当前位置:9136范文网>教育范文>教学设计>《组合图形的面积》教学设计

《组合图形的面积》教学设计

时间:2025-12-06 19:03:47 教学设计 我要投稿

《组合图形的面积》教学设计15篇【通用】

  在教学工作者开展教学活动前,编写教学设计是必不可少的,借助教学设计可以促进我们快速成长,使教学工作更加科学化。那么你有了解过教学设计吗?下面是小编为大家整理的《组合图形的面积》教学设计,欢迎大家分享。

《组合图形的面积》教学设计15篇【通用】

《组合图形的面积》教学设计1

  教学内容:

  义务教育课程标准实验教科书

  数学五年级上册。

  教学目标

  1.使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积。

  2.综合运用平面图形面积计算的知识,进一步发展学生的空间观念。

  3.培养学生的认真观察、独立思考的能力。

  教学重点:

  组合图形的面积的计算。

  教学难点:

  组合图形的分解。

  教具准备:

  图片、有关本课设计的课件。

  教学过程:

  一、复习导入

  1、提问:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。(指名回答)

  2、提问:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?

  3、导入新课:

  ①课件出示:老师也搜集了一些生活中物品的图片

  『房子、队旗、风筝、空心方砖、指示牌、火箭模型』

  ②提问:这些物品的表面,都有哪些图形?谁来选一个说说。

  生1:小房子的表面是由一个三角形和一个正方形组成的。

  生2:风筝的面是由四个小三角形组成的。

  生3:火箭模型的面是由一个梯形、一个长方形和一个三角形组成的。……

  ③提问:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?

  ④ 小结:组合图形是由几个简单的图形组合而成的。

  ⑤谈话:说一说,生活中有哪些地方的表面有组合图形?(学生自由回答)

  ⑥设问导题:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识?

  ⑦板书课题:组合图形面积的计算。

  二、新课教学

  1、课件出示:下图表示的是一间房子侧面墙的形状。

  2、提出问题:认真观察这个组合图形,怎样计算出面积呢?

  3、分组讨论:大家在图上先分一分,再算一算。然后,在小组里互相说说自己的想法。

  4、先分别算出三角形和正方形的面积,再相加。

  5、教师边听边列式板演:

  5×5+5×2÷2

  =25+5

  =30(平方米)

  6、提问:还有不同的算法吗?

  生:把这个组合图形分成两个完全一样的梯形。『教师用课件演示:两个完全一样的梯形闪动』

  7、回答:先算出一个梯形的面积,再乘2就可以了。

  学生说算式教师进行板演:

  (5+5+2)×(5÷2)÷2×2

  =12×2.5÷2×2

  =30(平方米)

  8、提问:你认为哪种方法比较简便呢?

  学生说自己的想法。

  9、回答:在计算组合图形的面积时有多种算法,同学们要认真观察、多动脑筋,选择自己喜欢而又简便的方法进行计算。

  10、提问:通过学习,你认为怎样计算组合图形的面积?

  11 、小结:在计算面积时,先把组合图形分解成已经学过的图形,然后分别求出它们的面积再相加。

  三、课堂练习

  1、课件出示:『队旗』要做一面这样的队旗,需要多少布呢?认真观察图,选择有用的数据,你想怎样计算?把你的算法在小组里交流。

  指名汇报。对于不同的算法,师生共同分析,提升比较简便的方法,加以指导。

  2、课件出示:『空心方砖』它的实际占地面积是多少?自己独立思考并计算,说说自己的想法。

  3、课件出示:『火箭模型的平面图』选择有用的数据,独立完成,师生共同订正。

  4、提问:同学们刚才计算的`是老师搜集的组合图形的面积,你们想不想算一算自己搜集的组合图形的面积呢?选择一个简单的图形,量出有用的数据,算一算组合图形在纸上的面积。先指名汇报,再互相检查算得对不对。

  5、出示题目:(单位:厘米)计算下面图形的面积。你有不同的算法吗?

