质疑。

  师:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?

  三、巩固练习

  (一)想一想:请生用自己的语言说一说。与同桌交流,再集体汇报

  1、正方形的'周长与边长成正比例吗?面积与边长呢?为什么?

  2、根据小明和爸爸的年龄变化情况

  把表填写完整。父子的年龄成正比例吗?为什么?

  (二):练一练。教师适度点拨引导,强调正比例关系判断的关键。先自己独立完成,然后集体订正,说理由。

  1、判断下面各题中的两个量,是否成正比例,并说明理由。

  (1)每袋大米的质量一定,大米的总质量和袋数。

  (2)一个人的身高和年龄。

  (3)宽不变,长方形的周长与长。

  2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。

  3、买邮票的枚数与应付的钱数成正比例吗?填写表格。先填写表格,再说明理由

  4、画一画,你会有新的发现。

  彩带每米4元,购买2米、3米…彩带分别需要多少钱?

  ①填一填:(长度:米,价格:元)

  ②画一画,把上表中长度和价钱对应的点描在坐标纸上,再顺次连接起来。看发现了什么?

  板书:

  正比例的意义

  ①两种相关联的量

  ②一种量扩大(或缩小)另一种量也扩大(或缩小)

  ③两种量中相对应的两个量的比的比值是一定的

  路程÷时间=速度(一定)总价÷数量=单价(一定)

  =k(一定)

《比例的意义》教案9

  教学内容:

  《反比例的意义》是六年制小学数学(北师版)第十二册第二单元中的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。

  学生分析:

  在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。

  教学目标:

  1、知识与技能目标:使学生认识成反比例的量,理解反比例的意义,并学会判断两种相关联的量是否成反比例。进一步培养学生观察、学析、综合和概括等能力。初步渗透函数思想。

  2、过程与方法:为学生营造一个经历知识产生过程的情境。

  3、情感与态度目标:使学生在自主探索与合作交流中体验成功的乐趣,进一步增强学好数学的信心。

  教学重点:理解反比例的意义。

  教学难点:两种相关联的量的变化规律。

  教学准备:学生准备:复习正比例关系,预习本节内容。

  教师准备:投影片3张,每张有例题一个。

  教学过程设计:

  一、谈话引入,激发兴趣。

  1、谈话:通过最近一段时间的观察,我发现同学们越来越聪明了,会学数学了,这是因为同学们掌握了一定的数学学习的基本方法。下面请回想一下,我们是怎样学习成正比例的.量的?这节课我们用同样的学习方法来研究比例的另外一个规律。

  2、导入:在实际生活中,存在着许多相关联的量,这些相关联的量之间有的是成正比例关系,有的成其他形式的关系,让我们一起来探究下面的问题。

  二、创设情景引新:

  (出示:十二个小方块)

  师:同学们,这十二个小方块有几种排法?

  (生答后,老师板书下表的排列过程)

  每行个数1234612

  行数1264321

  师:请你观察上表中每行个数与行数成正比例关系吗?为什么?

  生:……

  师:这两种量这间有关系吗?有什么关系?这就是我们今天要研究的内容。

  (出示课题:反比例的意义)

  三、合作自学探知

  1、学习例4。

  (1)出示例4。

  师:请同学们在小组内互相交流,并围绕这三个问题进行讨论,再选出一位组员作代表进行汇报。

  A、表中有哪两种量?

  B、怎样随着每小时加工的数量变化?

  c、每两个相对应的数的乘积各是多少?

  学生讨论……

  生反馈:……

  师:能不能举出三个例子

  生:1020=6002030=6003020=600……

  师:这里的600是什么数量?你能说出这里的数量关系式吗?

  生:……

  [板书出示:每小时加工数加工时间=零件总数(一定)]

  2、自学例5:

  (1)出示例5:

  师:先请同学们按要求在书上填空,并说说是怎样算的?根据什么?

  生:……

  师:模仿例4的方法,提出三个问题自己学习例5(出示三个问题)

  生:……

  3、讨论准备题:

  (1)请你根据例4的方法,四人小组内说一说。

  (2)请你举例说明表中每行个数与行数是什么关系?为什么?

  四、比较感知特征

  综合例4、例5、准备题的共同点师:比较一下例4、例5和准备题,请同学们在小组中讨论一下,互相说说这三个题目有什么共同的特征?

