当前位置:9136范文网>教育范文>说课稿>《分数的基本性质》说课稿

《分数的基本性质》说课稿

时间:2024-07-03 13:36:38 说课稿 我要投稿

《分数的基本性质》说课稿

  作为一名教职工,就难以避免地要准备说课稿,是说课取得成功的前提。我们应该怎么写说课稿呢?以下是小编整理的《分数的基本性质》说课稿,希望对大家有所帮助。

《分数的基本性质》说课稿

《分数的基本性质》说课稿1

  一、教学内容的说明

  《分数的基本性质》一课是五年级下册的一个内容。学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。本课在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习约分、通分、分数计算的基础。

  二、学情分析

  学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。

  三、教学目标

  依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:

  1.使学生理解与掌握分数的基本性质,能运用它改变分数的分母与分子,而使分数的大小不变。

  2.培养学生观察、比较、分析、概括等方面的能力。

  3、通过实践活动,鼓励学生动手进行科学的验证,培养其勇于探索,勇于创新的意识。

  四、教学重点、难点

  教学重点:

  理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。

  教学难点

  学生通过猜想和动手验证,抽象概括出分数的基本性质。

  五、教法学法的选择

  教法:本着“以学生发展为本”、“以学定教”的思想,按照学生学习的认知规律,在探究分数的基本性质过程中,主要采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。

  学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。

  六、教学过程的设计

  为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了“1.创设情境——引发思考2.引出新知——动手实践3.初步感知——引导观察4.发现规律——巩固练习5.课堂小结——加深理解 ”五个环节。

  一、创设情境,引发思考

  1、上课开始我引入了故事:有一天妈妈给淘气做了一个香喷喷的大蛋糕,蓝猫看见了也想吃。淘气说:我只有一个蛋糕,要不我分给你一些吧,我有三种分法,请你选择一种:

  第一种:把蛋糕平均分成2份,送给你其中的一份,也就是这个蛋糕的1/2;

  第二种:把蛋糕平均分成4份,送给你其中的2份,也就是这个蛋糕的2/4;

  第三种:把蛋糕平均分成8份,送给你其中的4份,也就是这个蛋糕的4/8。

  选择哪一种分法吃到的蛋糕最多呢?

  同学们,如果你是蓝猫,你会选择哪一种呢?

  先听讲一段故事,学生非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。

  二、对于分数基本性质的理解

  分为3个层次 借助长方形纸条来理解。通过观察、举例、验证,初步理解和总结(分数的分子和分母同时乘或除以相同的'数分数的大小不变。)——总结完善分数的基本性质。

  1、借助长方形纸条理解

  这里分成两份层次(1)借助直观图理解(2)分析分数理解

  (1)借助直观图理解。

  首先,引导学生在同样大的长方形纸条上分别表示出、、想一想为什么为什么分的份数不一样,取的份数也不一样可他们最后分的大小却会相同呢?

  (2)借助分数理解

  在学生清楚的知道了三个分数为什么会相等后,从图在回到抽象的三个分数上,说一说, 他们的分子、分母是怎样变化的。说明白后,明确分的份数就是分母,取得分数就是分子,在板书上改为“分母扩大了两倍、四倍,分子也相应扩大了两倍、四倍,分数大小不变”

  2、通过观察、举例、验证,初步理解和总结(分数的分子和分母同时乘或除以相同的数分数的大小不变。)

  总结规律是在大量的直观的数据或练习的基础上实现的。为了给学生便于学生总结,我设计了“你还能举出一个和3/6大小相等的分数吗?你是怎样想的?如果想让分子是9,分母是? 想让分母是18,分子呢?”一方面学生利用了分数的基本性质做了一些基础的题,另一方面在叙述你是怎样想的时候,其实也是对分数基本性质的概括。这样当“用一句话总结你的发现”的时候,在语言叙述上就没有什么障碍了。

  3、关于“同时”“相同的数““0除外”的理解

  两种预设,在总结出“分数的分子、分母同时乘或除以相同的数,分数的大小不变。”让学生说说自己的理解,如果有有学生提出就上提出的学生说一说,如果没有主动提出,就通过做个练习题,“2/3哪样列式行吗?为什么?”。让学生说一说通过做这两个题你有什么想提醒大家的。

  四、巩固练习

  根据本节课的内容,在练习上我设计三个不同层次的练习,首先是针对大多数的基础性练习,如填空、判断。其次是稍有变动的,需要结合分数与除法关系完成的变式练习。

  最后为了满足优等生的需要还涉及了以下练习

  5/9的分母加9,分子加几,分数的大小不变。

  板书: 分数的基本性质

  1/2==2/4=4/8

  分数的分子和分母同时乘或者除以相同的数(0除外),分数大小不变。

《分数的基本性质》说课稿2

  一、说教材

  《分数的基本性质》是九年义务教育六年制小学数学第十册第五单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6 4/8四个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这四个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。

  1.画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。

  2.想--1/2、2/4、3/6 、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的其他分数吧?你还能说出和"2/3"大小相等的分数吧?

  3.问—从"1/2=2/4=3/6=4/8"中,你发现了什么?

  4.用--用已学过的"分数的基本性质"解决有关的数学问题。这样安排教学有以下几点好处:

  (1)有利于知识的迁移。

  让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。

  (2)能发挥学生学习的主动性。

  通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。

  (3)提高了学生的学习能力。

  通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探究问题,培养学生概括问题的能力和解决问题的能力。

  二、说教学目标

  以上各个教学环节的设计体现如下几点教学目标:

  1.知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的`基本性质解决有关的数学问题。

  2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。

  3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。

  三、说教法

  本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的教学模式进行教学。

  1.创设情境,复习迁移。

  为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的情境:课开始发给每位学生四张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗? 这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。

  2.设疑激思,获取新知。

  "疑是思之始,学之端"。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:

  (1)1/2、2/4、3/6、 4/8这些分数有什么关系?

  (学生会说这四个分数的大小相等。)

  (2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?

  (如果学生写错或写不出,待得出分数基本性质后再写)

  (3)从"1/2=2/4=3/6=4/8"中,你发现了什么?

  (让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)

  (4)你对上面这句话觉得有什么问题吗?

  (学生可能会提出地"相同的数"中"0"必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)

  最后,让学生完整地概括出分数的基本性质。(老师揭示课题)

  这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。

  3.深化概念,及时反馈。

  为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:

  1.下面各式对吗?为什么?(让学生用手势表示对错)

  (1)3/4=6/8 (2)3/8=12/2 (3)3/10=1/5

  2.在()里填上合适的数。

  ()/6=()/36=8/12=2/()=()/24

  3.把2/3和10/24化成分线是12而大小不变的分数。

  4.把下面大小相等的两个分数用线连接起来。

  4/5 1/6 4/9 4/6 12/16

  3/4 2/3 20/25 6/36 8/18

《分数的基本性质》说课稿3

  各位老师,同学:

  大家上午好!