  四、全面总结

  组合图形的面积计算可以用每个图形的面积之和来计算,也可以利用组成成特殊图形的面积来计算,关键是熟练把组合图形拆分成各个容易计算面积的特殊图形。

  五、布置作业

  教学反思:

  1、选取的图形较为贴近学生实际生活,因此这些图形更容易让学生理解和掌握,可操作性强。

  2、通过让学生自己动脑来寻找方法来计算组合图形的面积,此教学方式较为新颖,引起学生兴趣,学生课堂参与积极,参与面较广。

  3、课堂中教学重点较为突出,学生通过活动基本能掌握组合图形的计算方法。

  4、课程中由于安排学生自主动脑,动手的活动较多,但学生的讨论不太充分,对学生的思维启发的不够深入。

  5、课前对学生的分析还不够充分,因此在课堂中对学生已经认识一致的问题安排了太多时间,显得有些浪费,因此在以后该课的教学中应该多些复杂图形,充分发挥学生的主动性,锻炼学生的多元化思维,寻找更多的计算方法。

《组合图形的面积》教学设计2

  新课标明确指出数学教学是数学活动的教学,是师生之间交往互动与共同发展的过程。在教学中要创设有助于学生自主学习的问题情景,激发学生学习的潜能,鼓励学生大胆创新与实践。

  【教学活动】

  一、创设问题情景(多媒体出示课件)

  老师:在一块长16m、宽12m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半。假如你是设计师,你能设计方案吗?

  布置任务:同学们认真审题,理解题意后,分组进行讨论,设计具体方案,并说说你的想法。

  二、活动与探索

  各小组纷纷讨论设计(电脑机房,用“几何画板”画图),教师巡视,然后请各小组代表发言。

  小组1:我们组设计的方案如图(1)所示,连接矩形的对角线把相对的两个三角形作为花园,整个图形对称美观。且根据矩形的性质一定成立。

  老师:噢,同学们设计来想一想,小组1的设计符合要求吗?

  学生1:小组1的设计符合要求,只要过矩形对角线交点的直线与对边相交,都会把矩形面积平分。

  老师:很好,那你们组设计的方案是什么?是否有别的思路?

  小组2:我们组的设计方案如图(2)所示,花园的四周是小路,它们的宽度都相等,这样设计既美观又大方。通过列一元二次方程解得小路的宽是2 m或12 m。

  老师:是吗?大家想一想,小组2的设计符合要求吗?若符合,请说明是如何列方程求解而得的?若不符合,请说明理由。

  学生2:小组2的设计符合要求。

  我们可设小路的宽度为x m,根据题意,列方程:(16-2x)(12-2x)= ×16×12,化简得x2-14x-24=0,然后利用配方法来求解这个方程,即,x2-14x=24,(x-7)2=25,x-7=±5,所以,x1=2,x2=12。因此小路的宽度为2 m或12 m。

  综上所述知,小组2的设计方案符合要求。

  学生3:不对,因为荒地的宽度只有12 m,所以小路的宽不能为12 m,因此小组2方案的结论不妥当,应改为:花园四周小路的宽度只能是2 m。

  (大家不约而同地鼓掌)

  老师:好,从大家的掌声中可知学生3说得在理。我们在解决实际问题时要注意解的合理性。因为一元二次方程有两个根,不一定都符合实际问题,解完之后要按题意来检验这两个根是否为实际问题的解。这一点,学生3所在的组做得很好,大家要学习他从多方面考虑问题。接下来我们来看其他组设计的方案。

  小组3:受第一组的启发,我们组又设计了一个方案,如图(3),以矩形的对角线的交点为圆心,以5、53 m长为半径在矩形中间画一个圆,这个圆也可作为花园的场地。

  小组4:我们也设计了一个方案,如图(4)。

  以矩形的四个顶点为圆心的扇形,和小组3的一样,扇形的半径为5、53 m,我们把扇形以外的荒地作为花园的场地。

  老师:同学们的方案设计得都很好,能触类旁通,太棒了!其他组怎么样?

  小组5:我们组设计的方案如图(5)。

  以一边的中点为顶点的等腰三角形作为花园的场地。因为图中阴影部分的面积为69 m2,刚好是矩形面积的一半,所以这个设计也符合要求。

  小组6:我们组设计的方案如图(6)。顺次连接矩形各边的中点,所得的.平行四边形作为花园的场地。因为矩形四个顶点处的直角三角形都全等。每个直角三角形的面积是24 m2,所以四个直角三角形的面积之和为96 m2,则剩下的面积也正好是96 m2,即等于矩形面积的一半。因此这个设计方案也符合要求。

  小组7:我们组设计的方案如图(7)。图中的阴影部分可作为建花园的场地。经计算,也符合要求。

  小组8:我们组的设计方案如图(8)。图中的阴影部分是作为建花园的场地。

  老师:噢,同学们能帮助求出图中的x吗?

  生:能,根据题意,可得方程:2× (16-x)(12-x)= ×16×12,即x2-28x+96=0,(x-14)2=100,x-14=±10。所以x1=24,x2=4。因为矩形的长为16 m,所以x1=24不符合题意。因此图中的x只能为4 m。

  老师:同学们真棒,通过大家的努力,设计了这么多在矩形荒地上建花园的方案。还有没有其他不同的方案?