  生:……

  五、引导概括意义

  1、概括反比例意义。

  学生在说相同点时老师边引导边说明。当学生说出三个特征后,教师板书这三个特征。

  师:请同学们根据我们上节课学的正比例的意义猜测一下,符合三个特征的二个量叫做成什么量?相互这间成什么关系?

  生:……

  师:请阅读课本第十六页,同桌互相说说怎样的两个量成反比例关系。

  学生互相练习……

  师:哪位同学来告诉大家,两种量如果成反比例必须符合哪三个条件?

  生:……

  师:例4、例5和准备题中的两种量成不成反比例?为什么?

  生:……(学生回答后,老师及时纠正)

  师:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?

  生:……[板书出示y=k(一定)]

  2、教学例6。

  (1)课件出示例6。

  (学生读题、思考)

  师:怎样判断两种量成不成反比例?

  师:哪位同学说说,每天播种的公顷数和要用的天数是不是成反比例?为什么?

  生:因为每天播种的公顷数要用的天数=播种的总公顷数(一定),所以每天播种的公顷数和要用的天数是成反比例的量。

  六、小结:这节课同学们学到了哪些知识?运用了哪些学习方法?还有哪些不懂的问题?

  [案例分析]:

  通过联系生活实际,学习成反比例的量,体会数学与生活的紧密联系。不对研究的过程做详细的引导和说明,只提供研究的素材和数据,出示关键性的结论,充分发挥学生的主动性,以体现自主探究、合作交流的学习过程,获得学习成功的体验。通过引导学生观察、分析、比较、归纳,形成良好的思维习惯和思维品质。同时加深学生对数量关系的认识,渗透函数思想,为中学的数学学习做好知识准备。学习方式的转变是新课改的显著特征,就是把学习过程中的分析、发现、探究、创新等认识活动凸显出来。在设计《反比例的意义》时,根据学生的知识水平,对教学内容进行处理,克服教材的局限性,最大限度地拓宽探究学习的空间,提供自主学习的机会。

《比例的意义》教案10

  教学过程:

  一、复习铺垫

  1、下面两种量是不是成正比例?为什么?

  购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本。

  2、成正比例的量有什么特征?

  二、探究新知

  1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征成反比例的量。

  2、教学P42例3。

  (1)引导学生观察上表内数据,然后回答下面问题:

  A、表中有哪两种量?这两种量相关联吗?为什么?

  B、水的高度是否随着底面积的变化而变化?怎样变化的?

  C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?

  D、这个积表示什么?写出表示它们之间的数量关系式

  (2)从中你发现了什么?这与复习题相比有什么不同?

  A、学生讨论交流。

  B、引导学生回答:

  (3)教师引导学生明确:因为水的体积一定,所以水的'高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

  (4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:xy=k(一定)

  三、巩固练习

  1、想一想:成反比例的量应具备什么条件?

  2、判断下面每题中的两个量是不是成反比例,并说明理由。

  (1)路程一定,速度和时间。

  (2)小明从家到学校,每分走的速度和所需时间。

  (3)平行四边形面积一定,底和高。

  (4)小林做10道数学题,已做的题和没有做的题。

  (5)小明拿一些钱买铅笔,单价和购买的数量。

  (6)你能举一个反比例的例子吗?

  四、全课小节

  这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。

  五、课堂练习

  P45~46练习七第6~11题。

  教学目的:

  1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。

  2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。

  3、初步渗透函数思想。

  教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式。

  教学难点:利用反比例的意义,正确判断两个量是否成反比例。

《比例的意义》教案11

  教学目的:

  1.理解和掌握比例的意义和基本性质,认识比例的各部分名称。

  2.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  3.使学生进一步受到“实践出真知”的辩证唯物主义观点的启蒙教育。

  教学重点:

  理解比例的意义和基本性质。

  教学难点:

  应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学关键:

  观察众多的实例,概括出比例意义的过程;找出在比例里两个内项的积与两个外项的积相等的规律。

  教具:CAI课件(载有:祖国各地风景图片及祖国地图、生物细胞等画面,学生活动内容、练习题等)。

  学具:每小组两张“合作学习内容指导”。

  教学过程:

  一、谈话导入,创设情境

  (一)教师出示CAI课件,结合画面谈话引入。

  师:同学们看了我们祖国各地的风景图片,美吗?我们的祖国方圆xxx万平方公里,幅员之辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

  教师板书课题:比例的意义和基本性质。

  (二)让学生完成教材第9页复习题,根据学生回答教师板书:10:6=4.5:2.7。

  [评:借助现代电教媒体,用形象、直观的例子,来激发学生的求知欲望,让学生在跃跃欲试的情绪下进入新课的学习。同时也培养了学生爱祖国、爱科学的情感。]

  二、自主探究,学习新知

  (一)教学比例的意义

  1.合作互动,探求共性。

  先让学生在小组活动中完成“活动内容1”。

  活动内容1:

  项目第一次第二次时间(时)25路程(千米)80200①根据表中给出的数量写有意义的.比。

  ②观察写出的比,哪些比能用等号连接,为什么?

  ③根据比与分数的关系,这样的式子还可以怎样写?

  然后让学生汇报活动情况。结合学生回答,教师任意板书几个比例式。(如80:2=200:5,=,2:5=80:200,5:200=2:80……)并指出这些式子就是比例。

  2.抽象概括,及时巩固。

  (l)教师指导学生观察以上比例式,概括出共性。

  (2)让学生用自己的语言描述比例的意义。并板书:表示两个比相等的式子叫做比例。

  (3)完成第10页“做一做”,并说明理由。

  (4)让学生自己举出两个比例,并说明理由。

  [评:教师拓展了教材例1内容,让学生在众多的比当中找出相等的比,从而认识比例的共性,再由学生抽象概括出比例的意义,并及时进行巩固训练。既体现了任何科学知识都是通过研究大量的实例的基础上得出的,又充分发挥了学生的主体作用,培养了学生的语言表达能力。]

  (二)教学比例的基本性质。

  1.认识比例各部分名称。

  (l)让学生查阅教材,认识比例各部分的名称。根据学生汇报,教师板书:“内项”、“外项”。

  (2)让学生观察自己刚才举的比例,找出它的内项、外项。

  (3)引导学生观察把比例写成分数形式,比例的外项和内项的位置又是怎样的?教师板书:

  2.引导学生发现比例的基本性质。

  (1)让学生小组活动完成以下活动内容2:

  活动内容2:

  ①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

  ②如果把比例写成分数形式,是否也有如上面发现的规律?

  ③是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

  ④通过以上研究,你发现了什么?

  (2)学生汇报活动情况,认识到任何比例的两个内项的积与两个外项的积都存在相等的关系。

  (3)指导学生概括出比例的基本性质,并完成板书。

  [评:以上比例的意义和基本性质的教学设计,都把知识的探究过程留给了学生。问题让学生去发现,共性让学生去探索,充分尊重学生主体。将学习内容“大板块”交给学生,体现了学习的自主性和主动性,有利于探究和创新意识的培养。]

  三、分层练习,辨析理解

  1.完成练习四第1题区别比与比例。

  2.先让学生解答第11页“做一做”第l题,然后引导学生小结:判断两个比能否组成比例,不仅可以应用比例的意义,而且可以应用比例的基本性质。

  3.完成练习四第2题。

  4.下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。

  2、3、4和6

  [评:设计有层次的练习,让学生掌握正确组成比例的思路和方法,使各种层次的学生思维都得到发展,从而加深了对知识的理解和掌握。]

  四、全课总结

  先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

《比例的意义》教案12

  素质教育目标

  (一)知识教学点

  1.使学生理解正比例的意义。

  2.能根据正比例的意义判断两种量是不是成正比例。

  (二)能力训练点

  1.培养学生用发展变化的观点来分析问题的能力。

  2.培养学生抽象概括能力和分析判断能力。

  (三)德育渗透点

  1.通过引导学生用发展变化的观点来分析问题,使学生进一步受到辩证唯物主义观点的启蒙教育。

  2.进一步渗透函数思想。

  教学重点:使学生理解正比例的意义。

  教学难点:引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念。

  教具学具准备:投影仪、投影片、小黑板。

  教学步骤

  一、铺垫孕伏

  用投影逐一出示下列题目,请同学回答:

  1.已知路程和时间,怎样求速度?

  2.已知总价和数量,怎样求单价?