  我说课的资料是:人教版小学数学课标教材五年级下册75页―76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。

  一、教材分析

  本节资料属于概念教学。《分数基本性质》在小学数学学习中起

  着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。

  二、学情分析

  学生已经清楚理解分数的好处,明确分数与除法的关系,商不变

  性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。

  三、教学目标

  综合分析课程标准要求及学生实际,我确定本节教学目标如下:

  1.理解和掌握分数的基本性质,并会运用分数的基本性质把不同

  的分数化成分母(或分子)相同而大小不变的分数。

  2.初步养成观察、比较、抽象概括的逻辑思维潜力,并且在自主探究中正确认识和理解变与不变的辩证关系。

  3.受到数学思想的熏陶,养成乐于探究的学习态度。

  教学重点:理解掌握分数的基本性质,它是约分、通分的依据。

  教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。

  四、教法学法

  根据本节课的教学目标,思考到学生已有的知识、生活经验和认

  知特点,结合教材资料,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。透过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。

  五、教学过程

  本节课的教学过程我分五个部分进行

  第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问

  题情境,揭示本节课要研究的问题。

  第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。

  第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。

  第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。

  第五部分:梳理知识,反思小结。主要是总结全课。

  其中,第三部分“合作探究,发现规律”能够细化为三个环节:

  环节一:动手操作,进行比较

  这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较潜力。

  环节二:呈现问题,引导观察

  这一环节主要呈现给学生这样一个问题,“第一环节中的.分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察潜力。

  环节三:交流汇报,得出规律

  这一环节主要是学生汇报交流,得出结论。

  如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括潜力。

  就应强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。

  以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。

《分数的基本性质》说课稿4

  教学内容:人教版小学数学第十册第75页至78页。

  教学目标:

  1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

  2、培养学生的观察能力、动手操作能力和分析概括能力等。

  3、让学生在学习过程中养成互相帮助、团结协作的良好品德。

  教学准备:

  课件、长方形纸片、彩笔。

  教学过程:

  一、创设情境,忆旧引新

  孙悟空师徒四人来到一个小国家----数学王国,猪八戒肚子很饿, 悟空就对八戒说:“我给你10块饼,平均分2天吃完,怎么样?”八戒一听嚷道:“太少了,猴哥欺负我。”悟空眼睛一动说道:“那我就给你100块饼,平均分20天吃完,可以了吧。”八戒一听就乐了:“太好了!太好了!这回每天我可以多吃些了!”

  同学们,你们认为八戒说得有道理吗?(没道理)

  【通过学生耳熟能详的人物对话,给学生设计一个悬念,抓住学生的好奇心理,由此激发学生的学习兴趣。】

  为什么?用你们的数学知识帮他解决一下吧。(学生立式计算)

  先算出商,再观察,你发现了什么?

  被除数和除数同时扩大(或缩小)相同的倍数,商不变。

  同学们,再想一想除法与分数有什么关系,并完成这些练习吧。

  8÷15= 3÷20= 14÷27=

  二、动手操作 、导入新课

  同学们对知识掌握的真不错,为了表扬你们,我决定找三个同学来与我一同分享一个兑现。(拿出准备好的长方形纸片。)

  我们把三张纸片看成三块饼,大家比比看,每人的三块饼大小相等吗?请拿出第一块饼,我想与你每人一块,而且大小要是一样,你能做到吗?你给我的为什么是这块饼的一半呢?用分数怎么表示呢?

  我想与你每人两块,而且大小要一样大,你又能做到吗?用分数怎样表示呢?

  我如果想我想与你每人四块,你还能做到吗?这次用分数又该怎样表示呢?这三个分数大小相等吗?为什么呢?这节课,我们就来研究这个数学问题。

  【通过学生的动手操作,初步感知三个分数的大小相等,为寻找原因设置悬念,再次激发学生的学习兴趣。】

  三、探索分数的基本性质

  你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?( )

  1、观察一下这个式子,3个分数有什么不同?有什么地方相同?分数的大小为什么会不变呢?要弄清楚这个问题,我们必须先观察分数的分子、分母是怎样变化的。你们能从商不变的规律,分数与除法的关系中找出它们的变化规律吗?

  2、学生交流、讨论并汇报,得出初步分数的基本性质。

  分数的分子、分母同时乘以或除以相同的数,分数的大小不变。

  3、将结论应用到

  (1)先从左往右看, 是怎样变为与它相等的 的?分母乘2,分子乘2。

  (2)由 到 ,分子、分母又是怎样变化的? (把平均分的份数和取的份数都扩大了4倍。)

  (3)是怎样变化成与之相等的 的?

  (4)又是怎样变成 的?(把平均分的份数和取的份数都缩小了4倍。)

  4、综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的吗? (不能同时乘或除以0)为什么?

  5、这就是今天我们所学的“分数的基本性质”(板书课题,出示“分数的基本性质”)。学生读一遍,你认为哪几个字特别重要?(相同的数、0除外)相同的数,指一些什么数?为什么零除外?

  四、知识应用(你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?)

  有位老爷爷把一块地分给三个儿子。老大分到了这块地的 ,老二分到了这块地的 。老三分到了这块的 。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

  分数的分子和分母同时乘或者除以相同的数,分数的大小不变。( )

  分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。( )

  分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。( )

  ⒍小结。

  从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?

  【此过程主要由学生通过观察、比较,得出这三个分数大小相等的规律,由此牵引到其他的有同等规律的分数中,从而引出分数的基本性质:分子、分母是同时变化的.,是同向变化的(是扩大都扩大,是缩小都缩小),是同倍变化的(扩大或缩小的倍数相同)。只有这样变化,分数的大小才不会变。】

  五、巩固练习

  ⒈卡片练习:

  ⒉做P96“练一练”1、2。

  ⒊趣味游戏:

  数学王国开音乐会,分数大家族的节目是女声大合唱,只有几分钟就要演出了,请大家赶紧帮合唱队的成员按要求排好队。

  要求:第一排是分数值等于 的,第二排是分数值等于 的,还有一位同学是指挥,他是谁?你是怎样想的?

  【通过练习,让学生加深对分数的基本性质的理解,为下节课分数的基本性质的应用打好坚实的基础。】

  六、课堂总结

  这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?

  七、布置作业

  做P97练习十八2。

《分数的基本性质》说课稿5

尊敬的各位领导,老师们:

  大家好!今天,我很高兴能站在这里,向大家展示我的说课。我的说课内容是《分数的基本性质》。我将从以下这些方面来进行说明。

  一、教材分析(课件)

  《分数的基本性质》是人教版九年义务教育小学数学第十册中的内容。本节课内容是在分数的意义,以及分数与除法关系的基础上进行教学的。是后面进一步学习约分、通分以及分数运算的重要依据,因此本节内容将起着举足轻重的作用。

  二、教学目标(课件)

  根据教材内容及学生的认知水平,我制定了以下教学目标:

  1..使学生理解与掌握分数的基本性质。

  2.培养学生观察、比较、分析、概括等方面的能力。

  三、教法和学法(课件)

  为了使学生成为课堂的主人,我巧妙的扮演着引导着、组织者的角色。设计了情景设疑、观察发现、小组合作的教学方法。

  新课程标准提倡:过程重于结果。有效的数学活动不能单纯的依靠模仿与记忆。因此我引导学生去动手操作,自主探究,游戏比赛等形式来组织教学。

  四、教学过程(课件)

  结合五年级学生的理解能力和年龄特征,我将本课的教学,设计了四个环节。

  (一)、创设情境、引发猜想(课件)

  首先、我为学生带来了一个猴王分饼的故事:猴山上的猴子们都爱吃猴王做的饼。一天,猴王做了三张同样大的饼。猴王把第一张饼平均切成了两块,给了猴1一块。(课件)猴2看见了,眼馋的说:“猴王,猴王,我要两块。”猴王笑眯眯的说:“别急,别急,给你两块。”只见猴王把第二张饼平均分成了四块,给了猴2两块。(课件)猴3更贪心:“我要六块,我要六块。”猴王想了想,把第三张饼拿出来,平均切成了十二块,果真给了猴3六块。

  “同学们,你们听完故事后,觉得哪知猴子分得饼最多?”