  学生4:我的设计方案如图(9)所示。不知是否可行。

  老师:你能求出图中的x吗?

  解:根据题意,得(16-x)(12-x)= ×16×12,即x2-28x+96=0。解这个方程,得x1=24(舍去),x2=4。所以x=4。

  老师:真的不容易,同学们的方案真是五花八门。不仅应用所学的知识解决了实际问题,而且各个设计还注意了图形的对称性。大家肯定还有其他不同的想法,我们课后再交流。以后,若你家要建花园,可千万别错过这样的机会。

《组合图形的面积》教学设计3

  教材分析

  《组合图形的面积》是第五单元的第一课。学生在三年级已学习了长方形和正方形的面积计算,在教材第二单元又学习了平行四边形、三角形和梯形的面积计算,本课组合图形面积的计算是这些知识的`延展,也是实际生活中需要解决的问题。在已有知识基础上学习组合图形,一方面可以巩固基本图形的面积计算,另一方面还能将所学知识加以综合运用,提高学生解决实际问题的综合能力。

  学情分析

  作为五年级的学生,通过之前的学习对于平面基本图形的感知和认识已有了一定的基础,也掌握了一些计算图形面积和解决图形问题的方法。但本班学生分析思考能力较差,基础较薄弱,所以应进一步提高知识的综合运用能力,加强团体合作精神,善于去交流思考,探索解决问题的策略。

  教学目标

  教学目的:

  1、在自主探索活动中,理解计算组合图形面积的多种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  情感、态度和价值观:

  1、通过联系生活实际,使学生感受到计算组合图形面积的必要性。

  2、学生通过参与探索活动,思维得到拓展,能力得到了提升,同时也掌握了多种解题策略。

  3、通过小组探索研究,使学生认识到与人合作的重要性,从而加强合作意识。

  过程和方法:

  1、在解决组合图形面积时,通过认真观察,独立思考、自主探索寻找解决问题的策略 。

  2、通过小组讨论交流,理解解决问题的多种策略,从而经过比较选择最好的解题方法。

  教学重点和难点

  重点:能正确计算组合图形的面积。

  难点:能根据各种组合图形的条件,正确选择计算方法并解答。

《组合图形的面积》教学设计4

  教学内容:

  苏教版小学数学第十册第106页例10及练一练,练习十九第6—9题。

  教学设计构想:

  在《圆》这个单元的教学中,圆是从生活中引入,进而探讨圆的特征及各部分名称,和生活中为什么很多物体都是圆形的等等,使学生感知圆在生活中无处不在,圆是美丽的。再探讨了求圆的周长计算方法和求圆的面积计算的方法后,并将之运用到生活中解决了很多生活中的实际问题,使学生体会到数学来源于生活,高于生活,再回归到生活中能帮助我们去解决实际问题,提高学习能动性。

  《组合图形的面积》的设计理念依然是——由生活中的组合图形引入新课,进而回归到生活中去解决圆环形铁片的面积和窗户的面积以及光盘的面积。同时本节课的教学设计突出数学思想方法的渗透,让学生积极主动参与知识的形成过程,重视将解决问题的策略、技巧潜移默化的交给学生,让学生获得了数学思想方法,并培养了学生探索问题的能力。

  教材分析:

  本节课主要让学生利用已经掌握的圆的面积及其它图形面积公式计算组合图形面积。例题选择的素材是计算圆环铁片的面积。教材着重通过呈现解决问题的步骤引导学生掌握求圆环面积的基本思路。教材先让学生按步骤解答问题,然后启发学生联系学过的运算律探索简便计算方法。“试一试”和“练一练”中的组合图形都是由两个基本图形组合而成,计算这些组合图形的面积,有时需要计算两个基本图形的面积之差,有时需要计算两个基本图形的面积之和。

  学情分析:

  《组合图形的面积》是在学生认识了圆的特征、圆各部分名称、掌握了圆的周长计算和圆的面积计算方法的基础上,进行组合图形面积计算的教学的。

  教学目标:

  1、让学生结合具体情境认识圆环,掌握圆环的特征,掌握计算圆环的面积的方法。能正确计算简单的有关圆的组合图形的面积。

  2、通过操作、探索、发现、交流等活动,培养学生独立思考、合作创新意识和灵活运用知识解决问题的能力,进一步发展学生的空间观念和交流能力。

  3、在解决实际问题的过程中,提高学生对数学的好奇心和求知欲,感受数学的魅力,体会数学的应用价值。

  教学重点:

  探索并掌握组合图形的面积计算方法。

  教学难点:

  灵活地把组合图形转化为所学过的基本图形,正确计算。

  教学准备:

  PPT课件,圆规、硬纸、剪刀(学生也准备)

  教学过程:

  一、复习导入

  1、师:前面学习了圆的面积计算,说说圆面积的计算公式?(板书)回顾一下我们还学习了哪些平面图形面积的计算公式?(板书)

  2、引入新课:生活中我们不但能看到圆形的物体,还常常会看到由圆和其他图形组成的图形(出示课件),像这样由几个简单的图形组合而成的图形叫组合图形。(板书:组合图形)组合图形在日常生活中有着广泛的应用,认识了生活中的组合图形,这节课我们将利用已有的知识一起来研究有关组合图形面积的计算(出示课题)。

  [设计意图:在复习所学的基本图形面积计算的基础上,通过生活中的组合图形引入新课,使学在头脑中对组合图形产生感性的认识。为下面学习求组合图形的面积打下基础。]

  二、探索新知

  1、认识圆环

  (1)出示圆环形铁片(课件)

  问:知道这个铁片是什么图形吗?仔细观察:圆环有些什么特征呢,谁来向大家介绍一下(生介绍圆环)

  师对学生的回答给与评价。明确:圆环是两个圆心相同、半径不相等的圆形所组成的宽度相等的图形。

  (2)联系生活

  同学们想一想:生活中哪些地方还有圆环?

  2、做圆环

  (1)谈话:我们认识了圆环,现在你能用准备好的材料动手做一个圆环吗?

  指名学生展示自己做的圆环,并向大家介绍做圆环的方法。

  (2)师拿出自己做的圆环并小结做圆环的方法。

  请生指出圆环的面积是哪部分。

  [设计意图:学生在认识了圆环的基础上,引导学生找生活中的圆环,并动手做出圆环,由具体的实物抽象出几何图形,不但让学生经历知识的形成过程,使学生能直观地发现、理解并掌握圆环面积计算方法,而且对数学知识与生活的紧密联系有了一定的认识。]

  3、学习例10

  (1)在圆环形铁片图的右边出示例10(课件)

  请生读题,你获得了哪些信息?

  问:求这个铁片的面积,就是求什么形状的面积?

  师:会求这个铁片的面积吗?(生尝试做)指名板演,师巡视,发现有用简便做法的请上台板演(如果没有用简便方法做的,在第一种方法反馈之后,可启发学生有简便做法吗?)。

  同桌交流求面积的方法。

  (2)反馈第一种基本方法,请板演学生当小老师,说说自己的解题思路。

  板书:外圆面积—内圆面积=圆环面积。

  反馈第二种方法,请板演学生说说你是怎样想的?

  两种方法有什么联系?(运用乘法分配律)

  (3)师生共同小结:计算圆环面积的基本方法是从外圆面积中减去内圆面积,还可以进行简便计算。如果用R表示外圆半径,用r表示内圆半径,那么,求圆环面积的计算公式就是:S=πR2 —πr2或S=π(R2—r2)(板书)

  [设计意图:让学生经历圆环面积的简便算法的形成过程,鼓励学生用不同的方法进行计算,并引导学生发现简便方法,体现两种方法之间的内在联系。]

  4、对比,归纳方法

  出示大小两圆拼成的'新图形,与圆环图进行对比(课件),请学生说说这两题的联系与区别。归纳此类组合图形面积的计算方法(求面积之差)。

  5、尝试“试一试”(出示课件)

  (1)出示“试一试”,学生小组讨论:

  窗户的形状是由哪些基本图形组合而成的?

  要求窗户的面积就是求什么?

  半圆和正方形有什么相关联的地方?

  半圆面积该怎样求?

  (2)再全班交流。

  (3)学生尝试列式计算,指名板演。

  (4)反馈,明确:正方形的边长就是半圆的直径。交流解题方法,重点强调半圆面积必须是用整圆的面积除以2(别忘了除以2)。

  5、观察比较,小结方法

  (1)讨论:例题中的圆环和“试一试”中的窗户,两题中的图形

  都属于组合图形,两个图形的组合方式有什么不同的地方?窗户和圆环在求面积上有什么不同?你发现他们在解决问题的思路有什么相同的地方?有什么不同的地方?

