当前位置:9136范文网>教育范文>教案>《平行四边形的面积》教案

《平行四边形的面积》教案

时间:2023-03-29 06:51:06 教案 我要投稿

《平行四边形的面积》教案(精选15篇)

  作为一名默默奉献的教育工作者,就有可能用到教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么教案应该怎么写才合适呢?下面是小编精心整理的《平行四边形的面积》教案,希望对大家有所帮助。

《平行四边形的面积》教案(精选15篇)

  《平行四边形的面积》教案 篇1

  一、教学目标:

  1、理解和掌握平行四边形的面积计算公式。

  2、会计算平行四边形的面积。

  二、教学重点:

  理解公式并正确计算平行四边形的面积。

  三、教学难点:

  理解平行四边形的面积公式的推导过程。

  四、学具准备:平行四边形纸

  五、教学过程:

  (一)、板书课题,揭示目标

  同学们请看大屏幕,这两个花坛哪一个大呢?比较它们的大小得知道它们的面积,我们只学过长方形的面积,哪位同学能说一下?(教师板书)

  平行四边形的面积我们还不会计算,(出示)小精灵提示我们先用数方格的方法试一试。(切换)

  一个方格代表12,不满一格的都按半格计算。

  谁来数一数两个图形的面积各是多少?(出示)

  平行四边形的底和高各是多少?(出示)

  长方形的长和宽各是多少?(出示)

  (出示)你发现了什么?

  同学们今天这节课我们就来学习“平行四边形的面积”(板书课题)

  本节课我们的学习目标是:“1、理解和掌握平行四边形的面积计算公式。 2、会计算平行四边形的面积。”(出示)

  要想完成学习目标,还要靠同学们认真自学,请看自学指导。

  (二)出示自学指导

  1、想一想,如何把平行四边形剪拼成长方形?以小组为单位剪一剪,拼一拼。

  2、观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系?想一想平行四边形的面积应该怎样计算?

  (6分钟后,比一比谁能正确计算出平行四边形的面积。相信你一定行!)

  现在开始自学,注意看书的姿势,用剪刀时要注意安全!

  (三)、学生自学

  1、学生看书自学,教师巡视,督促每个学生都能认真自学。

  2、检测学生自学效果

  师:自学时间到,谁来演示一下你是怎样把平行四边形剪拼成长方形的?(抽生到前面演示)

  观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的`面积有什么关系?

  想一想平行四边形的面积应该怎样计算?(师板书面积公式)

  教师小结(展示动画):

  同时教师口述:通过割补的方法,我们可清楚地看到,任何一个平行四边形都可以转化为长方形,而且长方形的长和宽恰好等于平行四边形的底和高。所以,平行四边形的面积=底×高。

  (边口述,边板书。)教师讲述:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成:S=a×h,简写成:S=ah。(板书)

  下面就用你所学的知识去解决一下实际问题。

  出示检测题

  出示:平行四边形花坛的底是 6,高是 4,它的面积是多少?

  抽2名学生上台板演,其他学生写在练习本上,教师巡视,搜集学生检测中出现的错误。

  (四)、后教

  1、学生自由更正

  在学生完成检测后,看黑板上学生的板演,注意做题的步骤,如发现错误和有不同见解的同学,上台更正。

  2、讨论归纳

  问:做题的步骤是什么?第一步写什么?其中的a表示什么?h表示什么?s呢?

  板书:写公式——代入数——计算(单位)——写答话。

  (五)、当堂训练

  1、

  2、

  (六)、全课总结

  这节课,你有什么收获?

  六、板书设计

  平行四边形的面积

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S=ah

  写公式——代入数——计算(单位)——写答话

  5

  《平行四边形的面积》教案 篇2

  教学目标

  知识与技能:

  在理解的基础上掌握平行四边形的面积计算公式,能正确的计算平行四边形的面积。

  过程与方法:

  通过操作,观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,初步渗透转化的思想方法,培养学生的分析、综合、抽象、概括、推导能力和解决问题的能力。

  情感态度与价值观:

  通过数学活动,培养学生初步的推理能力和合作意识,让学生体会平行四边形面积计算在生活中的应用。

  教学重难点

  教学重点:

  掌握平行四边形的面积计算公式,并能正确运用。

  教学难点:

  平行四边形面积计算公式的推导。

  教学工具

  多媒体课件,平行四边形纸片,剪刀,学具袋

  教学过程

  教学过程设计

  1复习旧知

  请同学们回忆一下我们学过的几何图形有哪些?并说说你会计算的图形的面积计算公式。(课件出示)

  2情境引入

  (一)、故事激趣

  同学们喜欢看喜羊羊的动画片吗?据说羊村的牧草越来越少,所以,村长决定把草地分给小羊们自己管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,他们认为自己的草地更少,争了起来。同学们,你们能不能动动脑筋,帮他们解决一下这个问题?看看哪块草地的面积更大?(课件出示两块草地)

  (二)、学生思考、猜测

  学生在猜测中明白:必须准确的知道两个图形的面积才能进行比较。可是学生只会计算长方形的面积,那么这节课我们就来研究平行四边形的面积,及时点出课题并板书课题:平行四边形的面积

  3探究新知

  (一)利用方格,初步探究

  1、以前用数方格的方法得到了长方形和正方形的面积,那么,我们能不能用数方格的方法得到平行四边形的面积呢?我们一起来试一试。

  课件出示:比较两个图形的大小,然后引进格子图。

  师:请你们来数一数比较一下它们的面积是多少?(1小格是平方厘米,不满一小格的都按半格计算)

  2、同桌交流方法

  3、生汇报想法

  4、通过数方格你发现了什么?

  生:我发现平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等

  5、小结(指图)通过数方格我们发现,平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。这是一种巧合呢?还是平行四边形和长方形之间有某种特殊的联系呢?

  如果,我用数方格的方法得到这个平行四边形的.面积,现在我想得到一个很大的平行四边形花坛的面积,你认为数方格的方法怎么样?有没有合适的方格纸?那我们能不能找到一个方法,适用于计算所有平行四边形的面积呢?

  (二)动手操作,深入探究

  1、师提醒大家思考:怎样才能得到平行四边形的面积呢?能不能把它转化成我们以前学过的图形呢?

  2、学生拿出准备好的学具:不同的平行四边形,剪刀,三角板等学具,动手操作,寻找平行四边形面积的计算方法。

  师提示:刚刚有同学说可以把平行四边形变成长方形后再计算它的面积,那我们要怎么剪才能使平行四边形变成长方形呢?这其实就是计算平行四边行面积的第二个方法就是割补法。

  (板书:割补法)

  3、四人一小组,先通过自己的思考向组员介绍你研究方案;组员商议如何通过画一画、剪一剪等方法来进行操作研究;由组长进行操作,组员协助。有困难的小组可以请老师帮忙;比一比哪组同学能快速解决问题。

  4、展示学生作品:不同的方法将平行四边形变成长方形。

  提问:观察拼出的长方形和原来的平行四边形,你发现了什么?

  平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积也相等。

  引导学生用字母来表示:S表示面积,a表示底,h表示高。那么面积公式就是S = ah

  (边说边板书)

  4学以致用

  (一).课件出示出示例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?我们根据什么公式来列式计算,学生试做,并说说解题方法,指名板书。

  (板书:S=ah=6×4=24㎡)

  (二).课件出示练习题,学生独立完成。

  1.

  2.有一块地近似平行四边形,底43米,高20.1米,面积是多少平方米?

  3.填表

  4.判断:

  (1)平行四边形的底是7米,高是4米,面积是2 8米。 ( )

  (2) a=5分米,h=2米,S=100平方分米。 ( )

  5.下面对平行四边形面积的计算对吗?

  6×3=18(平方米) ( )

  6.下面对平行四边形面积的计算对吗?

  8×7=56(平方分米) ( )

  7.思考题:你有几种方法求下面图形的面积?

  课后小结

  回想一下刚才我们的学习过程,你有什么收获?

  计算平行四边形的面积必须知道什么条件,平行四边形的面积公式是怎样推

  板书

  平行四边形的面积

  长方形的面积=长×宽

  ↓ ↓ ↓

  平行四边形的面积=底×高

  《平行四边形的面积》教案 篇3

  教学要求:

  1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

  2.养成良好的审题习惯。

  3.培养同学们分析问题、解决问题的能力。

  教学重点:

  运用所学知识解答有关平行四边形面积的`应用题。

  教具准备:

  卡片

  教学过程:

  一、基本练习

  1.口算。

  2.平行四边形的面积是什么?它是怎样推导出来的?

  3.口算下面各平行四边形的面积。

  (1)底12米,高7米;

  (2)高13分米,底6分米;

  (3)底2.5厘米,高4厘米

  二、指导练习

  1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

  (1)生独立列式解答,集体订正。

  (2)如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?