  一上课,先听一段故事,学生们自然非常乐意,并会立即被吸引,积极的思考故事中的'问题。通过这样的故事设疑,马上激起了学生探求新知的欲望。

  (二)、动手操作、初步感知(课件)

  我让学生把准备好的三张圆片,拿出来代替猴王做的饼,分别按照折,画,涂的步骤,表示出每只猴子所得的饼,并用分数表示涂色部分。在这个过程中,学生必然会对那三个图形进行观察和比较,从中有所发现。(课件)通过多媒体的直观演示,学生更加确定,三只猴子分的饼确实一样多,有了实物的直观对比,学生不难理解,三个分数大小相等。可是为何分数的分子、分母不同,大小却相等?在此处,又设下悬疑,充分调动了学生的好奇心。这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,营造出良好的学习开端。接着,我因势利导,安排下一环节:

  (三)比较归纳、揭示规律(课件)

  (1)我板书这组分数后,请学生观察:从左往右看,分子是怎么变的?分母是怎样变的?此时我将主动权全都交给了学生,先独立思考,然后在四人小组中交流讨论,最后汇报结果。有的小组认为分子加了1,分母加了2等。我都笑而不答。而是鼓励学生逐一去验证各种猜想是否具有规律性。使学生在探索中发现,在发现中成长。直到有些学生发现分数的分子分母同时乘了2和3时,我及时给予了肯定和表扬。此时,为了突破本节课的重难点,我设计了一道填空题,可以很好的引导学生概括出这一发现,并让多名学生说一说。这样的设计,既培养了学生的概括能力,并为进一步学习增强了信心。在此基础上,我再布置一个任务:你再从右往左看,又有什么规律?有了前面的经验,这时学生很快得出:分数的分子、分母同时除以一个相同的数,分数的大小也不变。

  (2)就在学生享受成功的喜悦时,我抛出了一个问题:分数的分子分母如果同时乘或除以0,会是什么结果?学生顿时领悟:要0除外。

  (3)最后,我建议学生用一句话来归纳这两个发现,师生共同完善规律。此时我才板书课题,并告诉学生这一规律就叫分数的基本性质,使学生明确了本节课的教学内容。

  (4)现在,学生明白了聪明的猴王原来是利用分数的基本性质来分饼的。即满足了猴子们的要求,又分的那么公平。(课件)如果猴4想要八块怎么办?如此设计,既首尾呼应,又培养了学生灵活解决实际问题的能力。

  课堂的高潮之后,我启发学生还可以用商不变的性质来说明分数的基本性质,沟通新旧知识的联系。

  (四)多层联系、巩固深化

  练习的设计是巩固新知最有效的方法。我尽量给枯燥的练习赋予丰富多彩的形式。因此我精心设计的整套练习都是以游戏加比赛的方式来进行。(课件)首先,我安排男、女生以抢答的形式,来填空,重点要让学生说出解题依据。接着,我又设计了师生互动的游戏:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在两个小组抢摘苹果的游戏中结束本节课的教学活动。

  五、板书设计

  说说我的板书设计,它遵循了目的性原则、概括性原则、直观性原则,能帮助学生把整堂课的学习内容融入大脑。

  总结:我在整堂课的设计中努力体现“趣”“实”“活”三个字。以猴王分饼为主线,贯穿全文。由情景导入到动手操作,自主探究,最后归纳规律,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦。新课程标准的要求得到了完美体现。

  我的说课到此结束,谢谢大家。

《分数的基本性质》说课稿6

  一、说教材分析

  分数的基本性质是分数运算中非常重要的一部分,它建立在分数大小相等的概念基础上。两个分数的大小相等,并不意味着它们的分子和分母必须相同,而是指它们所表示的比例是相同的。分数的基本性质是约分和通分的基础,而约分和通分则是进行分数运算的重要前提。通过理解分数的基本性质,我们可以更好地进行分数的四则混合运算,为解决实际问题提供更便利的方法。

  二、说教学目标

  根据教材分析制定如下的教学目标:

  知识与技能:

  1、使让学生理解分数的基本性质,并会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。

  2、培养学生观察、分析和抽象概括能力。

  过程与方法:

  1、让学生经历分数基本性质的探究过程。

  2、通过引导启发,帮助学生学会应用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数的方法。

  情感态度与价值观:

  1、体验合作探究的乐趣,培养学生的团结协作精神。

  2、渗透“事物间相互联系”的辩证唯物主义观点。

  教学重点:理解分数基本性质。

  教学难点:归纳分数的基本性质,并运用性质转化分数。

  教具教学准备:

  多媒体课件,小棒、纸条、圆形纸片

  三、说教学策略

  为了让学生在教学活动中拥有更多的独立和自主学习的空间,让他们成为课堂的主角,我将根据学生的认知规律采取以下教学策略:让课堂变得更加生动有趣,将学生置于学习的中心位置,引导他们积极思考和参与,激发他们的学习热情和创造力。

  1、采用了创设情境、引导探究、引导自学、组织讨论、组织练习等教学策略。

  2、

  3、让学生通过实际操作和观察,深入感知和发现分数的规律。比较不同分数的大小、大小关系,归纳出它们之间的共同特点和规律。最终,引导学生从具体的案例中概括出分数的基本性质,帮助他们逐渐将思维从具体形象的认知向抽象概念的理解转化。

  4、好的,让我们一起来措辞一下:学生学习数学,不能仅仅依靠模仿和记忆。动手实践、自主探索和合作交流是提高数学能力的重要途径。

  四、说教学流程

  结合五年级学生的理解能力和年龄特征,我将本课的教学设计为六个环节。

  (一)、创设情境,引发猜想

  首先我为学生带来一个《猴王分饼》的故事。

  猴山上的小猴子最喜欢吃猴王做的饼了,有一天,猴王做了三块大小一样的饼分给小猴子吃。它先把第一块饼平均切成4块,分给猴1一块;猴2见了说:“太少了,我要2块。”猴王又把第二块饼平均切成8块,分给猴2两块;猴3更贪,它抢着说:“我要3块,我要3块……”猴王又把第三块饼平均切成12块,分给猴3两。小朋友,你知道哪只猴子分得的饼多吗?