  (2)组织全班交流。(圆环是大圆里挖去小圆,窗户是半圆形和正方形两个图形拼加。求圆环面积是大圆面积减去小圆面积,求窗户面积是半圆形面积加上正方形面积。解题思路相同之处都是要先算出组合图形中的基本图形的面积,不同之处是一个是基本图形的面积相减,一个是基本图形的面积相加。)

  (3)小结归纳组合图形面积计算基本方法。

  师:圆、半圆或其它基本的平面图形组合在一起,产生组合图形,在计算组合图形面积的时候,先看清这个组合图形是由哪些基本图形组成的,再根据组合方式决定把基本图形的面积相加还是基本图形的面积相减。

  [设计意图:引导学生充分讨论交流,根据讨论的结果,总结求组合图形的方法,注重将解决问题的策略、技巧潜移默化的交给学生,让每个学生都参与到数学活动中来。]

  三、运用巩固

  1、基本练习:练一练(课件出示)

  思考:(1)下面的组合图形的需要计算哪些基本图形的面积?

  (2)涂色部分面积怎样求?

  (3)左图,两个基本图形有什么联系?右图呢?

  学生先同位交流,再全班交流,(明确:左图中长方形的宽与圆的半径相等,右图中半圆的直径是三角形的高。)然后每人各选一题列式计算。

  2、综合拓展练习:练习十九第6题(课件出示)

  (1) 计算下面组合图形涂色部分的面积各需要需要哪些条件?

  (2) 涂色部分面积怎样求?

  学生先同位交流,再全班交流:说说计算需要测量哪些数据,再交流算法。

  3、眼力大比拼:三个正方形涂色部分的面积相等吗?为什么?(练习十九第7题课件出示)

  指名学生根据图形作出直观的判断,并说说判断的方法。

  四、总结交流

  今天我们一起学习了什么知识?你有哪些收获?在求组合图形的面积时一般需要注意什么?有什么宝贵的解题经验想和大家分享?

  五、实践延伸

  出示光盘,同学们你能想办法算出(自己家里的)光盘的面积吗?课后完成。

  [设计意图:练习设计体现了针对性、层次性、综合性和实践性。最后的课外延伸环节,让学生计算自己熟悉的光盘的面积,可以提高学生运用数学知识解决实际问题的能力,感受到数学在生活中的应用价值和数学的魅力所在。]

  附:板书设计

  组合图形面积

  基本图形的面积相加或相减

  例:外圆面积—内圆面积=圆环面积。

  S=πR2 —πr2

  S=π(R2—r2)

《组合图形的面积》教学设计5

  教学目标

  1、在自主探索的活动中,归纳计算组合图形面积的多种方法。

  2、能根据各种组合图形的条件,有效地选择计算方法进行解答,并能解决生活中相关的实际问题。

  3、培养学生探索数学问题的积极性,增强学生学习数学的信心和兴趣。

  教材分析

  在本节课之前,学生已经学习了长方形、正方形、平行四边形、三角形、梯形五种图形的面积计算方法,本课时在此基础上学习组合图形面积的计算,是前面所学知识的发展和应用,也是日常生活中经常需要解决的问题。

  学校及学生状况分析

  我校是一所全国知名大学的附属小学,生源主要是北京理工大学教职工子弟,学生整体素质比较高。我所任课的班级学生在数学学习方面尽管有一定的差异,但整体素质较好,思维比较活跃,对学习、探索数学问题有比较浓厚的兴趣。

  教学设计

  (一)情境导入。

  师:同学们玩过七巧板吗?

  (学生举手示意,几乎所的学生都玩过。)

  (评析:学生从幼儿园时代就开始接触七巧板,教师从七巧板入手,容易激发学生的学习兴趣。)

  师:(电脑出示以下图形)这些就是用七巧板拼出的图形,你觉得分别像什么?

  生:图1像一个人。

  生:图2像一条鱼。

  师:你能看出他们分别是由哪些图形拼成的吗?

  生:图1是由5个三角形、一个平行四边形、一个梯形拼成的。

  生:图2也是由5个三角形、一个平行四边形、一个梯形拼成的。

  (二)认识组合图形。

  师:我们已经学习了五种平面图形,请同学们从这些简单的平面图形中挑几个,拼成一个较复杂的图形,并想想你拼的图形像什么?

  (学生独立拼摆。)

  师:谁愿意把你拼的图形展示给大家?

  (学生用实物投影展示拼出的图形,并说说像什么。)

  (评析:让学生充分体会组合图形的形成,是由若干个简单的.图形组成的,从而把复杂的问题简单化,易于学生学习。)

  师:同学们展示的这些图形有什么共同特点呀?