  ①必须知道哪两个条件?

  ②生独立列式,集体讲评:

  先求这块地的面积:25078010000=1.95公顷,

  再求共收小麦多少千克:70001.95=13650千克

  (3)如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?

  与(2)比较,从数量关系上看,什么相同?什么不同?

  讨论归纳后,生自己列式解答:58500(250781000)

  (4)小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

  2.练习第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?

  (1)你能找出图中的两个平行四边形吗?

  (2)他们的面积相等吗?为什么?

  (3)生计算每个平行四边形的面积。

  (4)你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

  3.练习第10题:已知一个平行四边形的面积和底,求高。

  分析与解答:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

  三、课堂练习

  第7题。

  四、小结

  本节课我们主要学习了哪些知识?你掌握平行四边形的面积计算公式了吗?

  《平行四边形的面积》教案 篇4

  教学内容:练习十九的第11~15题。

  教学目的:通过练习,使学生进一步熟悉平行四边形、三角形、梯形面积的计算公式,提高计算面积的熟练程度。

  教具准备:将复习题中的平行四边形、三角形、梯形画在小黑板上。用厚纸做一个平行四边形、两个完全一样的三角形和两个完全相同的梯形。

  教学过程:

  一、熟记平行四边形、三角形、梯形面积的计算公式。

  出示下列图形:

  问:这3个图形分别是什么形?(平行四边形、三角形和梯形)

  平行四边形的面积怎样计算?公式是什么?(学生回答后,教师板书:S=ah)

  平行四边形的面积计算公式是怎样推导出来的?(教师出示一个平行四边形,让一学生说推导过程,教师边听边演示)

  三角形的面积怎样计算的?公式是什么?(学生回答后,教师板书:S=ah÷2)

  为什么要除以2?(学生回答,教师出示两个完全相同的三角形,演示用两个三角形拼摆一个平行四边形的过程)

  梯形的面积是怎样计算的?公式是什么?(学生回答后,教师板书:S=(a+b)h÷2)

  梯形的面积计算公式是怎样推导出来的?(学生回答,教师演示用两个完全相同的梯形拼摆一个平行四边形的过程。)

  量出求这3个图形面积所需要的线段的长度。(让学生到黑板前量一量,并标在图上。让每个学生在自己的练习本上计算出这3个图形的面积,算完后,集体核对答案)

  二、做练习十九中的题目。

  1、第12题,先让学生说一说题中的图形各是什么形,再让学生独立计算。教师注意巡视,了解学生做的情况,核对时,进行有针对性的讲解。

  2、第13题和第15题,让学生独立计算,做完后集体订正。

  3、第18题,学生做完后,可以提问:在梯形中剪下一个最大的三角形,你是怎样剪的'?

  这个最大的三角形是唯一的吗?为什么?(不是唯一的,因为以梯形的下底为三角形的底,顶点在梯形的上底上的三角形有无数个,它们的面积是相等的。)

  4、练习十九后面的思考题,学生自己试做。教师提示:这道题可以用梯形面积减去以4厘米为底,以12厘米为高的三角形的面积来计算;也可以用含有未知数X的等式来计算。

  三、作业。

  练习十九第11题和第14题。

  课后小结:

  《平行四边形的面积》教案 篇5

  教学目标

  1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.

  2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.

  3.对学生进行辩诈唯物主义观点的启蒙教育.

  教学重点

  理解公式并正确计算平行四边形的面积.

  教学难点

  理解平行四边形面积公式的推导过程.

  教学过程

  复习引入

  (一)拿出事先准备好的长方形和平行四边形.量出它的长和宽(平行四边形量出底和高).

  (二)观察老师出示的几个平行四边形,指出它的底和高.

  (三)教师出示一个长方形和一个平行四边形.

  1.猜测:哪一个图形面积比较大?大多少平方厘米呢?

  2.要想我们准确的答案,就要用到今天所学的知识——“平行四边形面积的计算”

  板书课题:平行四边形面积的计算

  二、指导探究

  (一)数方格方法

  1.小组合作讨论:

  (1)图上标的厘米表示什么?每个小方格表示1平方厘米为什么?

  (2)长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?

  (3)用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)

  (4)比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?

  2.集体订正

  3.请同学评价一下用数方格的方法求平行四边形的面积.

  学生:麻烦,有局限性.

  (二)探索平行四边形面积的计算公式.

  1.教师谈话

  不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看.

  2.学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.

  3.学生到前面演示转化的方法.

  4.演示课件:平行四边形的`面积

  5.组织学生讨论:

  (1)平行四边形和转化后的长方形有什么关系?

  (2)怎样计算平行四边形的面积?为什么?

  (3)如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的字母公式是什么?

  (三)应用

  例1.一块平行四边形钢板,它的面积是多少?(得数保留整数)

  4.8×3.5≈17(平方米)

  答:它的面积约是17平方米.

  三、质疑小结

  今天你学到了哪些知识?怎样计算平行四边形面积?

  四、巩固练习

  (一)列式并计算面积

  1.底=8厘米,高=5厘米,

  2.底=10米,高=4米,

  3.底=20分米,高=7分米

  (二)说出下面每个平行四边形的底和高,计算它们的面积.

  (三)应用题

  有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)

  (四)量出你手里平行四边形学具的底和高,并计算出它的面积.

  教案点评:

  该教学设计在学习面积的计算过程中,引导学生进行大胆猜想,提出假设,放手让学生去实践,把学生推到了课堂教学活动的主体地位,用科学的方法去验证假设,使学生学到了解决问题的方法,同时培养了学生的逻辑思维和动手操作的能力。

  《平行四边形的面积》教案 篇6

  教学内容

  义务教育课程标准实验教科书数学五年级上册第79~81页,平行四边形的面积。

  教材分析

  平行四边形面积计算是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上学习的,它是进一步学习三角形、梯形、圆和立体图形表面积的基础。在本节课的教学中,引导学生动手操作,合作探究,运用转化的方法推导出平行四边形面积的计算方法,并运用所学的知识解决生活中的实际问题。

  教学目标

  1、通过探索,理解并掌握平行四边形的面积计算公式,能正确计算平行四边形的面积。

  2、通过操作、观察、比较,培养学生运用转化的方法解决实际问题,发展学生的空间观念。

  3、学生在自主探究中体验成功的喜悦,获得积极的情感体验,激发学习的兴趣。

  教学重点

  理解并掌握平行四边行的面积计算公式。

  教学难点

  理解平行四边形面积计算公式的推导过程。

  教具、学具准备

  课件,平行四边形学具纸片,剪刀,尺子等。

  教学过程

  一、创设情境,引出课题

  1、课件出示情境图。

  师:同学们,很高兴能跟大家一起来学习,我发现我们学校环境特别优美,我拍了几幅照片,看一看,你能找出哪些图形?

  生看图回答。

  2、师:在过6天,我们学校就要举行庆典活动了,为了把我们的学校打扮得更漂亮,学校准备在操场的西边空地上新建两个花坛。(课件出示规划图)

  3、师:说一说,这两个花坛分别是什么形状的?。

  生:一个长方形,一个正方形。(课件相机抽出平面图形)

  师:你认为哪个花坛大呢?

  生1:长方形的大。

  生2:平行四边形的大。

  师:怎样来比较两个花坛的大小呢?

  生:算出它们的面积,再比较。

  师:你会计算它们的`面积吗?

  生:我会计算长方形的面积,将长方形的长乘宽就能算出它的面积。

  4、平行四边形的面积怎样计算呢?今天我们一起来研究平行四边形面积计算。

  板书课题:平行四边形的面积.

  [设计意图:通过观察情境图,发现图形,巩固和加深了对已学过的图形特征的认识,加强学习内容与生活实际的联系,计算长方形的面积为学习新知作好了知识上的铺垫。]

  二、探究新知,发现新知

  1、猜一猜。

  师:同学们大胆猜一猜,平行四边形的面积可能怎样计算?

  《平行四边形的面积》教案 篇7

  教学内容

  人教版《义务教育课程标准实验教科书数学》五年级上册第80、81页的内容。

  教学目标

  1. 在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2. 通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  教学重点:

  掌握平行四边的面积计算公式,并能正确运用。

  教学难点:

  平行四边形面积计算公式的推导。

  教学过程:

  一、情境激趣

  1.播放运载“嫦娥一号”探月卫星的火箭成功发射的录像。

  2.师:为了纪念这个有意义的时刻,我们学校的小朋友们在数学活动上利用一些图形拼出了运载“嫦娥一号”的火箭模型呢!

  3.(课件出示拼成的模型)让学生观察火箭模型是由哪些图形拼成的。

  提问:如果比较这些图形的大小,要知道它们的什么?哪些图形的面积是我们已经学过的?怎样求?