  3.已知工作总量和工作时间,怎样求工作效率?

  二、探究新知

  1.导入新课:这些都是我们已经学过的常见的数量关系。这节课,我们继续研究这些数量关系中的一些特征。

  2.教学例1

  (1)投影出示:一列火车1小时行驶60千米,2小时行驶120千米,3小时行驶180千米,4小时行驶240千米,5小时行驶300千米,6小时行驶360千米,7小时行驶420千米,8小时行驶480千米……

  (2)出示下表,并根据上述内容填表。

  一列火车行驶的时间和所行的路程如下表

  (3)边填表边思考:在填表过程中,你发现了什么?

  学生交流时,使之明确。

  ①表中有时间和路程两种量。

  ②当时间是1小时,路程则是60千米,时间是2小时,路程是120千米……时间变化,路程也随着变化,时间扩大,路程随着扩大;时间缩小,路程也随着缩小。

  教师点拨:

  像这样,时间变化,路程也随着变化,我们就说,时间和路程是两种相关联的量。(板书:两种相关联的量)

  ③如果学生没有问题,教师提示:请每位同学任选一组相对应的数据,计算出路程与时间的比的比值。

  教师问:根据计算,你发现了什么?

  引导学生得出:相对应的两个数的比值都是60或都一样,固定不变等。

  教师指出:相对应的两个数的.比的比值都一样或固定不变,在数学上叫做“一定”。(板书:相对应的两个数的比值一定)

  ④比值60,实际就是火车的速度。用式子表示它们的关系就是:

  (4)教师小结:

  刚才同学们通过填表、交流,我们知道时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。

  3.教学例2

  (1)出示例2:在一间布店的柜台上,有一张写着某种花布的米数和总价的表。

  (2)观察上表,引导学生明确:

  ①表中有数量(米数)和总价这两种量,它们是两种相关联的量。

  ②总价随米数的变化情况是:

  米数扩大,总价随着扩大;米数缩小,总价也随着缩小。

  ③相对应的总价和米数的比的比值是一定的。

  ④比值3.1,实际就是这种花布的单价。用式子表示它们的关系就是:

  (3)师生小结:通过刚才的观察和分析,我们知道总价和米数也是两种什么样的量?(两种相关联的量)为什么?(总价随着米数的变化而变化。)怎样变化?(米数扩大,总价随着扩大;米数缩小,总价随着缩小。)它们扩大、缩小的规律是怎样的?(总价和米数的比的比值总是一定的。)

  4.抽象概括正比例的意义。

  (1)比较例1、例2,思考并讨论,这两个例子有什么共同点?

  (2)学生初步交流时引导学生明确:

  ①例1中有路程和时间两种量;例2中有米数和总价两种量。即它们都有两种相关联的量;

  ②例1中时间变化,路程就随着变化;例2中米数变化,总价也随着变化。

  教师点拨:像这样,我们就可以说:一种量变化,另一种量也随着变化。(板书)

  ③例1中路程与时间的比的比值一定:例2中总价与米数的比的比值一定。概括地讲就是:两种量中相对应的两个数的比值(也就是商)一定。

  (学生答不出来时,教师引导、点拨,并补充板书:两种量中)

  (3)引导学生抽象概括出两例的共同点:

  两种相关联的量,一种量变化,另一种量也随着变化,这两种量中相对应的两个数的比值(也就是商)一定。

  (4)教师指明:两种相关联的量,一种变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  (补充板书:如果这成正比例的量正比例关系)

  这就是我们这节课学习的“正比例的意义”(板书课题)

  (5)看书19、20页的内容,进一步理解正比例的意义。

  (6)教师说明:在例1中,路程随着时间的变化而变化,它们的比的比值(速度)保持一定,所以路程和时间是成正比例的量。

  (7)想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?

  (8)教师提出:如果字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

  (9)教师提出:根据正比例的意义以及表示正比例关系的式子想一想:构成正比例关系的两种量必须具备哪些条件?

  5.教学例3

  (1)出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

  (2)根据正比例的意义,由学生讨论解答。

  (3)汇报判断结果,并说明判断的根据。

  教师板书:

  面粉的总重量和袋数是两种相关联的量。

  所以面粉的总重量和袋数成正比例。

  6.反馈练习

  让学生试做第21页的做一做,并订正。

  三、巩固发展

  1.完成练习三第1题。

  先想一想成正比例的量要满足哪几个条件?再算出各表相对应数的比的比值。如果相等,列关系式判断。第(3)题不成比例,订正时要学生说明为什么?