  生:我发现这些图形都是几个图形拼出来的。

  生:这些复杂的图形都是用几个简单图形拼成的。

  师:我们把这样的图形叫做组合图形。(板书:组合图形)

  (三)探索简单组合图形面积计算方法。

  师:你能算出自己拼出的组合图形的面积吗?

  生:用三角形的面积加上长方形的面积就行了。

  ……

  师:同学们用的方法有什么相同之处?

  生:都是把几个简单图形的面积加起来。

  教师出示下列图形(单位:米):

  师:这是小华家客厅地面的平面图,现在准备在客厅铺上木地板。小华的爸爸说:“你已经上四年级了,算算至少要买多少平方米的地板吧。”小华接受任务就开始思考,可他发现客厅的形状不是学过的平面图形。我们同学能想办法帮小华算出客厅的面积吗?

  师:请同学们小组合作,计算出这个图形的面积,看哪些组的方法又多又巧。

  (学生合作讨论计算,教师巡视。)

  师:哪个组能给大家介绍你们的方法,并说一说为什么这样做?

  (学生利用实物投影展示分割方法和计算过程,陈述思考的过程)

  生:我们把这个图形分成两个长方形,再把这两个长方形的面积相加。

  师:为什么要分成两个长方形呀?

  生:我们会计算长方形的面积,分成的两个长方形的面积加起来就是这个图形的面积。

  生:我们分成了两个梯形,把这两个梯形面积加起来就行了。

  生:……

  学生介绍不同的方法,如下图所示:。

  (评析:分割的方法不同,但思路是一样的,把复杂的图形简单化。)

  师:我们同学采用的方法有什么共同的特点呀?

  师:为什么要进行分割?

  师:同学们采用的就是人们计算组合图形面积常用的一类方法,叫做分割法。

  (板书:分割法)

  (评析:这一环节使学生明白,对组合图形分割的意义,以及分割的必要性。同时,让学生体会到,分割的方法不同,但思路都是把复杂的图形转化为简单图形。)

  师:除了分割法外,还有没有别的方法可以计算这个组合图形的面积呢?

  (学生小组讨论。)

  生:是不是可以补上一块,成为我们学过的图形。

  生:我这样补上一个小长方形,成了一个大长方形。(见下图)

  师:这样能计算原来组合图形的面积吗?

  生:用得到的大长方形面积减去补上的小长方形面积就可以了。

  师:我们班的同学真是太棒了,这就是计算组合图形面积的另一类方法,叫做添补法(板书:添补法)。

  师:我们可以利用分割法或添补法计算组合图形的面积。

  (四)巩固练习与应用

  1、数学课本第76页练一练第1题的左边一题。

  师:可以怎样求下列组合图形的面积?

  (学生独立思考,画出辅助线)

  师:谁可以把自己的想法告诉大家?

  (学生利用投影演示分割或添补的过程,说出计算的思路。)

  生1:我把第一个图形分割成一个三角形和一个长方形。

  (学生分别介绍计算的方法后,选择自己喜欢的方法进行独立计算。)

  2、出示数学课本第76页的试一试。

  师:这个问题是求哪个部分的面积?

  生:求粉色部分组合图形的面积。

  师:你能用自己喜欢的方法独立解决这个问题吗?

  (学生独立计算解答。)

  师:谁来把自己的好方法介绍给大家?

  生:我把粉色部分分割成三个长方形,再把他们的面积加起来。

  生:我先把长方形硬纸板的面积算出来,再减去四个剪下的小正方形的面积。

  (评析:同伴之间的交流,更有利于学生学习数学。)

  (五)课堂总结

  师:这节课你有什么收获?

  生:我知道了什么是组合图形。

  生:我会算组合图形的面积了。

  生:我知道可以用分割法或添补法计算组合图形的面积。

  师:同学们真是了不起,经过积极的思考,利用已经学过的知识解决了遇到的新问题,还想出了这么多巧妙的方法。

  教学反思

  在本节课的设计和实施中,我根据新课程的理念,进行了大胆的尝试,达到了良好的教学效果。主要有以下几点:

  1、充分发挥学生的主体作用,相信学生的能力,热情鼓励学生的探索活动,给予学生充足的时间和思维空间。由学生合作探索简单组合图形面积的计算方法,肯定学生积极的探究活动,使学生有更多的发展空间,尽最大限度地发展学生的观察思考探究能力,增强了学生学习数学的兴趣。

  2、我认为本课时的重点是使学生发现理解掌握计算简单组合图形面积的方法和策略。所以在教学中,重点放在学生思考理解把简单组合图形分割或添补成已经学过图形的方法,明确计算组合图形面积的思路。本节课教学过程也说明,学生在理解发组合图形的计算方法时,实现了预期的教学效果。