  4.比较其中的长方形和平行四边形,谁的面积大,谁的.面积小,可以用什么方法?(引导学生说出可以用数方格的方法。)

  二、自主探究

  1.数方格比较两个图形面积的大小。

  (1)提出要求:每个方格表示1平方厘米,不满一格的都按半格计算。

  (2)学生用数方格的方法计算两个图形的面积并填写书上80页表格。

  (3)反馈汇报数的结果,得出:用数方格的方法知道了两个图形的面积一样大。

  (4)提出问题:如果平行四边形很大,用数方格的方法麻烦,能不能找到一种方法来计算平行四边形的面积?

  (5)观察表格,你发现了什么?

  (6)引导学生交流发现并全班反馈得出:平行四边形的底和长方形的长相等,平行四边形的高和长方形的宽相等,平行四边形的面积和长方形的面积相等;平行四边形的面积等于底乘高。

  (7)提出猜想:平行四边形的面积=底×高

  2.操作验证。

  (1)提出要求:请小朋友利用三角尺、剪刀,动手剪一剪拼一拼,把平行四边形想办法转变成我们已学过面积计算的图形,完成后和小组的同学互相交流自己的方法。

  (2)学生分组操作,教师巡视指导。

  (3)学生展示不同的方法把平行四边形变成长方形。

  (4)利用课件演示把平行四边形变成长方形过程。

  (5)观察并思考以下两个问题:

  A.拼成的长方形和原来的平行四边形比较,什么变了?什么没变?

  B.拼成的长方形的长与宽分别与原来平行四边形的底和高有什么关系?

  (6)交流反馈,引导学生得出:

  A.形状变了,面积没变。

  B.拼成的长方形,长与原来平行四边形的底相等,宽与原来平行四边形的高相等。

  (7)根据长方形的面积公式得出平行四边形面积公式并用字母表示。

  (8)活动小结:我们把平行四边形转变成了同它面积相等的长方形,利用长方形面积计算公式得出了平行四边的面积等于底乘高,验证了前面的猜想。

  3.教学例1。

  (1)(出示例1)平行四边形的花坛的底是6 m,高是4 m。它的面积是多少?

  (2)学生独立完成并反馈答案。

  三、看书质疑

  四、课堂总结

  通过这节课的学习,你有哪些收获?(学生自由回答。)

  五、巩固运用

  1.练习十五第1题,让学生独立完成后反馈答案。

  2.你会计算下面平行四边形的面积吗?

  3.你能想办法求出下面平行四边形的面积吗?

  4.练习十五第3题。

  六、全课小结(略)

  《平行四边形的面积》教案 篇8

  教学目标

  教学目标:

  知识目标:通过操作活动,经历推导四边形面积计算公式的过程;能运用公式计算相关图形的面积,并解决一些实际问题。

  能力目标:通过实际操作发展学生的观察、操作、推理、交流能力;培养运用转化的方法解决实际问题的能力。

  情感目标:培养学生勇于探索、克服困难的精神;感受数学的美。

  教学重点和难点

  教学重、难点:

  理解平行四边形面积公式的推导过程,掌握平行四边形面积的计算公式。

  培养学生运用公式解决实际问题的能力。

  教学过程

  (一)创设情境,设疑引入

  谈话:出示两个美丽的花坛(课件呈现)。

  提问:请大家观察一下,这两个花坛哪一个大呢

  然后给出长方形的长和宽让学生计算长方形的面积。

  提问:那平行四边形的面积你会算吗?从而导入新课。

  (二)操作探索,获取新知

  数方格感知平行四边形和长方形之间的关系

  (1)数方格,用数方格的方法来求平行四边形和长方形的面积,(电脑出示)

  (2)汇报交流自己的发现。

  小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。

  2、应用“转化”思想,引入割补、平移法

  (1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成会学算面积的图形。(这时教师巡视,了解情况)

  (2)精彩展示:要求边讲边操作。

  提问:为什么都要转化成长方形?

  为什么一定要沿着高剪开呢?

  接着电脑演示其它方法,渗透割补、平移法

  3、建立联系,推导公式

  (1)小组合作探索:

  a、原来的平行四边形转化成长方形后,什么变了?什么没变?

  b、拼成长方形的长与原来平行四边形的底有什么关系?

  c、拼成长方形的宽与原来平行四边形的'高有什么关系?

  d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积= )

  (2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)

  提问:用字母怎么表示呢?自学课本。

  学生回答s=ah(板书)

  提问:s、a、h分别表示什么呢?

  提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)

  (三)巩固应用,内化新知

  前面的花坛题

  课本第2题:你能想办法求出下面两个平行四边形的面积吗?

  拓展题:先分别口算出下面图中两个平行四边形的面积,然后看你发现了什么?

  (四)课堂总结,深化新知

  师:同学们,通过今天的学习,你有什么收获呢?

  《平行四边形的面积》教案 篇9

  一、创设情境,呈现真实

  师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)

  师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)

  生活动后汇报如下:

  长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米

  (1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米

  (2)平行四边形底6厘米,高3厘米,它的面积=6×3=18平方厘米

  二、否定错误猜想

  1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。

  你觉得哪种更合理?能不能举个例子,证明哪种是错误的。

  生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。

  师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?

  生:老师,我不同意这样的想法,按照他的说法,如果把这个平行四边形压扁,它的面积难道还是24平方厘米吗?

  2、师:(演示平行四边形变形的过程)请同学们仔细观察,平行四边形在变形过程中,什么发生了变化?什么始终没变?

  生:我发现平行四边形在变形过程中,面积边了,而两条边的`长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。

  师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)

  生:(兴奋地)高!

  师:现在,你觉得平行四边形的面积与它的什么有关?

  生:我觉得平行四边形的面积与它的高有很大的关系。

  3、师:用什么办法可以比较它们的面积大小呢?

  生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。

  师:变成长方形后,面积大小变了没有?

  生:没有

  师:那么要计算平行四边形的面积,应该怎么办?

  生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。

  生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。

  师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。

  三、归纳计算方法

  师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。

  根据学生反馈情况进行课件演示,出现几种拼法(略)

  师:这几种剪拼方法有什么相同之处?

  生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。

  生:在剪拼过程中,图形的形状变了,面积不变。

  师:为什么平行四边形的面积可以用“底乘高”来计算?

  生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。

  师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?

  生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。

  师:我们用S表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为S=ah。

  四、反思探究过程

  师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?

  《平行四边形的面积》教案 篇10

  教学内容:教科书第12—13页的例1、例2、例3,“试一试”和“练一练”,第14页的练习二。

  教学目标:

  1.知识目标:使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积公式,并能应

  用公式正确计算平行四边形的面积。

  2.能力目标:使学生经历观察、操作、测量、填表、讨论、分析、归纳等数学活动过程,进一步体会“等积变形”的思想方法。

  3.情感目标:培养空间观念,发展初步的推理能力。

  教学过程:

  一、复习导入。

  1.说出下面每个图形的名称。(电脑出示)

  2.在这几个图形中,你会求哪些图形的面积呢?

  3.大家想不想知道平行四边形的面积怎么求?今天我们一起来研究“平行四边形面积的计算”。(揭示课题)

  二、探究新知。

  1.教学例1。

  (1)出示例l中的第一组图形。

  提出要求:这儿有两个图形,这两个图形的面积相等吗?在小组里说一说你准备怎样比较这两个图形的面积。学生分组活动后组织交流。

  对学生的交流作适当点评,使学生明白两种不同的比较方法都是可以的:即数方格比较大小或把左边的图形转化后与右边的图形进行比较。

  (2)出示例l中的第二组图形。

  提出要求:你能用刚才的方法比较这两个图形的大小吗?

  学生分组活动后组织交流,在学生的交流中,教师适当强调“转化”的方法。

  (3)小结:把不熟悉的图形转化成学过的图形,并用学过的知识解决问题,这是数学上一种很重要的方法——转化。这种方法在数学学习中经常要用到。

  2.教学例2。

  (1)出示画在方格纸上的平行四边形。提问:你能想办法把图中的平行四边形转化成长方形吗?

  (2)学生操作,教师巡视指导。

  (3)学生交流操作情况。

  提出要求:谁愿意把你的转化方法说给大家听听?(让学生用实物投影演示剪、拼过程)

  提问:有没有不同的剪、拼方法? (继续请学生演示)

  教师用课件演示各种转化方法,进行小结。

  (4)讨论:刚才大家把平行四边形转化成长方形时,都是沿着平行四边形的一条高剪的。大家为什么要沿着高剪开?

  启发学生在讨论中理解:沿着高剪开,能使拼成的图形出现直角,从而符合长方形的特征。

  (5)小结:沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。

  3.教学例3。

  (1)提问:是不是任意一个平行四边形都能转化成长方形?平行四边形转化成长方形后,它的面积大小有没有变?与原来的'平行四边形之间有什么联系?