  2.完成练习三第2题的(1)-(9)

  先让学生自己判断,再订正。

  四、全课小结(师生共同进行)

  通过这节课的学习,你都知道了什么?怎样判断两种量是否成正比例?

《比例的意义》教案13

  教学内容:P55第1—3题,复习比例的意义和性质。

  教学目的:进一步认识比和比例的意义,性质及相关概念,能比较熟练地应用相应的概念求比值,化简比和解比例,并解相应的能实际应用,培养学生比较、分析、判断等思维能力。

  教学过程:

  一、揭示课题

  二、整理比例的有关概念。

  1、整理比和比例的意义。

  什么叫比?举例说明。

  什么叫比例?也举例说明。

  2、从它们的意义,你能说出它们的联系吗?它们有什么区别?

  评讲:说说比值是怎么得到的?

  3、组织练习:(口答)

  (1)下面的比各表示什么意思?

  白兔和黑兔只数的`比是7:9

  科技书与文艺书本数的比3:5

  (2)求下列比的比值

  6:1.5

  (3)下面每组里两个比能不能组成比例?为什么?

  1:2和2.5:5

  1.2:0.3和6:1.5

  4、复习比例的基本性质

  比例:基本性质是什么?与比的基本性质相同吗?为什么?

  比、比例意义:

  两个数相除又叫做两个数的比。表示两个比相等的式子叫比例。

  各部分名称前项后项比值3:4=9:12内项外项

  基本性质比的前项和后项都乘以或除以相同的数(零除外),比值不变

  评讲:根据作业情况作评讲。

  三、课堂小结:

  这节课主要复习了什么内容?你这一课掌握了些什么?

  四、课堂作业

  复习第2、3题。

《比例的意义》教案14

  教学目标:

  1、使学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别,能应用比例的意义和比例的基本性质判断两个比能否组成比例。

  2、激发学生的学习兴趣,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  教学重点:

  理解比例的意义基本性质。

  教学难点:

  应用比例的意义和性质判断两个比是否成比例。

  教学过程

  一、导入新课

  1、什么叫比?

  2、求出下面各比的比值(小黑板)

  12:16 1/4:1/3 和9:12 4.5:2.7 10:6

  二、教学新课

  1、教学比例的意义

  (1)出示例1:同学们能写出多少个有意义的比?观察这些比,哪此能用等号连接?把能用等号连接的比用等号连接起来。这些式子都是比例,你能用自己的语言说一说什么是比例吗?

  (2)归纳比例的意义

  (3)2:5和80:200能组成比例吗?你是怎样判断的?

  (4)完成第45页“做一做”

  2、教学比例的基本性质

  (1)在一个比例里,有四个数,这四个数分别叫什么名字?

  (2)请同们分别找出80:2=200:5和2分之80=5分之200的内项和外项。

  (3)你们任意找一个比例,把它们的内项和外项分别乘起来,双可以发现什么?

  (4)指导学生归纳后,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  (5)指导学生完成第一46页“做一做”第1题。

  三、巩固练习

  四、课堂小结

  这节课你学到了哪些知识?

  创意作业:

  有一房间,窗子的长是6分米,宽是4分米;门的长和宽分别是21分米和14分米,你能用已知的四个数组成多少个比例?比一比哪个同学组成的多。

  x

  教学内容:

  比例的意义和基本性质 (省义务教材第十二册)

  教学目标:

  1、理解和掌握比例的意义和基本性质,认识比例的各部分的名称,体会数学的规律美。

  2、利用比例知识解决实际问题。

  3、培养学生自主参与的意识、主动探究的精神,激发学生的审美愉悦。培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  教学过程:

  一、 谈话导入,创设情境:

  出示CAI课件(一张微型照片)。你能看出这是杭州哪一个景点的照片?的确,照片太小了,那现在老师将这张照片按一定比例放大一些,。由此出现一张平湖秋月的风景照。【诱发审美注意】

  我们的.祖国方圆960万平方公里,幅员辽阔却能在一张小小的地图上清晰可见各地位置。建筑设计师可将滨江四区的设计构想展示在一张纸上。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

  二、 自主探究,学习新知

  (一) 教学比例的意义

  1、 8厘米

  出示

  6厘米

  4厘米

  3厘米

  (1)根据表中给出的数量写出有意义的比。

  (2)哪些比是相关联的?