  “同学们,你们认为猴王分得公平吗?”引发学生的猜想。

  (这样就激发了学生的学习兴趣,为后面的学习做好了铺垫。)

  (二)自主探索,寻找规律

  (下面这个环节是课堂教学的中心环节,新课标强调,要让学生在实践活动中进行探索性的学习。根据这一理念,我设计了下面的活动。让学生在体验中学习,在学习中体验。)

  1、小组合作验证猜想

  这只是大家的猜想,究竟哪只猴子分得的饼多呢?亲自分一分,验证你们的猜想。

  学生操作验证———集体 汇报 交流————展示成果

  2、三只小猴分得的饼同样多,说明他们分得的饼的三个分数是相等的。这三个分数中有一个变了,即每只小猴分得的饼数,而另外两个分数保持不变,即总共分得的饼数和小猴的数量。

  学生得出:这三个分数是相等关系,分数的分子和分母变化了,但分数的大小不变。

  3、猴王把三张大小一样的饼分给小猴一部分后,剩下的部分大小相等吗?通过观察演示得出3/4=6/8=9/12

  4、我们班有80名同学,分成了四组,每组20人。那么,第一、二组学生的人数占全班学生人数的几分之几?引导学生用不同的.分数表示,然后得出1/4=2/8=20/80。

  (三)比较归纳揭示规律

  1、出示思考题

  1/4=2/8=3/12

  比较每组分数的分子和分母:

  从左往右看,是按照什么规律变化的?

  从右往左看,又是按照什么规律变化的?

  通过观察,你发现了什么?

  让学生带着上面的思考题,先独立思考,后小组讨论、交流。

  2、集体交流,归纳性质。

  3、师生共同总结规律,找出性质中的关键词,然后齐读,注意关键的字词要重读。

  4、现在,大家知道猴王是运用什么性质分饼了吗?

  5、沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。

  数学知识的学习不仅仅是孤立的知识点,而是一个有机整体。通过学习数学,我们可以感受到不同概念之间的内在联系和相互作用,就像宇宙中万物相互联系、相互作用一样。这种联系和作用使得数学知识更加丰富和深刻,也让我们更好地理解数学在现实世界中的应用和意义。

  (四)自学例2

  1、自学例2。

  2/3=2×()/3×4=()/12

  10/24=10()/24()=()/12

  2、展示交流:重点让学生说说分母、分子是如何变化的?根据什么?

  这样设计的目的是学生学会的老师不包办,从而培养了学生的自学能力。

  (五)多层练习巩固深化

  1、填上合适的数,说说你填写的根据

  1/3=()/610/15=()/31/4=5/()

  我想通过这道题让学生进一步加深对分数基本性质的形成过程的理解,从而培养学生的语言表达能力。

  2、说一说下面各式运用分数的基本性质是否正确

  5/24=5×2/24÷2=10/12()

  4/9=4÷2/9÷3=2/3()

  13/18=13+2/18+2=15/20()

  在这我设计了同学们在平时做题中容易混淆的问题,提醒同学们今后要注意。

  3、想一想:(选择你喜欢的一道题来做)

  与1/2相等的分数有多少个?想像一下把手中的正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?

  9/24和20/32哪一个数大一些,你能讲出判断的依据吗?

  在这里,我们要求同学们发挥想象力,灵活运用分数的基本性质。这将有助于我们更好地理解约分和通分的知识,为接下来的学习打下坚实的基础。让我们一起来探索分数的奥秘吧!让我们一起来发现分数的乐趣吧!

  (六)本课小结

  同学们,通过这节课,你有哪些收获?

  学生在交流收获的过程中,培养学生的知识概括能力。

  五、说教学 评价

  1、教学过程中采用自我、小组、集体等多种评价方式,激发起学生交流的兴趣。

  2、多媒体课件的应用,创设生动的教学情境。

  3、学生在探索、实践、合作、交流、归纳、总结的过程中,积极参与整个学习活动,建立独立、自主的学习氛围,使学生成为学习过程的主体。

《分数的基本性质》说课稿7

  各位老师,大家好!今天我说课的内容是课程标准试验教科书数学五年级下册第四单元第三课时“分数的基本性质”。下面我从设计理念,教材,教法,学法,教学过程五个方面进行说课。

  一、说设计理念

  1、以学生的发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。

  2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。

  3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及“用数学学数学”等数学思想方法。

  二、说教材

  1、教学内容:

  《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。教材在讲解这一知识点时,应注意加强整数商不变性质的内在联系,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。

  2、学情分析:

  学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。

  3、教学目标:

  (1)通过教学使得学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。

  (2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。

  (3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。

  4、教学重点:理解和掌握分数的基本性质。

  5、教学难点:学习自主探索,发现和归纳分数的基本性质,以及应用它解决相应的问题。

  6、教具学具:课件,三张同样大小的长方形纸条、彩笔。

  三、说教法

  “将课堂还给学生,让课堂焕发生命活力”,为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的'教学方法主要有:

  1、实际操作法

  指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。

  2、直观演示法

  先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。

  3、启发式教学法

  运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。

  四、说学法

  1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。

  2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。

  五、说教学过程

  1、复习提问,旧知铺垫

  新课开始,我先板书了一个除法算式 1÷2,然后让学生不计算,说出一个除法算式和它的商相等,学生边说我边抽取两个算式板书,比如2÷4,4÷8 ,3÷ 6等。然后让学生说说是根据什么想到这些算式的(商不变的规律),商不变的规律的内容又是什么<被除数和除数同时扩大或缩小相同的倍数(0除外),商不变>。

  第二步,我让学生根据分数与除法的关系,把这三个算式写成分数形式,根据三个算式商相等,推导出这三个分数的大小。也就是1/2=2/4=4/8。此时,引导学生:在除法中有商不变的性质,那么分数中又有什么规律呢?今天我们就共同来探讨分数当中的这个问题。这样设计的目的就是让学生通过观察算式和分数的特点,培养学生直觉观察能力,激发学生利用旧知识商不变的规律,探求新知识的兴趣,同时也使学生明确要解决的问题。

  2、动手操作,初步感知

  首先让学生用三张同样大小的长方形纸条折一折,再涂色表示出每张纸的1/2,2/4,4/8。再观察涂色部分,说说发现了什么?在学生汇报时,说出发现:涂色部分面积相等,也就说明这三个分数大小相等。然后通过电脑再进一步证实学生的发现:把一张纸条平均分成2份,涂其中1份,得到1/2;把一张纸条平均分成4份,涂其中2份,得到2/4;把一张纸条平均分成8份,涂其中4份,得到4/8;通过观察,我们发现三个阴影部分大小相等,说明三个分数大小相等。这一过程的设置,主要是利用学生爱动手以及直观思维的特点,让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好迁移,而且激活了课堂气氛,营造了良好的学习开端。

  3、设疑促思,探究新知

  “疑是思之始,学之端”。在教师板书1/2=2/4=4/8后,进一步引导学生观察这三个分数,它们的分子分母都不相同,但是分数的大小却相等,提出疑问:这里面隐藏着什么秘密,有什么规律?接着将发言权充分交给学生,完全开放空间,激发学生思索,并畅所欲言,说出自己发现的规律,(比如:将1/2的分子分母同时乘2得到2/4,将2/4的分子分母同时乘2得到4/8,将1/2的分子分母同时乘4得到4/8;将4/8的分子分母同时除以2得到2/4,将2/4的分子分母同时除以2得到1/2,将4/8的分子分母同时除以4得到1/2共6种)。