  (2)操作:请大家从教科书第123页上选一个平行四边形剪下来,先把它转化成长方形,并求出面积,再填写下表:

  转化成的长方形 平行四边形

  长(cm) 宽(cm) 面积(c㎡) 底(cm) 高(cm) 面积(c㎡)

  (3)小组讨论:

  ①转化成的长方形与平行四边形面积相等吗?

  ②长方形的长和宽与平行四边形的底和高有什么关系?

  ③根据,长方形的面积公式,怎样求平行四边形的面积?

  (4)反馈、交流,抽象出面积公式。

  根据学生的讨论进行如.下的板书:

  因为 长方形的面积二长×宽

  所以 平行四边形的面积二底×高

  (5)用字母表示公式。

  如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么你能用字母写出平行四边形的面积公式吗?

  结合学生的回答,板书:

  S=ah

  (6)指导完成“试一试”。

  先让学生根据题意独立解答,再通过指名板演和评点,明确应用公式求平行四边形面积一般要有两个条件,即底和高。

  三、巩固深化。

  1.指导完成“练一练”。先让学生独立计算,再让学生说说每个平行四边形的底和高分别是多少,计算时应用了什么公式。

  2.指导完成练习二第1题。

  (1)明确要求,鼓励学生尝试操作。

  (2)讨论:长方形的长、宽、面积各是多少?要使画出的平行四边形面积与长方形相等,它的底和高可以分别是多少?

  (3)学生继续操作后展示作品。引导学生对展示的平行四边形进行判断,是否符合题目的要求。

  3.指导完成练习二第2题。

  先让学生指出每个平行四边形的底和高,再让学生各自测量计算。

  提醒学生:测量的结果取整厘米数。

  4.指导完成练习二第3、4两题。

  先让学生独立解答,再通过交流说说自己解决问题的思路。

  5.指导完成练习二第5题。

  (1)同桌两人分别按要求做出长12厘米,宽7厘米的长方形。一个长方形不动,另一个长方形拉成平行四边形,平放在桌上。

  (2)指导观察、思考。

  要求学生认真观察做成的长方形和用长方形拉成的平行四边形,想一想,它们的周长相等吗?为什么?面积呢?

  (3)指导测量、计算,验证猜想。

  (4)连续拉动长方形,启发思考面积的变化有什么特点。

  四、全课小结。

  通过今天的学习活动,你学会了什么?有哪些收获?

  教学后记

  通过平移转化成长方形计算面积, 使学生了解用数方格方法计算面积时不满整格的都按半格计算,同时初步学会用这方法估计并计算不规则物体表面的面积。 使学生体会平移后图形的面积不变,感受转化的策略。体会平移后图形的面积不变。

  《平行四边形的面积》教案 篇11

  教学内容:

  课本第73-74页练习十七第4-9题

  教学要求:

  1、能比较熟练地运用平行四边形计算公式,解答有关的应用问题。

  2、养成良好的审题习惯,树立责任感。

  教学重点:

  能比较熟练地运用平行四边形的计算公式,解答有关的`应用题。

  教具准备:

  口算卡片。

  教学过程:

  一、复习

  1、平行四边形的面积计算公式是什么?

  2、口算:

  4.9÷0.75.4+2.64×0.250.87-0.49

  530+2703.5×0.2542-986÷12

  3、求平行四边形的面积。

  (1)底12米,高是7米;(2)高13分米,底长6分米;

  (3)底2.5厘米,高4厘米;(4)底0.24分米,高0.5分米

  4、出示课题。

  二、新授

  1、补充例题

  一块平行四边形的麦地底长125米,高24米,它的面积是多少平方米?

  (1)独立列式后,指名口述,教师板书。

  (2)如果改问题为“每公顷可收小麦6吨,这块地共可收小麦多少吨?”怎么解答?

  让学生议一议,然后自己列式解答,最后评讲。

  (3)如果问题改为:“改种花生,一年可收花生900千克,这块地平均每公顷可收花生多少千克?”又怎么想?

  与上题比较,从数量关系上看,什么是相同的?什么是不同的?

  让学生自己列式。

  辨析:老师也列了三个算式,到底哪个对呢?帮个忙!

  A900×(125×24÷10000)

  B900÷(125×24)

  C900÷(125×24÷10000)

  2、(略)

  三、巩固练习

  练习十七第6、7题

  四、课堂作业

  练习十七第8、9题

  ⑧有一块平行四边形的菜地,底是27.6米,高是15米,每平方米收油菜6千克。这块地收多少千克油菜?

  ⑨有一块平行四边形的麦田,底是250米,高是78米,共收小麦13650千克。这块麦田有多少公顷?平均每公顷收小麦多少公顷?

  板书设计:

  平行四边形面积的计算

  《平行四边形的面积》教案 篇12

  【教材分析】

  本节课是人教版义务教育课程标准实验教科书数学五年级上册第五单元《多边形的面积》第1课时《平行四边形的面积》。平行四边形面积的计算是在学生已经掌握并能灵活运用长方形、正方形面积计算公式,理解平行四边形特征的基础上,进行教学的。教材在编排上非常重视让学生经历知识的探索过程,使学生不仅掌握面积计算的方法,更要参与面积计算公式的推导过程,在操作中,积累基本的数学思想方法和基本的活动经验,完成对新知的建构。本节课首先通过具体的情境提出计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何去解决,使学生感到学习新知识的必要性;其次,对学生进行动手操作,自主探索的培养,使学生能寻求解决问题的方法;最后,让学生归纳计算平行四边形面积的基本方法。根据学生的多种剪法,组织学生讨论这些剪法的共同特点,并比较长方形与平行四边形之间的关系,从而推导出计算平行四边形面积的公式。

  【教学目标】

  知识与能力目标:使学生能运用数方格、割补等方法探索平行四边形面积的计算公式,初步感受转化思想;让学生掌握平行四边形面积的计算公式,能够运用公式正确计算平行四边形的面积。

  过程与方法目标:通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思想方法解决问题的能力;创设自主、和谐的探究情境,让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。

  情感态度与价值观目标:通过活动,培养学生的合作意识和探索创新精神,感受数学知识的奇妙。

  【学情分析】

  平行四边形的面积是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上进行教学的,而且,这部分知识的学习运用会为学生学习后面的三角形,梯形等平面图形的面积奠定良好的基础。由此可见,本节课是促进学生空间观念发展,渗透转化、等积变形等数学思想方法的重要环节。学好这部分内容,对于解决生活中的实际问题的能力有重要的作用。这节课,让他们动手实践,在做中学,经历平行四边形面积公式的得出过程,让孩子们体会数学就在身边,培养学生发散思维,进一步激发学生学习思维,进一步激发学生学习数学的热情。

  【教学重点】掌握平行四边形面积计算公式。

  【教学难点】平行四边形面积计算公式的推导过程。

  【教具】两个完全一样的平行四边形、不规则图形、小黑板、剪刀、多媒体及课件。

  【教学过程】

  一、创设情境,引入课题。

  1、游戏:小小魔术师。教师出示不规则图形。

  (1)师:你能直接计算出这个图形的面积吗?

  (2)师:你能计算出这个图形的面积吗?说一说用什么方法?

  (3)师:现在变成了一个什么图形?你能求出这个图形的面积吗?怎样计算长方形的面积?

  2、小结:刚才同学们先将不平整的部分剪下,再平移补到缺口处,就将不规则的图形转化成学过的长方形,这是一种很重要的数学思考方法—转化。把不认识的图形变成了认识的图形。转化后的图形什么变了,什么是相同的?(形状变了,面积相同)

  (设计思路:“温故”是课堂教学起始的重要环节,它起到承上启下的作用。通过出示复习题,唤起学生对已有知识的回顾,拓宽学生的学习渠道,促进学生全面、持续、和谐的发展,为后面探究平行四边形面积公式的推导打下坚实的基础。)

  二、激趣引思,导入新课。

  师:同学们,昨天早上我听校长说,学校要建一个宣传栏,其中要用一块底是5米,高是4米的平行四边形胶合板。我觉得这是一件好事,因为平行四边形是一种漂亮的图形,你们听了校长的话,想知道些什么?

  生1:我想知道要花多少钱才可以做成。

  生2:我想这个宣传栏建起来一定很漂亮,会把我们的校园点缀得更加美丽!