  (3)根据以往经验,可将相等的两个比怎样?(用等号连接)

  教师并指出这些式子就是比例。

  2、 让学生任意写出比例,并让学生用自己的语言描述比例的意义。

  3、 教师板书:表示两个比相等的式子叫做比例。比例也可用分数形式表示。

  4、 写出比值是1/3的两个比,并组成比例。

  (二) 教学比例的基本性质

  1、 比例和比有什么区别?

  2、 认识比例的各部分

  (1)让学生自己取。

  (2)组成比例的四个数叫做比例的项,两端的两项叫做比例的

  外项,中间的两项叫做比例的内项。

  板书: 8 : 6 = 4 : 3

  内 项

  外 项

  (3)让学生找出自己举的比例的内外项。

  ( )

  12

  2

  ( )

  =

  (4)找出分数形式比例的内外项位置又是怎样的?

  3、 出示 【启迪学生思维,展开审美想象】

  (1) 这个比例已知的是哪两项,要求的又是哪两项?学生试填。

  (2) 学生反馈,教师板书。

  (3) 你发现了什么?

  (4) 指导学生概括出比例的基本性质,并板书:在比例里,两个外项之积等于两个内项之积。

  4、 用比例性质验证你所写比例是否正确。

  5、练习 8 : 12 = X : 45

  0.5

  X

  20

  32

  =

  求比例中的未知项,叫做解比例。

  如何证明你的解是正确的?

  (三) 小结:今天这堂课你有什么收获?

  三、 巩固练习

  1、下面哪几组中的两个比可以组成比例。

  4

  1

  12 : 24 和18 : 36

  0.4 : 和0.4 : 0.15

  14 : 8 和7 : 4

  5

  2

  2、根据18 x 2 = 9 x 4 写出比例。【体会到数学的逻辑美,规律美】

  3、从1 、8、0.6、3、7五个数中

  (1) 选出四个数,组成比例。

  (2) 任意选出3个数,再配上另一个数,组成比例。

  (3) 用所学知识进行检验。

  四、 实际应用

  不久前,汪骏强家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的小明又拉着汪骏强来到铁塔下,玩着玩着,小明问道:“强强哥哥,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”

  同学们,如果你是汪骏强,你准备怎么办?

  执教者 方 艳

《比例的意义》教案15

  教学目的:

  1.理解和掌握比例的意义和基本性质,认识比例的各部分名称。

  2.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  3.使学生进一步受到“实践出真知”的辩证唯物主义观点的启蒙教育。

  教学重点:

  理解比例的意义和基本性质。

  教学难点:

  应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

  教具:CAI课件

  学具:每小组两张“合作学习内容指导”。

  教学过程:

  一、导入

  同学们,今天我们的数学课上老师给大家带来了有很多有趣的数学问题,你们有没有兴趣试试呢?

  二、复习准备

  (一)师:先请你们解决两个问题

  〔出示〕:

  师:⑴谁买的本子便宜些,能简单地说说你的道理吗?

  ⑵还可以用别的形式表示吗?

  师:这两个比可以用一个什么符号将它们连起来?

  1.5:3=2.5:5

  师:能用比来表示吗?也能用“=”连起来吗?

  3、3月10日下午2点,学校8米高的旗杆影子长5米,旁边一棵高120厘米的香樟树影子长75厘米。说出旗杆和香樟树与各自影长的比。

  8:5;120:75

  师:老师也想用一个等号把它们连起来,行吗?为什么?

  三、新授

  (一)得出比例的意义

  1.5:3=2.5:5

  8:5=120:75

  像这两个式子,我们都给它们一个新名字──比例。那么你认为什么是比例呢?

  2、得出结论:两个比相等的式子叫做比例。

  3、试一试

  下面老师就请你来试一试

  ⑴请找出合适的比,组成比例

  5:8 1.5:2.4 10:5 3:2

  ⑵10:5和3:2,为什么这两个比不能组成比例?