  案例点评

  ⒈情境引入自然简洁,贴近学生,很好地吸引了学生的注意、激发了学生的学习兴趣,同时发展了学生的想象力,使学生感受到数学中的美。

  ⒉学生获取新知识的过程,就是学生自主探索、合作讨论的过程。计算组合图形面积的方法几乎都是由学生发现并通过汇报交流获取的,教师只是学生自主学习的组织者,合作学习的参与者。

  ⒊在巩固应用时,突出本课时的重点。在教学过程中,师生的主要精力是用于观察、思考计算各种简单组合图形面积的方法和策略,使学生能根据各种组合图形的条件,有效地选择方法进行计算和解答。

《组合图形的面积》教学设计6

  一、学习“变异理论”,有所思

  “组合图形的面积计算”这一内容是学生在学习了长方形、正方形、平行四边形、三角形和梯形的概念及面积计算的基础上,结合实际情境和具体图形,探索组合图形面积的计算方法。这一内容既是对长方形、正方形、平行四边形、三角形与梯形面积计算的进一步拓展,又是数学知识应用于实际问题的体现。这一内容旨在发展学生的空间观念,提高学生分析问题和解决问题的能力。

  针对“组合图形的面积计算”这一内容,我的第一次教学设计了三个环节:一是回顾学习过的平面图形及面积计算方法,回忆推导平行四边形、三角形和梯形面积公式过程中运用的方法及得到的启示;二是通过创设“给小华家的客厅铺地板”这一情境,探索组合图形面积的计算方法,并把学生计算组合图形的方法分类、命名(分割法、割补法和添补法);三是巩固练习并小结。

  针对我的教学设计,“变异理论”课题组的老师展开研讨,最终指出两个关键问题:一是教学“组合图形的面积计算”这一内容时,教师首先要帮助学生建立“组合图形”的概念。二是探索“组合图形的面积计算”时,例题要丰富,以利于学生真正理解和掌握。

  “变异理论”鼓励教师在教学中采用多种多样的“非标准正例”,以使学生在多样化的问题情境中找到解决问题的共同规律。在教学中,学生在把分别求出的简单图形面积整合为组合图形的总面积时,最易犯两个错误:一是忘记把计算时增加的图形面积减去,二是忘记把分别计算的部分面积相加。上述两个错误说明学生对“组合图形”的概念理解不深,因而在计算“组合图形”时具有一定的盲目性。

  二、运用“变异理论”,有所为

  在备课过程中,由生活实例认识“组合图形”的思路给我启示,于是,联系“变异理论”,我增加了认识“组合图形”的教学环节。根据“变异理论”,列举“正例”和“非标准正例”对于学生认识概念的基本属性具有重要作用。因此,在引导学生认识“组合图形”的环节中,我特意将“正例”和“非标准正例”先后呈现,以使学生全面认识“组合图形”的多样性。首先,我让学生观察房子、风筝和七巧板等“组合图形”,请学生说说这些“组合图形”是由哪些简单图形组成的,从而引出“组合图形”的概念。其次,我出示中国少年先锋队队旗,让学生通过动手操作感知“组合图形”。最后,我请学生观察周围的物品,让学生找找哪些物品的表面形状是“组合图形”,以加深学生在生活中对“组合图形”的认知。崭新的教学设计正是通过富于变化的“正例”和“非标准正例”,有序、完整地呈现了“组合图形”的基本属性(包含简单图形,是由几个简单图形组合在一起形成的')。一方面,学生通过观察房子、风筝和七巧板这些“组合图形”(“正例”)认识了“组合图形”的一般形式;另一方面,通过观察中国少年先锋队队旗(“非标准正例”),学生进一步认识到“组合图形”在基本属性保持不变的情况下,可展现多样化的形式。正是在例证的有序变化中,“组合图形”的基本属性凸显出来,有助学生准确地理解和掌握。

  在教学“组合图形的面积计算”这一内容时,为了避免学生以往经常犯的错误(即在算出基本图形的面积后忽略了相加或相减),我决定准备充分的“非标准正例”,以使学生理解“组合图形”的面积是基本图形面积相加或相减的结果。

  分析这三个例题:例1可运用分割法把基本图形的面积相加,最终求出菜地的面积;例2可运用添补法把基本图形的面积相减,最终求出草地的面积;例3除了可运用分割法、添补法,还可运用割补法使队旗形成一个基本图形,最终求出队旗的面积。这三个例题的选择,不仅考虑到计算方法的多样化,更将已学的长方形、正方形、平行四边形、三角形和梯形这些基本图形全覆盖。通过列举“非标准正例”,既强化“组合图形”的基本属性,又让学生充分掌握组合图形面积计算的多种方法。