  生3:我想知道这块胶合板的面积有多大。

  师:我听出来了,大部分同学都想知道这块平行四边形胶合板的面积,这节课我们就来探究“平行四边形的面积”。(板书课题:平行四边行的面积)

  (设计思路:教师选取发生在学生身边的事来创设情境,导入新课,学生感到亲切,从中体会到数学与生活的联系,更能激发求知欲望。)

  三、动手操作,探究发现。

  1、用数方格的方法启发学生猜想平行四边形面积的计算方法。

  师:同学们回忆一下,我们以前是怎么学习长方形面积公式的?(指名复述过程)下面我们用数方格的方法来数出平行四边形的面积。

  教师用课件演示:先出示一个画有方格(每个方格的面积是1平方厘米)的长方形,再将一个平行四边形放在方格图上面,让学生用数方格(不满一格的按半格计算)的方法回答问题。

  (1)这个平行四边形的面积是多少平方厘米?

  (2)它的底是多少厘米?

  (3)它的高是多少厘米?

  (4)这个平行四边形的面积跟它的高与底有什么关系?

  (5)请同学们猜一猜:怎样计算平行四边形的面积?

  2、引导学生把平行四边形转化为长方形,验证猜想推出平行四边形的面积公式。

  我们用数方格的方法得到一个平行四边形的面积,但是用这个方法计算面积方便吗?

  生:不方便。

  师:既然不方便,我们能不能用更方便的方法来解决呢?

  小组交流,学生讨论,发表意见。

  生:用剪和拼的方法。

  师:(出示一个平行四边形)这个平行四边形也可以转化长方形吗?怎样剪呢?剪歪了怎么办?(可以先用尺子画一条虚线。)

  师:这条虚线也就是平行四边形的哪部分?(高)还记得怎样画高吗?

  师:第一步:画;第二步:剪;第三步:移。那我们就动手来剪一剪吧!(学生动手操作)

  师:拼成长方形了吗?拼好了摆在桌面给老师看看,请两个同学来前面展示他们的作品,(指名上黑板前)说说你是怎样操作的`?

  (生:我先画条高,沿着高剪开,把这部分移过去,就拼成了一个长方形。)

  师:怎样移过去呀?平着移到右边,这种方法我们把它叫做平移。

  师:再请一个同学展示一下,他的剪法有什么不一样吗?

  (生:我在中间剪的)剪成两个完全一样的梯形,可以吗?平移过去也拼成了一个长方形。 (展示学生的成果)

  师:老师有几个问题,我们把平行四边形转化成了长方形,原来平行四边形的面积和这个长方形的面积相等吗?平行四边形的底和高分别与长方形的长和宽有什么关系呢?

  小组讨论:

  ⑴原来平行四边形的面积和拼成的长方形的面积相等吗?

  ⑵原来平行四边形的底与拼成的长方形的长有什么关系?

  ⑶原来平行四边形的高与拼成的长方形的宽有什么关系?

  师:谁来说说你的想法。它的面积没有多,也没有少,平行四边形的面积等于剪拼后的长方形的面积。(板书)平行四边形的底和高与长方形的长和宽有什么关系?我们看课件演示。(板书:底=长,宽=高)

  师:长方形的面积=长×宽,那么平行四边形的面积怎样求?

  生:平行四边形的面积=底×高(板书)

  师:同意吗?谁能讲一讲,为什么平行四边形的面积=底×高?结合刚才一剪一拼的过程说说。(生叙述方法)

  教师小结方法指名让生叙述。

  师:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=ah(板书:S=ah)。

  师:现在我们可以确定当初的猜想谁是正确的?

  (设计思路:让学生对“平行四边形面积的计算方法”提出猜想,再进行验证。学生通过自主探索,合作交流,既体现了学生的主体地位,又有助于培养学生观察能力、抽象概括能力,为进一步发展空间观念打下基础。在本环节中,学生体会到独立探究获得的成功喜悦。在教学中给学生留足了自主探索的空间,最终达到学习的目的,让学生体验到成功的喜悦。)

  四、实践应用,巩固提高。

  师:同学们,现在你们可以算出建宣传栏要的那块胶合板的面积了吗?(学生独立完成。)

  教师板书:5×4=20(平方米)

  出示例1 (同桌讨论,独立完成,最后全班交流。)

  教师板书:S=ah=6×4=24(平方米)

  师:同学们真会动脑筋,能运用所学知识解决生活中的问题。

  (设计思路:将学生带回到了生活中,练习由易到难,符合儿童的心理需求,大多数学生在运用知识解决问题的时候感觉没什么难处。学生就在运用所学知识给别人帮忙的过程中着实体验了把成功的快乐。)

  五、分层练习,强化应用。

  1、填空。

  (1)把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形( )。这个长方形的长与平形四边形的底( ),宽与平行四边形的高( )。平行四边形的面积等于( ),用字母表示是( )。

  (2)0.85公顷=( )平方0.56平方千米=( )公顷

  2、计算下面各个平行四边形的面积。

  (1)底=2.5cm,高=3.2cm。 (2)底=6.4dm,高=7.5dm。

  3、解决问题。

  (1)小明家有一块平行四边形的菜地,面积是120平方米,量得底是20米,它的高是多少?

  (2)一块平行四边形钢板,底8.5m,高6m,它的面积是多少?如果每平方米的钢板重38千克,这块钢板重多少千克?

  (设计思路:几道练习题从易到难有一定坡度,通过练习,既巩固了本节课所学的知识,又使不同层次的学生都得到了发展,拓展了学生的思维。)

  六、总结升华,拓展延伸。

  1、教学小结:同学们,这节课你们学会了什么?说一说你知道哪些解决问题的方法?

  (设计思路:通过“说一说”,使学生对本节课所学知识有个系统的认识,可以提高学生的归纳、总结、概括、表达等多方面的能力。)

  2、课后练习

  (1)、练习十五第1题,第2题。(任选一题)

  (2)、解决问题:选一个平行四边形的实物,量出它的底和高,并计算出面积。

  平行四边形的面积练习题

  1、填一填

  (1)1平方米=( )平方分米=( )平方厘米

  (2)把一个平行四边形转化成长方形,它的面积与原来的平行四边形的面积( )。

  转化后长方形的长与平行四边形的( )相等,宽与平行四边形的( )相等。

  (3)平行四边形的面积=( )×( ),字母公式为( )

  (4)一个平行四边形的底是8.5米,高是3.4米,求其面积的算式是( )

  (5)等底等高的两个平行四边形的面积( )

  2、判断

  (1)形状不同的两个平行四边形面积一定不相等( )

  (2)周长相等的两个平行四边形面积一定相等( )

  (3)知道一个平行四边形的底和其对应的高的长度就能求出它的面积( )

  3、一块平行四边形的玻璃,底是50厘米,高是24厘米,它的面积是多少?

  24厘米

  50厘米

  升级跷跷板

  4、有一个平行四边形的面积是56平方厘米,底是7厘米,高是多少厘米?

  5、一快平行四边形的菜地,底是36米,高是25米,每平方米收白菜8千克,这块地共收白菜多少千克?

  6、一个平行四边形的果园,底是30米,高是15米,中了90棵梨树,平均每棵梨树占地多少平方米?

  智慧摩天轮

  7、已知下图中正方形的周长是36厘米,求平行四边形的面积。

  8、一块平行四边形的铁皮的周长是82厘米,一条底长是16厘米,这条底上的高是20厘米,求另一条底上的高是多少厘米?

  平行四边形的面积教案设计

  【教材分析】

  本课为人民教育出版社《义务教育数学五年级标准实验教材》第一课第五单元“平行四边形区域”。平行四边形面积的计算是基于学生对矩形和正方形面积计算公式的掌握和灵活运用,以及对平行四边形特点的理解。在教材的编排上,注重让学生体验知识探索的过程,使学生不仅掌握面积计算的方法,而且参与面积计算公式的推导过程。在操作中,他们积累了基本的数学思维方法和基本的活动经验,完成了新知识的建构。本课首先通过具体情况,提出了计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何解决它,让学生觉得有必要学习新的知识;第二,培养学生独立操作和探索,使学生能够找到问题的解决方案;最后,让学生总结计算平行四边形面积的基本方法。根据学生不同的剪切方法,组织学生讨论这些剪切方法的共同特点,比较矩形与平行四边形的关系,推导出平行四边形面积的计算公式。

  (教学目标)

  知识与能力目标:使学生运用数的平方法和填充法,探索平行四边形面积的计算公式,初步感受变换思想;使学生掌握平行四边形面积的计算公式,并能正确地利用该公式计算出平行四边形的面积。

  过程和方法目标:通过操作、观察和比较,培养学生的空间概念,培养学生运用转化思维方法解决问题的能力;创造独立和谐的探究情境,使学生在不断的尝试中自我展示、自我激励、体验成功,激发求知欲,陶冶情操。

  情感态度与价值目标:通过活动,培养学生的合作意识和探索创新精神,体验数学知识的奇妙。

  【学习情况分析】

  平行四边形面积教学是在学生掌握并灵活运用矩形面积计算公式的基础上,了解平行四边形的特点而进行的。此外,对这部分知识的学习和应用,将为学生学习后的三角、梯形等平面图形的绘制打下良好的基础。由此可见,本课程是促进学生空间概念发展、渗透转化、等体积变形等数学思维方法的重要环节。学好这一部分对于解决生活中的实际问题有着重要的作用。这节课,让他们练习,边做边学,体验画平行四边形面积公式的过程,让孩子们认识到数学就在身边,培养学生的发散思维,进一步激发学生的学习思维,进一步激发学生学习数学的热情。

  【教学重点】掌握平行四边形面积的计算公式。

  【教学难点】平行四边形面积计算公式的推导过程。

  【教学辅助工具】两个相同的平行四边形、不规则图形、黑板、剪刀、多媒体、课件。

  (教学过程)

  首先,创建情景并引入主题。

  1.游戏介绍:小魔术师。老师展示不规则的图形。

  老师:你能直接算出这个图形的面积吗?