  在学生自主探究的基础上,逐步完善学生的说法,适时引导学生将发现的规律总结成一句话:分数的分子分母同时乘或者除以相同的数,分数的大小不变。

  如果学生在此说出了0除外更好,如果没有,在此基础上,提出疑问:“同时”表示什么意思?这个相同的数是任何数都行吗?为什么?那么同学们总结的规律该怎样叙述更完整呢?在学生加上“0除外”完整叙述后,指出:分数的这种变化规律就是我们今天学习的“分数的基本性质”,并借此板书课题“分数的基本性质”。

  这样设计的目的就是培养学生发现问题,自主探究问题的能力,也培养学生的语言表达能力,抽象概括能力和初步的逻辑思维能力。

  另外,我还安排了“听一听”,让学生听5句话并判断对错。

  第一句:分数的分子分母同时乘相同的数(0除外),分数的大小不变。

  第二句:分数的分子分母同时除以相同的数(0除外),分数的大小不变。

  第三句:分数的分子分母同时加上相同的数(0除外),分数的大小不变。

  第四句:分数的分子分母同时减去相同的数(0除外),分数的大小不变。

  第五句:分数的分子分母同时乘或者除以相同的数(0除外),分数的大小不变。

  除了进行“听一听”的练习,还有习题的判断。这样一次次地加深,强化学生对分数的基本性质的理解,反复锤炼学生,达到对知识的更深刻的掌握,也为后面例题的完成奠定厚实的基础。

  4、初步应用,深化新知

  学习分数的基本性质,就是为了在生活中运用它。给你一个分数,能把它化成分母不同而大小相同的分数吗?借此引出例2。让学生读题,并明白做题要求有两个:一是分数大小不变,二是分母相同。在引导学生完成第一个分数后,第二个分数让学生独立完成在书上,然后全班学生交流自己的过程及结果。但是一个例2不足以让学生达到巩固的目的,所以再次安排了和例2题型完全一样的“做一做”,让学生独立思考,写在练习本上,并抽两名学生板演,对出现的问题共同指正。这样的安排是为了把“分数的基本性质”及时练习,反复应用,对学生巩固新知、利用新知都达到好的效果。

  5、多样练习,巩固知识

  在初步应用“分数的基本性质”后,我安排了四个不同层次的习题。其中“填一填”是基础练习,但也包含有6/12=( )/( )的发散题。“判一判”也是对“分数的基本性质”做进一步的诠释。“说一说”是一种变换了形式的习题,难度不大,只不过说法不同,最后还安排了“想一想”环节,解决的方法已经蕴含在前面的“听一听”环节中。整个习题设计部分,题目呈现方式的多样,吸引了学生的注意力,激发了学生兴趣。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。

  6 、全课小结,整理知识

  让学生回顾本节课,说一说自己的收获,培养学生的知识概括能力。同时,教师也在此时进行总结:分数的基本性质和商不变的性质只是在说法上不同,在实质上是相同的,所谓“万变不离其宗”正是如此。通过利用“分数的基本性质”填空,写出许许多多分子分母不同但分数大小相等的分数,体会“以不变应万变”的数学学习方法。最后告诉学生一个小秘密,以后还将学习比的基本性质,它是在“分数的基本性质”的基础上学习的,这也是“用数学学数学”的学习方法。这样安排会更加激发学生学习数学的兴趣,以及探究数学问题的方法。

  最后,我想说,学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能达到理想的教学效果。

《分数的基本性质》说课稿8

各位老师,同学:

  大家上午好!

  我说课的内容是:人教版小学数学课标教材五年级下册75页—76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。

  一、 教材分析

  本节内容属于概念教学。《分数基本性质》在小学数学的学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。

  二、 学情分析

  学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。

  三、 教学目标

  综合分析课程标准要求及学生实际,我确定本节的教学目标如下:

  1.理解和掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。

  2.初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识和理解变与不变的辩证关系。

  3.受到数学思想的熏陶,养成乐于探究的学习态度。

  教学重点:理解掌握分数的基本性质,它是约分、通分的.依据。

  教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。

  四、 教法学法

  根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合教材内容,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。

  五、 教学过程

  本节课的教学过程我分五个部分进行

  第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问题情境,揭示本节课要研究的问题。

  第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。

  第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。

  第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。

  第五部分:梳理知识,反思小结。主要是总结全课。

  其中,第三部分“合作探究,发现规律”可以细化为三个环节:

  环节一:动手操作,进行比较

  这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。

  环节二:呈现问题,引导观察

  这一环节主要呈现给学生这样一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。

  环节三:交流汇报,得出规律

  这一环节主要是学生汇报交流,得出结论。

  如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。

  应该强调的是,无论学生说的多么好,教师最后的总结和确认是必不可缺的。

  以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。

《分数的基本性质》说课稿9

  《分数的基本性质》一课是学生在充分认识了分数的意义和简单应用的基础上进行教学的。

  各位老师,同学:

  大家上午好!

  我说课的内容是:人教版小学数学课标教材五年级下册75页—76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。

  一、说教材分析

  本节内容属于概念教学。《分数基本性质》在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。

  二、说学情分析

  学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。

  三、说教学目标

  综合分析课程标准要求及学生实际,我确定本节教学目标如下:

  1.理解与掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。

  2.初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识与理解变与不变的辩证关系。

  3.受到数学思想的熏陶,养成乐于探究的学习态度。

  教学重点:理解掌握分数的基本性质,它是约分、通分的依据。

  教学难点:让学生自主探索、发现与归纳分数的基本性质,以及应用它解决相关的问题。

  四、说教法学法

  根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合教材内容,本课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。

  五、说教学过程

  本节课的`教学过程我分五个部分进行

  第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问题情境,揭示本节课要研究的问题。

  第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。

  第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。

  第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。

  第五部分:梳理知识,反思小结。主要是总结全课。

  其中,第三部分“合作探究,发现规律”可以细化为三个环节:

  环节一:动手操作,进行比较

  这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的设计主要是培养学生的比较能力。

  环节二:呈现问题,引导观察

  这一环节主要呈现给学生这样一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。

  环节三:交流汇报,得出规律

  这一环节主要是学生汇报交流,得出结论。

  如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。

  应该强调的是,无论学生说的多么好,教师最后的总结与确认是不可缺少的。

  以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。

《分数的基本性质》说课稿10

  一、教材

  1、教学内容:这是义务教育课程标准实验教科书数学人教版五年级下册第四单元P75的内容《分数的基本性质》。

  2、教材与前后知识间的联系:《分数的基本性质》是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。同时又是后面学习约分和通分的理论依据,而约分、通分又是分数四则运算的重要基础,因此这部分内容不仅在单元中具有承前启后的作用,对学生的后继学习也有重要影响。

  3、教材重点:探究分数的基本性质的过程。理解分数的基本性质,能运用分数的基本性质。

  难点:自主探究出分数的基本性质。

  4、知识与技能目标:理解和掌握分数的基本性质,经历探索分数基本性质的过程,培养学生观察、比较、抽象、概括、类推及动手实践能力,进一步发展学生的思维。

  过程与方法目标:是学生经历观察、操作、讨论中,以自主探究、合作分享的教学方式,让学生在交流中进一步完善对分数基本性质的理解。

  情感态度,价值观目标:让学生在主动探索新知的过程中获得成功的体验,体验数学学习的乐趣。

  二、说教学理念:

  1、以学生发展为本,着力强化主体意识。

  2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变学数学为做数学。

  3、改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受猜想、验证、转化等数学思想方法

  三、说教法

  主要采用创设情境,引导探究,引导自学,合作探索相结合等教法。

  四、说学法

  学生主要的学习方法是自主发现、操作体验、合作交流,有顺序的观察题、对比分析、概括总结。

  五、说教学过程

  我将创设情境,动手体验、自主探索的教学方式,指导学生运用“操作――发现法”、“观察、归纳”法进行探究。为此,我设计了四个教学环节:

  第一个环节是创设故事情境,激发学生兴趣《分数的基本性质》说课稿《分数的基本性质》说课稿。我觉得如果根据教材的安排来导入,显得有些平淡,也不容易激发学生的学习兴趣。因此我设计了一个妈妈给三个儿子分苹果的故事。妈妈分别给三个儿子分得苹果的1/2、2/4、4/8,分得的结果看似不公,实则相同。并让学生作为裁判来评一评,看谁分的多,妈妈是不是偏心。这样一来,学生学习数学的兴趣就会提高,学习的积极性也调动起来了。同时,我又把这一悬念暂时先放一放,等学生理解并掌握了分数的基本性质后,学生就会恍然大捂。原来,三个儿子分得的苹果实际上是一样多的,只不过是平均分的份数不一样的,其中表示的份数也不一样,但大小却是相等的`,谁也没有吃亏。这样的设计,不仅使教学结构更加完整,前后呼应,同时也提高了学生理解和应用分数的基本性质来解决实际问题的能力。

  第二个环节是动手体验,形象感知。分数的基本性质,是以分数的大小相等这一概念为基础的。因此我让学生用三张同样大小的长方形纸代替苹果分别折出1/2、2/4、4/8,并用彩色笔涂上颜色。这样既帮助学生复习了分数的意义,又为学习新知识作了准备。接着让学生观察比较涂色部分的大小,再请学生交流,汇报实验过程及结果,使1/2=2/4=4/8这个结论让学生自己“做出来”,而不是老师讲出来。这充分体现以学生为主体,自主探索的教学理念。

  这种教学方式能有效地改变学生原有的一个整数对应一个大小的习惯性思维,初步体会到分数“形变值不变”的独特之处,提高学生的认知能力。

  第三个环节是深入探究,得出规律。这一节环节我提出问题让学生讨论:既然这三个分数大小相等,那这三个分子、分母都不相同的分数之间藏着什么秘密呢?你们能找出它们分子分母各自按照什么规律变化吗?首先,让学生自己观察,把自己的发现在小组内讨论交流,引导学生观察:从左往右得出什么规律,反过来从右往左又得出什么规律。然后请学生再举几个这样的例子,进行交流,有了这些较为丰富的感性认识,再总结出规律。最后学生们会概括得出:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。(老师板书)预计学生不会把相同的数中的0除外,因此我会问同时乘和除以0也可以吗?让学生思考并得出0不能作为分母不能作为除数,所以0要除外,最后让学生重新完整的叙述一遍,老师揭示课题。最后提出问题,我们刚才是借助图联系分数的意义来说明分数的基本性质,这个性质能不能根据分数与除法的关系和商不变的性质来说明呢?启发学生用商不变的性质来说明分数的基本性质,沟通新旧知识的联系,从而培养了学生迁移能力。最后师生共同总结本节课的学习方法。

  最后一个环节是巩固新知,拓展延伸。学以致用是探究学习的又一个基本特征《分数的基本性质》说课稿教学反思。因此我精心设计了练习题。首先是题型变化丰富

  练习中,我除了安排一些基本根据分数的基本性质来填空外,我还安排了一些判断题、口答题、填图题、并要求学生不改变分数的大小,把分数改成分母是30的分数的题目。题型的丰富不仅提高了学生学习的兴趣,也使学生更好地理解和应用分数的基本性质来解决实际问题的能力。其次是练习难度的层次性。数学题目经常出现有些学生吃不了,同时也有部分学生吃不饱的现象。为此,除了基本的练习题外,我还逐步加深难度,提高学生的思维能力,如:分数的分子加上10,要使分数的大小不变,分母应该加上几?难度的加深,使学生的思维能力、解题能力等都有了明显提高,真正把培优补差工作落到了实处。

《分数的基本性质》说课稿11

  各位老师,同学:

  大家上午好!

  我说课的内容是:人教版小学数学课标教材五年级下册75页—76页《分数基本性质》。下面我就从教材分析、学情分析、教学目标、教法学法及教学过程五个方面来谈一下教学过程设计及设计意图。

  一、 教材分析

  本节的内容属于概念教学。《分数基本性质》在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习分数的计算、比的基本性质的基础,还是约分、通分的依据。

  二、 学情分析

  学生已经清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本节课学习做了知识上的铺垫。分数的基本性质是一种规律性知识,分数的分子、分母变了,分数的大小却没变。学生在这种“变”与“不变”中发现规律,掌握新知识。

  三、 教学目标

  综合分析课程标准要求及学生实际,我确定本节教学目标如下:

  1.理解和掌握分数的基本性质,并会运用分数的基本性质把不同的分数化成分母(或分子)相同而大小不变的分数。

  2.初步养成观察、比较、抽象概括的逻辑思维能力,并且在自主探究中正确认识和理解变与不变的辩证关系。

  3.受到数学思想的熏陶,养成乐于探究的学习态度。

  教学重点:理解掌握分数的基本性质,它是约分、通分的依据。

  教学难点:让学生自主探索、发现和归纳分数的基本性质,以及应用它解决相关的问题。

  四、 教法学法

  根据本节课的教学目标,考虑到学生已有的知识、生活经验和认知特点,结合了教材内容,本一课我主要采用猜想验证与探索发现的教学模式。在分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析。通过了观察、比较,提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用,激发学生学习兴趣,同时让学生获得成功体验。

  五、 教学过程

  本一节课的教学过程我分五个部分进行

  第一部分:故事设疑,揭示课题。以唐僧师徒分饼的故事创设问

  题情境,揭示本节课要研究的问题。

  第二部分:组织讨论,动手操作。主要是组织学生动手进行折、画、标等活动,初步理解分数基本性质。

  第三部分:合作探究,发现规律。主要的是学生找出规律,并利用规律解决问题。

  第四部分:多层练习,巩固深化。主要是巩固所学知识并进行拓展提高。

  第五部分:梳理知识,反思小结。主要是总结全课。

  其中,第三部分“合作探究,发现规律”可以细化成为三个环节:

  环节一:动手操作,进行比较

  这一环节是在第二部分的基础上进行的,我给每组学生三张大小一样的长条纸,让学生用分数表示涂色部分,并比较大小。此环节的'设计主要是培养学生的比较能力。

  环节二:呈现问题,引导观察

  这一环节主要是呈现给学生这样的一个问题,“第一环节中的分数的分子、分母都不一样,为什么大小相等”,引导学生从左到右、从右到左两方面去观察,此环节的设计主要是培养学生的观察能力。

  环节三:交流汇报,得出规律

  这一环节主要是学生汇报交流,得出结论。

  如果学生没有概括出“0除外”就设计两组练习,分子、分母同乘或除以0,完善结论;如果概括出来了,再追加一个问题“为什么强调0除外”,巩固结论。最终推导出分数的基本性质----分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。此环节的设计主要是培养学生的抽象概括能力。

  应该强调的是,无论学生说的多么好,教师最后的总结和确认是不可缺少的。

  以上是我对《分数基本性质》一节的教学设计意图,有不当之处,请各位批评指导。

《分数的基本性质》说课稿12

尊敬的各位领导,老师们:

  大家好!今天我很荣幸能够在这里向大家展示我精心准备的说课内容——《分数的基本性质》。接下来,我将从以下几个方面进行详细的说明。感谢大家的聆听!