  三、反思“变异理论”,有所悟

  我原来的教学设计是通过“给小华家的客厅铺地板”这一例题,即通过一个教学情境让学生探索“组合图形的面积计算”。修改后的教学设计中,我运用了三个不同的“非标准正例”,这样不仅有效地强化了学生对“组合图形”基本属性的认识,更将算法的多样化建立在多个“组合图形”的基础之上,进而将对“组合图形”的认识有效地迁移到组合图形面积的计算上。反过来,运用多个“非标准正例”计算“组合图形”的面积,进一步巩固了对“组合图形”的基本属性的认识。

《组合图形的面积》教学设计7

  设计理念:

  数学课的教学应当以注重引导学生亲历数学知识探究过程、突出思维训练为主要目标。主要设计理念是:一是以学生为课堂学习的主体,关注学生已有的学习基础和学习经验,选择适合学生的学习素材、设计适合学生的教学活动,让学生自主的投入学习,教师是学生课堂学习的引导者、合作者。二是以活动为课堂教学的载体,注重学习情境创设,引导学生主动进行观察、实验、猜测、验证、推理与交流等数学活动,去探究数学知识,亲历数学知识探索过程,感受成功的快乐。三是以问题为思维训练的源泉,教学中注重引导学生发现问题、提出问题和解决问题,在解决问题中激活思维。四是以生活为学习数学的基础,数学生活化,让学生在生活中感知数学知识,从生活中发现数学问题,在生活经验的基础上解决数学问题,并用所学知识解决生活中实际问题。

  学情分析:

  设计这节课的教学,教学对象是本校五(3)班59名学生。这个班的学生对课前教师布置的准备活动能积极准备,对学习数学有比较浓厚的兴趣,思维活跃,有自主探索知识的学习习惯,比如要求用基本图形(长方形、正方形、三角形、平行四边形、梯形等)展开想象拼图案,就能很好的准备。大部分学生有较好的数学知识基础和学习数学经验,善于合作,勇于面对知识挑战,有自主探究知识的激情,但也有少部分学生数学基础差,家长和学生本人都学得好坏无所谓,参与探究学习比较困难,不能按要求完成学习任务,比如他们在探索活动中不去认真感知、猜测、实验和思考,把自己置于旁观者得位置,不能达到预期的学习效果。总体看他们爱学数学,爱参与探究,希望有学习成功的快乐。

  内容分析:

  《组合图形的面积》是义务教育课程标准实验教科书(北师大版)五年级上册数学第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级上册75——76页的内容,这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,进一步探讨研究图形的面积,也是日常生活中经常需要解决的问题。

  教学目标:

  知识目标:

  1、在自主探索的活动中,理解计算组合图形面积的多种方法,并渗透转化的数学思想。

  2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  3、能运用所学的知识,解决生活中组合图形的实际问题。

  情感态度价值观:在有效的情境中激发学生学习的兴趣的主动性,培养热爱数学的思想感情。

  教学重、难点:

  1、教学重点:学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。

  2、教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,割、补成学过的图形,选择最适当的.方法求组合图形的面积。

  教学策略:

  以学生利用基本图形拼的图案将学生引入学习情境,以课件展示教师拼的图案引发学习问题,以课件中的图片欣赏让学生感受组合图形源于生活,以“剪——拼——议”实践活动学习解决问题的方法和探究知识的方法,以解决生活中实际问题强化知识的应用。

  教学准备:多媒体课件和组合图形图片。

  教学过程:

  一、激趣导入、复习铺垫

  1、欣赏图片

  2、动手拼

  3、展示作品,全班交流

  4、教师总结,揭示课题

  二、创设情境、探究新知

  出示课件:米奇的妙妙屋正在装修但遇到了几个难题,需要同学帮助,你们愿意吗?难题一:米奇打算给客厅(如图)铺上瓷砖,至少需要买多少平方米的砖呢?

  1、估计地板的面积,板书数据

  2、采用不同的方法求客厅的面积。

  那实际上我们铺地板的时候,买多了浪费,买少了还要再买太麻烦了,那怎么办呢?

  同学们观察一下这个图形,这是一个(组合图形),这样的图形的面积我们学过了吗?那么怎么办?

  其他同学也是这样想的吗?

  这就是我们今天所要探究的问题组合图形的面积(板书:面积)

  同学们打算用什么方法求它的面积?(停顿)

  很多同学都有自己的想法