  老师:你能算出这个图形的面积吗?告诉我怎么用它?

  老师:现在变成什么样了?你能算出这个图形的面积吗?如何计算矩形的面积?

  2. 小结:刚才同学们把不平整的部分剪掉,然后移动它来填补空白,然后把不规则的图形转换成学习矩形,这是一种重要的数学思维方法——变换。将未知图形转换为可识别的图形。什么改变了转换后的图形?什么是相同的?(形状变化,面积不变)

  (设计思维:“暖过去”是课堂教学开始的重要环节,起着承上启下的作用。通过提出复习问题,激发学生对已有知识的复习,拓宽学生的学习渠道

  平行四边形的面积教案设计

  教学目标:

  (1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算平行四边形面积。

  (2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。

  (3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。

  教学重点:

  理解并掌握平行四边形的面积计算公式,并能用公式解决实际问题。

  教学难点:

  理解平行四边形的面积公式的推导过程。

  教具、学具准备:

  课件、长方形和平行四边形图片、剪刀、平行四边形框架等。

  教学过程:

  一、创设情境、导入新课。

  大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为平行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)

  你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那平行四边形的面积我们怎样求呢?这节课,我们就共同来探讨平行四边形的面积。(板书课题)

  出示长方形和平行四边形教具,引导学生观察后说一说长方形和平行四边形的各部分名称。长方形与平行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求平行四边形的面积呢?(课件演示)

  二、自主探究,合作验证

  探究一:用数方格的的方法探究平行四边形的面积。

  请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求平行四边形的面积,认真按提示填表。出示温馨提示:

  ①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。

  ②填完表后,同学们相互议一议,并谈一谈发现。

  你是怎么数的?你有什么发现吗?能猜测一下平行四边形的面积公式是什么吗?(学生汇报)

  探究二:用割补的方法来验证猜测。

  小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出平行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)

  我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把平行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)

  (1)用剪刀将平行四边形转化成我们学过的其他图形。(剪的次数越少越好。)

  (2)剪完后试一试能拼成什么图形?

  师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和平行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):

  回顾发现过程:

  1、把平行四边形转化成长方形后,( )没变。因为长方形的长等于平行四边形的( ),宽等于平行四边形的( ),所以平行四边形的面积=( ),用字母表示是( )

  2、求平行四边形的面积必须知道平行四边形的( )和( )。

  探究过程小结(板书)

  师:小刚和小明马上到校门前测量了长方形和平行四边形。得出:长方形的长是6米,宽是4米,平行四边形的底是6米,高是4米。

  然后他们手拉手找到老师说了一些话。你知道他们说了什么?

  生:长方形和平行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演)

  三、运用新知,练中发现

  1、基本练习

  (1)口算下面各平行四边形的面积

  A、底12米,高3米:

  B、高4米,底9米;

  C、底36米,高1米

  通过这组练习,你有什么发现吗?(教学课件)

  发现一:发现面积相等的平行四边形,不一定等底等高。

  (2)画平行四边形比赛(大屏幕出示比赛规则)

  比赛规则:

  1、拿出百宝箱中的方格纸。在方格纸上的两条平行线间,画底为六个格(底固定),看能画出多少个平行四边形。

  2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)

  发现二:1.发现只要等底等高,平行四边形面积就一定相等。

  2.等底等高的平行四边形,形状不一定完全相同。

  四、总结收获,拓展延伸

  1、通过这节课的学习,你知道了什么?

  2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?

  大屏幕出示(教学课件演示)

  平行四边形,特点记心中。

  面积同样大,形状可不同。

  等底又等高,面积准相同。

  要是求面积,底高来相乘。

  (齐读)希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。

  拓展延伸

  请大家看老师的演示。(用平行四边形框架演示由长方形拉成平行四边形)。如果把长方形拉成平行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。

  五、板书设计:

  平行四边形的面积教案设计

  1.进一步认识平行四边形是中心对称图形。

  2.掌握平行四边形的对角线之间的位置关系与数量关系,并能运用该特征进行简单的计算和证明。

  3.充分利用平面图形的旋转变换探索平行四边形的等量关系,进一步培养学生分析问题、探索问题的能力,培养学生的动手能力。

  教学重点与难点

  重点:利用平行四边形的特征与性质,解决简单的推理与计算问题。

  难点:发展学生的合情推理能力。

  教学准备直尺、方格纸。

  教学过程

  一、提问。

  1.平行四边形的特征:对边( ),对角( )。

  2.如图,在平行四边形ABCD中,AE垂直于BC,E是垂足。如果∠B=55°,那么∠D与∠DAE分别等于多少度?为什么? (让学生回忆平行四边形的特征。)

  二、引导观察。

  1.按照课本第30页“探索”画一个平行四边形ABCD,对角线AC、BD相交于点O,量一量并观察,OA与OC、OB与OD的关系。

  2.在如课本图12。1。3那样的旋转过程当中,你观察到OA与OC、OB与OD的关系了吗?

  通过探索,引导学生得出结论:OA=OC,OB=OD。同时又引导学生说出平行四边形的特征:平行四边形的对角线互相平分。

  (培养学生用自己的语言叙述性质。)

  三、应用举例。

  如图,在平行四边形ABCD中,两条对角线AC、BD相交于点O。指出图中相等的线段。

  (引导学生得出结论:AO=OC,OD=OB,AB=CD,AD=BC。本题目的是让学生初步掌握平行四边形对角线互相平分以及对边相等的应用。)

  例3如图,在平行四边形ABCD中,已知对角线AC和BD相交相于点O,△AOB的周长为15,AB=6,那么对角线AC与BD的和是多少?

  (本题应让学生回答,老师板演。注意条理性,进一步培养学生数学说理的习惯与能力。)

  四、巩固练习。

  1.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,已知AC=26厘米,BD=20厘米,那么AO=( )厘米,OD=( )厘米。

  2.在平等四边形ABCD中,对角线AC与BD相交于点O,已知AB=3,BC=4,AC =6,BD=5,那么△AOB的周长是( ),△BOC的周长是( )。

  3.平行四边形ABCD的两条对角线AC与BD相交于点O,已知AB=8厘米,BC =6厘米,△AOB的周长是18厘米,那么△AOD的周长是( )厘米。

  4。试一试。

  在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线,用刻度尺度量出平行线之间的垂线段的长度。得到平行线又一性质:平行线之间的距离处处相等。

  5.练习。

  如图,如果直线l1∥l2.那么△ABC的面积和△DBC的面积是相等的。你能说出理由吗?你还能在两条平行线I1、l2之间画出其他与△ABC面积相等的三角形吗?

  五、看谁做得又快又正确?

  课本第34页练习的第一题。

  六、课堂小结

  这节课你有什么收获?学到了什么?还有哪些需要老师帮你解决的问题?