  ⑶那么就请你想个办法给10:5找个朋友,组成比例。

  ⑷反馈:你能向大家都介绍一下用什么方法找到的吗?

  师:〔问全体〕你们找的和他一样吗?

  想一想:这样的朋友可以找几个?…

  你认为这无数个朋友的共同特点是什么?

  师小结:所以如果判断两个比能否组成比例,最关键就是看它们的比值是不是相等。(板书课题:比例的意义)

  (二)比例的基本性质

  1、比例各部分的名称

  ⑴师:我们已经知道,比中两个数分别叫它们前项和后项。今天我们学的比例中的四个数也有新名字,我们看看课本62页是怎样给他们取名的?

  ⑵认识比例中各部分的名称了吗?老师就请你介绍一下

  在8:5=120:75,1.5:3=2.5:5中,内项外项分别是谁?

  2、比例中的内项和外项还有一个有趣的规律,请大家直接告诉我:8:5=120:75,这个比例中,两个外项的积是多少?两个内项的积是多少?结果怎么样?

  3、从这个比例中,你可以知道什么?

  4、查一查你写的比例中有没有这个有趣的现象呢?

  5、今天这些比例中都有这样的规律,大家查出来了吗?我们把它叫做比例的基本性质。

  6、师:今天这节课,你们学到了什么?

  四、小游戏

  (一)1、师:下面我们轻松一下,由你出题考老师,规则这样:

  请你说出10以内4个不同的自然数,看老师能不能马上告诉你,它们是否能组成比例?(二生报数)

  师:你们知道我的秘诀在哪儿吗?

  2、现在轮到我考你:

  4,3,6,8 5,6,4,7

  师:你是怎么知道4、3、6、8可以组成比例的?

  3、请你独立用4、3、6、8写比例,然后小组交流讨论,把最好的方法推荐给大家。

  4、既然5、9、3、7不能组成比例,你能想个办法找个新数来组成比例吗?

  ⑴反馈

  你是怎样找到这个新数的?

  ⑵老师也有一种方法,不知道是否行得通?

  假如我把3改成新数x,这时就可以写个比例9:7=5:x 。

  只要求出x的值,就知道新的数是几了,比例也就写出来了。

  ⑶利用这四个数的数,你还能写个比例吗?

  9:7=5:x 9:5=x:7

  ⑷想办法把x的值写出来,大家都试一试

  ①全体练②二生板演③校对:说说第一步根据是什么?

  9:7=5:x 9:5=x:7 9×x=7×5 9×7=5×x

  小结:根据比例的基本性质,我们就可以解比例,什么是解比例?课本63页已经告诉我们。

  五、练习

  师:老师讲个数学故事──不久前,马慧慧家的菜地边高高矗立起一个新铁塔,这天午后,阳光明媚,邻居家刚读一年级的.小明又拉着马慧慧来到铁塔下,玩着玩着,小明问道:“慧慧姐,这铁塔干嘛用?”“铁塔嘛,架设高压线用的,以后等电线架好了,可不能再来玩了,更不能攀登,高压线可危险了!”“那这个铁塔有多高压呀?”马慧慧想了想,便跑回家拿了一根2米长的竹竿和一根卷尺,在地上量了起来。才一会儿,她就自信地告诉小明:“铁塔有15米高!”

  铁塔高:?米影子长6米

  竹竿长:2米影子长0.8米

  1、同学们,如果你是马慧慧,你准备怎么办?小组交流讨论。2、马慧慧也确实先量出竹竿的影子长是0.8米,铁塔的影子长是6米,才算出铁塔的高度,同学们你知道马慧慧是怎么算的吗?

  3、铁塔的高度是x米2:0.8=x:6

  4、学生解比例,师问:这个塔是高15米吗?

  师:看来比例的知识,在我们生活中也不少的作用,马慧慧也正用了今天的新知识──比例意义和性质算出了这个塔的高度。

  六、作业

  1、用20的约数能写比例吗?

  2、用20的约数写比例。

【《比例的意义》教案】相关文章:

《比例的意义》教案09-30

《比例的意义》教案15篇01-04

《比例的意义》教案(15篇)06-01

《正比例的意义》教案12-09

《正比例的意义》教案9篇02-17

比例的意义和基本性质教案02-16

《比例的意义》教学设计05-29

比例的意义教学反思04-08

比例的意义教学反思07-01