  七、作业

  补充习题

  平行四边形的面积教案设计

  平行四边形的面积计划学时1

  学习内容分析

  学生已经了学习长方形,正方形,三角形的面积,而本节课开始怎样计算探究平行四边形的面积,计算平行四边形的面积既是对之前学过的知识的延续又是对接下来学习梯形等面积的铺垫。因此,学好它既能对旧知识的迁移又能为今后的学习打下基础。

  学习者分析

  根据心理学知识该阶段的学生知识迁移能力有待提高,空间想象能力,观察能力,动手操作能力较强,

  教学目标知识与技能1、认知目标:通过学生观察、讨论、动手体验,使学生理解并掌握平行四边形面积计算公式,并能解决实际问题,培养学生小组合作能力。

  2、能力目标:通过操作观察比较发展学生的空间观念,学生初步认识转化的思考方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  3.情感目标:让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

  过程和方法:合作学习,自主探索

  情感态度与价值观让学生自我展示、自我激励,体验成功,在不断尝试中激发求知欲,陶冶情操。培养学生探索精神和合作精神。

  知识点学习水平媒体内容与形式使用方式使用效果

  平行四边形面积的计算还未学平行四边形面积公式,但已经学习了三角形,长方形面积公式让同学先自己试图转化计算,然后在ppt展示平行四边形与长方形的转换过程在ppt展示平行四边形与长方形的转换过程使得同学更形象生动了解长方形和平行四边形之间的转换,有利于同学推导出平行四边形的面积公式

  课后练习同学们已经学习了平行四边形的面积但还未实践应用在ppt展示练习题在ppt展示练习题同学更形象生动了解平行四边形公式,有利于同学的学习

  教学过程

  教学环节教学内容所用时间教师活动学生活动设计意图

  展示出长方形问同学这样拉回变成生命形状,生命改变了,什么没有改变为平行四边形的讲解和本节课的内容铺垫5分钟展示出长方形并通过拉其一端展示出平行四边形,同时扔出疑问给同学解决,为本节课做铺垫学生通过想象观察配合课堂进行由生活中学生熟悉的事物引入新知,激发起学生的学习兴趣,增强了学生的探索欲望和积极性,同时为新知的学习做好了情感铺垫

  让同学们通过已经学习的知识计算平行四边形的面积

  同学们通过已经学习的知识计算平行四边形的面积,运用旧知识迁移的方法计算,巩固旧知识12分钟教师下去巡视同学做的情况,进行总结,然后再在ppt展示学生通过已经学习的知识在小组讨论下用不同的方法计算出平行四边形的面积这一环节充分发挥学生学习的主体性,培养学生的探索精神,为学生提供了开放的探索时间和空间,鼓励创新、发现;放手让他们去操作、去探索,使学生获得战胜困难,探索成功的体验。从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主题,体现了活动化的数学学习过程,可以有效提高课堂教学效率与质量。

  通过ppt的转换总结得出平行四边形面积公式平行四边形面积公式的推导15分钟教师在ppt展示各种转换方法也把长方形转换平行四边形展示出来引导同学说出平行四边形的面积对刚刚的学习进行总结,得出平行四边形的面积运用生动形象的课件,再一次演示其中一种方法的验证过程.并介绍平行四边形的"高"和"底".让学生体验将平行四边形转化成长方形的过程,加深学生对图形转化的理解,并在具有挑战性的活动中激发学生参与探究活动的兴趣

  对平行四边形公式进行巩固练习同学已经学平行四边形的公式但还未实际应用8分钟教师根据学生所学情况在ppt展示所对应练习题学生根据所学的知识做练习巩固知识点通过总结,疏理知识,帮助学生深化知识的理解掌握,进一步建构完整的知识体系;另外,学生学会自我评价,互相评价,体验成功,增强学好数学的信心

  课堂教学流程图

  教学过程

  一、情境创设,揭示课题

  师:同学们,你们看老师手上拿的什么形状?如果老师现在固定这个端点,再将右边这个端点向右拉,你们想象一下,它会变成什么形状呢?

  生:平行四边形

  师:对了,就是平行四边形,你们在这个过程中什么改变了什么没有发生改变呢?

  生:形状,角度,面积

  师:那面积是变大还是变小

  生:此时回答不一

  教师根据学生的回答,选出本节课的研究任务,揭示课题“我们就共同研究一下,平行四边形的面积。(板书)

  二、创设问题情景,引发自主探索.

  1、提出问题,鼓励猜测

  那么大家猜一猜平行四边形的面积可能与什么有关?(可能与边有关)只与它边的长度有关?大家看老师手中这个平行四边形,(演示)还可能与什么有关?(高)那么平行四边形的面积究竟与它的底和高有怎样的关系?下面就让我们一起来研究。

  2、自主探究、验证猜测:

  师:用剪刀把平行四边形剪成已经学习过的图形来计算他的面积,想一想你打算用什么方法来计算?

  3、展示成果,互相交流

  同学的计算方法不一,抽取最简单的进行讲解,引出数格子的方法,让同学们总结长方形面积和平行四边形的面积关系

  指名上前演示并表述用方格图数两个图形面积的过程和方法,并展示填写的表格。

  方法二:转化法

  师:有什么发现?

  师:你们成功的把平行四边形转化成了长方形,这一长方形与原来的平行四边形有什么关系?

  生:长方形的长等于平行四边形的底、宽等于平行四边形的高

  师:是这样吗?师课件演示解说强调平移

  师:还有其他的剪拼方法吗?

  4、整理结论

  师:你是怎么剪的?沿什么剪的?为什么要沿高剪开?拼出的长方形和原来的平行四边形之间,你发现了什么?

  提问:(1)平行四边形转化成长方形,面积变了吗?

  (2)方形后的长和宽分别与平行四边形的底和高有什么关系?

  (3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?

  师:你们觉得这几种方法有没有共同之处?

  (都是沿高剪开的,都是把平行四边形转化成长方形)

  课件演示,结合课件填写各部分间的相等关系。

  板书:底=长高=宽长方形的面积=正方形的面积

  师:我们一起读一下我们发现的结论。

  师:请同学们翻开书自己看书学习81页倒数第2自然段的内容。

  师:你学到了些什么?

  师:如果用表示S平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形面积的计算公式可以写成:S=ah

  三、方法应用

  师:现在我们来算一下这块平行四边形草坪的面积是多少?(大屏幕中的字母全部去,换上数据底6厘米,高4厘米。)

  师:这个平行四边形的面积大家会算吗?请你在自己的本子上计算一下。(生独立计算,选一个快的,正确的上台板书)

  师:这个6是什么?(a),4呢?(h),那么底和高求出来的是什么?(S)。你后面用的单位为什么是平方厘米呀?

  四、梳理知识,总结升华

  师:这节课同学们通过猜想发现平行四边形的面积等于底乘高,并且经过验证证明了你们的猜想是正确的。对于这节课学习的内容你们有没有什么问题或不明白的地方?能说说这节课,你是怎么学习的?你有哪些收获吗?

  五、课堂检测

  修改建议

  结合你对教学设计的想法,可以对教案模板进行修改,以便更符合你教案内容。

  《平行四边形的面积》教案 篇13

  教学目标

  1、巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。

  2、养成良好的审题习惯。

  教学重点

  运用所学知识解答有关平行四边形面积的应用题。

  教学难点

  运用所学知识解答有关平行四边形面积的应用题。

  教学准备

  三角板,直尺等。

  教学过程

  一、基本练习

  1.口算。

  4.9÷0.7 5.4+2.6 4×0.25 0.87-0.49

  530+270 3.5×0.2 542-98 6÷12

  2.平行四边形的面积是什么?它是怎样推导出来的?

  3.口算下面各平行四边形的面积

  ⑴底12米,高7米;

  ⑵高13分米,第6分米;

  ⑶底2.5厘米,高4厘米

  二、指导练习

  1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

  ⑴生独立列式解答,集体订正。

  ⑵如果问题改为:“每公顷可收小麦7000千克,这块地共可收小麦多少千克?

  ①必须知道哪两个条件?

  ②生独立列式,集体讲评:先求这块地的面积:250×780÷10000=1.95公顷,

  再求共收小麦多少千克:7000×1.95=13650千克

  ⑶如果问题改为:“一共可收小麦58500千克,平均每公顷可收小麦多少千克?”又该怎样想?与⑵比较,从数量关系上看,什么相同?什么不同?

  讨论归纳后,生自己列式解答:58500÷(250×78÷1000)

  ⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

  三、巩固练习

  1.测量右图中平行四边形的一条底边和它对应的'高,

  并计算它们的面积。

  2.分别计算图中每个平行四边形的面积,

  你发现了什么?(单位:㎝)

  四、总结全课

  通过本节课的练习,你有什么收获?你还有哪些疑难问题?

  五、作业

  优化作业。

  《平行四边形的面积》教案 篇14

  一、说教材

  (一)教学内容:义务教育六年制小学数学课本(试用)第八册第三单元“平行四边形、三角形和梯形”中的“平行四边形的面积计算”。

  (二)教材分析:

  平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材在编写时注意培养学生实际操作能力。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。在引导学生动手操作的基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。

  几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。

  (三)学生分析:

  学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

  (四)教学目标预设:

  结合本节课所学知识特点和学生的思维特点现拟定如下目标:

  1.知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。

  2.能力目标:在比一比、动一动中发展空间观念;在看一看、想一想中初步感知等积转化的思想方法,提高解决问题的能力。

  3.过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养互相合作、交流、评价的意识。

  4.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。

  (五)教学重点、难点及关键点剖析:

  通过实践理论――实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出长方形等积转化成平行四边形。

  (六)教具、学具准备:

  多媒体、平行四边形,学生准备任意大小的平行四边形纸片、三角板、剪刀。

  二、说教法、学法

  (一)设计理念:

  《数学课程标准》提出了重视学生学习过程的全新理念,要充分发挥学生的主观能动性,让学生参与知识发生发展的全过程。教师在课堂教学中应尝试采取多种手段引导每一个学生积极主动地参与学习过程。

  “问题是数学的心脏。”、“问题是一切思维的起点。”在教师创设的情境中,学生利用原有的知识和技能无法直接解决问题,就会产生认知上的矛盾、内在的需要和学习的驱动力,从而积极、主动地去学习。

  数学学习活动是一个以学生已有知识和经验为基础的主动建构过程,学习者能否主动建构形成良好的认知结构,取决于原有的认知结构里是否具有清晰、可同化新知识的观念,以及这些观念的稳定情况,所以教师不仅应从整体上把握教材知识结构,而且应从纵向考虑新旧知识是如何沟通联系的。

  每个人都以自己的方式理解事物的某些方面,学习过程要增进学习者之间的合作,使其看到那些与自己不同的观点,完善对事物的理解,教师是意义建构的帮助者、促进者,而不是知识的提供者和灌输者,应成为学生学习的高级伙伴或合作者。教师应重视师生之间、生生之间的相互作用,通过创设情境和组织学生合作与讨论,使学生认识事物的各个方面,在已有知识和经验的基础上建构新知识。

  学生是学习的主人,新课程要求遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历知识的形成过程。未来的社会既需要学生具有获取知识的能力,也需要学生具有应用知识的能力,而知识也只有在能够应用时才具有生命力,才是活的知识。

  (二)说教法

  本节课教法上最大的特点是让学生动手操作,把静态知识转化成动态,把抽象数学知识变为具体可操作的规律性知识。指导学生理论联系实际,开展多次讨论,使他们自主、快乐地解决问题。

  在本节课中,我还力图体现出学生学习方法的转变:从被动接受学习变为在自主、探究、合作中学习。让学生自己提出问题,再自己想办法解决,并能以小组为单位共同合作完成;让学生亲身体验知识的形成过程,促进学生思维的发展。

  在导入部分我采用了创设生活情境,设疑引入的方法来激发学生的学习兴趣,这为充分发挥学生主体作用奠定了基础。

  在探究过程中,我很重视学生动手操作、自主探索和合作交流的学习方式,大胆放手,给学生时间和空间,让他们在熟悉的具体情境中,通过探究和体验,感受新知;联系生活经验,构建新知;小组合作交流,扩展新知;创新活动设计,超越新知。

  (三)说学法

  坚持“发展为本”,促进学生个性发展,并在时间和空间诸方面为学生提供发展的充分条件,以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,注意引导学生怎样有序观察、怎样操作、怎样概括结论,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。使学生通过自己的`努力有所感受,有所感悟,有所发现,有所创新。

  小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。

  “学以致用”是学习的出发点和归宿点,也是学习数学的终结所在。让学生感到数学的有趣和可学,我们还应注重将数学知识提升应用到生活中,提高学生处理问题的实际能力,让学生真正做到会学习、会创造、会生活的一代新人,让数学课堂真正成为学生活动的、创造的课堂。

  三、教学过程

  为了更好地完成本节课的教学任务,突出重点,突破难点,抓住关键,教学过程分为以下几个教学环节:

  (一)创设情境,设疑引入

  王林家和张强家各有一块地,如图:

  4米 4米

  王林家 张强家

  6米 6米

  可是谁家的地面积能大些呢?他俩都想知道,同学们,你们愿意帮助他们吗?大家先猜猜看?让学生猜想长方形和平行四边形面积的大小?为什么?主要是向学生暗示了当长方形与平行四边形长与底,宽与高分别相等时,它们的面积会相等,初步感知到平行四边形的面积与底和高有关。王林家的地是长方形,我们能求出面积。而张强家的地是平行四边形,怎样来求平行四边形的面积呢?这就是我们今天要研究的平行四边形的面积计算。

  这样设计,由生活中的问题很自然地把学生带入新知的学习环节,使学生完成了学习新知的心理准备――成为一名探索者,为充分发挥学生主体作用奠定了基础。

  (二)操作探索,推导公式

  1、数方格法求面积(出示)

  给上面的二块地的长、宽与底、高分别缩小100倍(变成了6厘米和4厘米)再加上网格,如上图,(不满一格按半格计算,每小格表示1平方厘米)数完后,你发现了什么?

  这样设计,让学生掌握用数来计算平行四边形面积的方法,进一步证实自己的猜想是正确的,初步感知到了平行四边形的面积=底×高。

  2、动手实践,推导公式

  ①实践操作

  教师启发谈话,如果要求在实际生活中平行四边形的面积,经常用数方格这种方法方便吗?这就需要寻找一种更简单的方法。那么平行四边形的面积到底与什么有关?再通过出示:当平行四边形的高不变,它的面积随着底边的缩小而缩小,说明平行四边形的面积与底有关;当平行四边形的底不变,它的面积随着高的缩小而缩小,也说明了平行四边形的面积与高有关。我们已学过了长方形和正方形的面积计算公式,能不能根据已掌握的知识来解决新知,求出平行四边形的面积呢?然后让学生实践操作,想办法把平行四边形转化成长方形。要鼓励学生多角度思考问题,再通过合作交流,能想出各种方法将平行四边形转化成长方形。

  让学生通过动手操作拓展了学生思维的空间,这样不仅强化平移转化方法在实际中的应用,也大大提高了学生运用已有知识解决实际问题的能力,注重了知识的获得过程。

  ②归纳方法

  提问:剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示?

  在这个环节中主要采用了动手操作、自主探索和合作交流的学习方式,通过动手操作、探索,充分发挥学生学习的主体,培养学生探索精神,使学生获得战胜困难,探索成功的体验,从而产生学习数学的兴趣,建立学习数学的信心。这样做完全把学生当作学习的主体,体现了活动化的数学学习过程,有效地提高了课堂教学效率与质量。

  3、学习例题

  例 一块平行四边形的草地,底是18米,高是10米。这块草地的面积是多少?

  这道例题及时地巩固了所学知识。

  (三)巩固练习,应用深化

  1.现在我们不用数方格的方法,也能知道王林家和张强家地面积的大小了。并完成P71 试一试

  2.完成P71练一练1、2

  3.选择正确的算式:

  求出下图的面积(单位:分米)

  A.12×5( ); B.12×10( ); C.10×6( ); D.5×6( )。

  4.猜谜游戏:

  有一个平行四边形,它的面积是12平方分米,请你猜一猜它的底和高各应是多少分米?看谁猜出的答案最多。

  并说明等以后学习了分数乒,还会有更多的答案。

  5.思考题

  用铁丝围一个右图这样的平行四边形,至少需要用多长的铁丝?

  (单位:厘米)

  (四)全课总结,质疑问难

  让学生说说本节课学到的知识,并说说是怎样学到的,还有什么问题要与教师或同学们商讨吗?目的是使学生对本节课所学的知识有一个系统的认识,培养学生整理知识的能力,和质疑问难的能力。

  附板书设计: 长方形面积= 长×宽

  平行四边形面积= 底×高

  四、说预设效果

  这节课的设计,给学生充足的眼看、手做、耳听、嘴说、脑想的时间和空间,学生在实践中理解新知,并尽可能地从多角度来验证结论,这使学生求异思维和创新能力得到最大限度的训练。培养了学生动手操作能力,逻辑思维能力,使学生掌握学法,为学习提供一把释疑解难的钥匙。

  《平行四边形的面积》教案 篇15

  教学目标:

  (1)通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的面积,培养学生初步的逻辑思维能力和空间观念。

  (2)能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。

  教学重点:通过操作演示,使学生理解平行四边形面积计算公式的推导过程,掌握平行四边形面积计算公式,能正确计算平行四边形的.面积。

  教学难点:能灵活运用平行四边形的面积计算公式,根据面积计算平行四边形的底和高,提高分析问题和解决问题的能力。

  教学准备:教具、投影。

  教学过程:

  一、复习准备:

  1.平行四边形、三角形、梯形的概念。

  2.平行四边形、三角形的性质。

  3.各图形的对称情况。

  4.图形的大小用面积来表示。 (引人新课)

  二、新授

  1.投影,并观察,填书本P1的空格

  2.操作:用割补法把平行四边形拼成长方形。

  3.量一量长方形的长和宽与平行四边形的底和高有怎样的关系?

  4.得出:

  长方形的面积= 长 × 宽

  平行四边形的面积=( )×( )

  5.怎样计算下面图形的面积?

【《平行四边形的面积》教案】相关文章:

平行四边形的面积教案11-18

平行四边形面积教案01-28

《平行四边形的面积》教案01-20

平行四边形面积教案优秀05-08

[必备]平行四边形的面积教案06-18

人教版平行四边形的面积教案11-26

《平行四边形面积的计算》教案09-14

平行四边形面积计算的练习教案04-02

面积与面积单位教案05-27