  一、教材分析(课件)

  《分数的基本性质》是人教版九年义务教育小学数学第十册中的资料。本节课资料是在分数的好处,以及分数与除法关系的基础上进行教学的。是后面进一步学习约分、通分以及分数运算的重要依据,因此本节资料将起着举足轻重的作用。

  二、教学目标(课件)

  根据教材资料及学生的认知水平,我制定了以下教学目标:

  1、使学生理解与掌握分数的基本性质。

  2、培养学生观察、比较、分析、概括等方面的潜力。

  三、教法和学法(课件)

  为了让学生更好地参与课堂,我充当着引导者和组织者的角色,巧妙地设计情境设问、观察发现和小组合作等教学方法。我努力让学生成为课堂的主人,促使他们积极思考、互相合作,从而更好地掌握知识和技能。

  新课程标准强调了过程的.重要性,强调学习数学不能仅仅依靠模仿与记忆。因此,我会通过引导学生进行动手操作、自主探究和组织游戏比赛等形式来进行教学,让他们更好地理解数学知识。

  四、教学过程(课件)

  结合五年级学生的理解潜力和年龄特征,我将本课的教学,设计了四个环节。

  (一)、创设情境、引发猜想(课件)

  首先、猴山上的猴子们都喜欢吃猴王做的香甜饼干。一天,猴王做了三块同样大小的饼干。猴王把第一块饼干平均分成了两块,给了猴1一块。(图片)猴2看到了,馋得口水直流:“猴王,猴王,我也要两块。”猴王笑着说:“好的,好的,给你两块。”于是,猴王将第二块饼干平均分成了四块,把两块给了猴2。(图片)猴3更贪心:“我要六块,我要六块。”猴王想了想,拿出第三块饼干,将它平均切成了十二块,果然给了猴3六块。

  “同学们,你们听完故事后,觉得哪知猴子分得饼最多?”

  (二)、动手操作、初步感知(课件)

  学生拿出了三张准备好的圆片,代替猴王做的饼,按照折、画、涂的步骤,表示出每只猴子所得的饼,并用分数表示涂色部分。在这个过程中,学生开始观察和比较这三个图形。通过多媒体的直观演示,学生更加明确三只猴子分得的饼确实一样多。有了实物的直观比较,学生逐渐理解了三个分数大小相等的道理。但是为何分数的分子、分母不同,大小却相等?这个问题激发了学生的好奇心。这个情境的设置主要是让学生在动手操作中复习分数的知识,为引入新知识做好铺垫,并激发他们的求知欲。这样的设置能够充分利用学生喜欢动手和直观思维的特点,营造出良好的学习氛围。接下来,我会根据这个情境引入新的知识。

  (三)比较归纳、揭示规律(课件)

  (1)在板书完这组分数后,我让学生观察并思考:从左往右看,分子和分母分别是如何变化的?我鼓励他们独立思考,然后在小组中交流讨论,最后汇报结果。有的小组认为分子加了1,分母加了2等。我听了笑而不语,鼓励他们逐一验证各种猜想是否具有规律性。直到一些学生发现分数的分子和分母同时乘了2和3时,我及时给予肯定和表扬。为了突破重难点,我设计了一道填空题,引导学生概括这一发现,并让多名学生分享。这样的设计不仅培养了学生的概括能力,也增强了他们的信心。在此基础上,我布置了一个任务:从右往左看,又有什么规律?有了前面的经验,学生很快得出结论:分数的分子和分母同时除以一个相同的数,分数的大小也不变。

  (2)学生沉浸在成功的喜悦中,我突然提出一个问题:如果分数的分子和分母同时乘以或除以0,会得到什么结果?学生们恍然大悟:0不能作为除数。

  (3)最后,我建议学生用简洁的语言总结这两个发现,与老师一起完善规律。然后我会在黑板上写下本节课的主题——分数的基本性质,让学生清楚地了解本节课的教学重点。

  (4)学生们通过这个故事明白了聪明的猴王利用了数字的特性来公平分配香蕉。这个故事不仅让学生理解了分数的基本性质,还培养了他们解决实际问题的能力。接下来,如果猴子4想要八块香蕉,我们可以怎么办呢?这样的设计既引人入胜,又能激发学生灵活运用知识解决问题的潜力。

  课堂的高潮之后,我引导学生思考如何利用商不变的性质来解释分数的基本特性,帮助他们建立新旧知识之间的联系。

  (四)多层联系、巩固深化

  练习的设计是巩固新知最有效的方法。我致力于将枯燥的练习变得生动有趣。因此,我精心设计的整套练习都以游戏和比赛的形式展开。首先,我安排男女生进行抢答游戏,填空题的形式让学生说出解题思路。接着,我设计了互动游戏:例如,我的分子是4,你的分母应该填多少?我的分母是48,你的分子应该填多少?最后,通过小组之间抢夺苹果的游戏来结束本节课的教学活动。

  五、板书设计

  我的板书设计遵循了目的性原则、概括性原则和直观性原则,能够帮助学生将整堂课的学习内容直观地融入大脑。

  总结:我在整堂课的设计中努力体现“趣”“实”“活”三个字。以猴王分饼为主线,贯穿全文。由情景导入到动手操作,自主探究,最后归纳规律,使学生不仅仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦。新课程标准的要求得到了完美体现。

  我的说课到此结束,谢谢大家。

《分数的基本性质》说课稿13

  各位评委、老师:

  你们好!我是尚市镇中心小学的王方。我说课的课题是《分数的基本性质》,接下来我将从说学生、说教材、说教法学法、说教学程序、说板书设计、说反思等几个方面来进行说课。

  一、说学生

  学生在学习本内容之前已经理解了分数的意义,明确了分数与除法之间的关系、商不变的性质等知识,这些为本课学习作了铺垫。而五年级的学生已具有一定的分析和解决问题的能力,能在教师的引导下完成“质疑—探索—释疑—应用”这一完整的学习过程。

  二、说教材

  1、教材分析:

  《分数的基本性质》是人教版小学数学五年级下册第四单元中的内容,在小学数学中起着承前启后的作用。它既与整数除法商不变的性质有着内在联系,也是后面学习约分、通分、分数计算的基础,在整个分数教学中也占有非常重要的地位。

  2、教学目标:

  结合对教材的分析,我确定了以下教学目标:

  知识与技能目标:

  理解和掌握分数的基本性质,能运用分数的基本性质改变分数的分母与分子,而使分数的大小不变。

  过程与方法目标:

  让学生经历分数基本性质的发现、归纳过程,培养学生小组合作的意识和能力,渗透迁移的教学思想。

  情感态度与价值观目标:

  让学生在主动探索新知识的过程中获得成功的体验,体会分数的基本性质在生活中的应用。

  3、教学重点和难点:

  重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。

  难点:学生通过猜想和动手验证,抽象概括出分数的基本性质。

  4、教学准备:

  学生准备三张形状大小一样的纸片、彩笔,老师准备课件、分数卡片。

  三、说教法学法

  教法:

  本着 “以学定教”的思想,我以自主探究为主线,以发展创新为宗旨,主要采用创设情境、引导探究、引导发现、组织讨论、组织练习等教法,让学生全程、全面、全心地参与到每一个教学环节中。

  学法:

  新课标指出:有效的'数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。基于这样的理念,本课学生的学法主要有:自主发现法、操作体验法、合作交流法、自学尝试法等。当然,由于学生思维方式的不同,教师要尊重学生的选择,允许学生用自己喜欢的方式学习数学。

  四、说教学过程

  为实现教学目标,我将本课的教学程序设计了以下四个环节:

  (一)创设情境,引发猜想

  首先我为学生带来一个《猴王分饼》的故事:猴王做了三个大小一样的饼,它先把第一个饼平均切成两块,分给猴1一块;又把第二个饼平均切成四块,分给猴2两块;接着又把第三个饼平均切成八块,分给猴3四块。听完故事,我问道:“同学们,哪只小猴分的饼最多?”来引发学生的猜想。

  设计意图:“疑是思之始,学之端”。这样设计,旨在把枯燥的数学知识贯穿于学生喜爱的故事情境中。引发学生的学习兴趣,激发他们学习的欲望。

  (二)自主探究,寻找规律

  活动一:动手实践,验证猜想

  让学生动手折一折(将每张纸分别平均折成两份四份和八份)、涂一涂(用笔将其中的一份两份和四份涂上色)、比一比(比较涂色部分的大小),发现三只小猴分的饼是一样多的。同时得到三个相等的分数: = =

  活动二:观察比较,发现规律

  引导学生带着问题观察这三个分数,并在小组内展开讨论:这三个分数的分子和分母都不相同,他们的大小却相等,你们能找出它们的变化规律吗?

  活动三:对比归纳,提示规律

  1、运用课件引导学生分别从左往右看,从右往左看:分数的分子和分母是怎样变化的?

  2、小组合作,归纳出分数的基本性质。

  3、自学教材,对比分析,并举例说明,着重理解为什么要“0除外”?

  活动四:应用巩固,体会规律

  我以学生为主角,把全班学生平均分成了两大组,请其中一组起立。站起来的学生人数占全班人数的几分之几?引导学生用不同的分数来表示。

  设计意图:通过四组活动,使学生养成自主学习的习惯和分析问题的能力。在活动中,通过多种评价方式,及时肯定并促进学生的学习。

  (三)多层练习,巩固深化

  1、例2:让学生运用分数的基本性质把 和 化成分母是12而大小不变的分数。

  2、明确《猴王分饼》的道理,并拓展延伸:如果小猴子要五块、六块、十块……又该怎么分呢?

  3、考虑到学生素质的差异,我设计了四组分层闯关训练。

  我的设计意图是:让学生运用所学的知识解决实际问题,实现预定的目标。还能使学有余力的学生有所提高,从而达到拔尖和减负的目的。

  (四)课堂小结,加深理解

  让学生畅谈收获,并用分数来表示本节课所体验到的收获与快乐。这样设计,不仅是对自己在课堂上知识获取的一个回顾,同时也评价了自己在课堂上的表现,对教师的教学行为与课堂的教学效果也给出了评价。

  五、说板书设计:

  板书设计突出了重点,有助于学生归纳、整理知识,形成知识网络。

  六、说反思

  反思本节课的教学,我认为教学设计体现了“趣”、“实”、“活”三个特点。故事引入,激发了学生的学习兴趣;通过折、涂、比等多种活动,为学生搭建了一个自主探究的活动平台;课上得富有实效,学生体验到了成功的乐趣。

  各位领导、老师们,我的说课到此结束,谢谢大家!

《分数的基本性质》说课稿14

  一、说教学理念

  1、以学生发展为本,着力强化主体意识。

  2 、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变“学数学”为“做数学”。

  3、 致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受猜想、验证、转化等数学思想方法。

  4、联系生活实际、感受数学与现实世界的紧密联系,体验数学的应用价值。

  二、说教材

  《分数的基本性质》一课是九年义务教育六年制小学数学第九册第四单元的内容。它是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的。它是进一步学习约分、通分的基础。

  根据教材内容和学生的认知规律,将本课的教学目标拟定如下:

  1、知识与技能:理解和掌握分数的基本性质,知道分数基本性质与整数除法中商不变性质的关系。能运用分数的基本性质把一个分数化成分母相同而大小相等的分数;培养学生观察、比较、抽象、概括及动手实践的能力,进一步发展学生的思维。

  2、过程与方法:经历探究分数基本性质的过程,感受“变与不变”、“极限”等数学思想方法。

  3、情感、态度、价值观:激发学生积极主动的情感状态,养成注意倾听的习惯,体验互助合作的乐趣。

  本课的教学重点:在通过观察、比较后抽象、概括出分数的基本性质,并会简单应用。

  本课的教学难点:理解和掌握分数的基本性质,沟通与商不变的规律之间的联系与区别。

  教学准备有:多媒体课件、每位学生二张长方形纸、两张圆形纸。

  三、说教法

  本课的教学力求改变过去重知识,轻能力;重结果,轻过程;重教法、轻学法的状况。树立以“以学生发展为本”、“以学定教”、“教为学服务的思想。根据学生的学情,以自主探究为主线,以发展创新为宗旨,为学生提供学习的材料,采用引导探究、引导合作、引导发现、组织讨论、组织练习等教法。精心组织一系列有效的数学活动,让学生全面、全程、全心参与到每一个教学环节中,努力使课堂多一些自主、少一些包办;多一些民主、少一些权威,实现教学为学服务的目的。

  苏霍姆林斯基说过:在人的心灵深处,总有一种根深蒂的需要,这就是希望自己是一个发现者、研究者、探索者,而在儿童的精神世界里这种需要尤其强烈。因此,当学生对二分之一等于四分之二等于六分之三产生疑问并急于了解其中奥秘时,没有把现成的知识直接传授给学生,令他们得到暂时的满足,而是充分相信学生的认知潜能。在新知教学环节中,我主要采用引导探究、引导体验、组织讨论等方法最大限度地给予学生自主探索的时间和空间,把主动权交给学生让学生以自己的方式自由、开放地去探索、发现、创造分数的基本性质,让他们在尝试中发现、讨论中明理、合作中成功、质疑中发展,体验知识的形成过程,使学生的个性得到发展,创造欲得到满足。

  现代教学论认为:要让学生动手做科学,而不是用耳朵听科学。学生在写出一组大小相等的分数后我让学生用自己喜欢的方法加以验证,这一验证的过程使学生在动脑、动口、动手,多种感官配合下,把静态的知识转化为动态的求知过程。

  新课程标准指出:学生的数学学习应当是一个主动和富有个性的过程。因此在例题教学环节,我采用自主探究的学法,让学生自主进行学习,从而学会运用分数的基本性质把一个分数化成分母不同但大小相等的分数,有效地提高了教学效率。

  在知识的巩固阶段,我还采用组织练习法,当然以上这些教法并不是孤立存在的,本着“一法为主,多法为辅”的思想,我将多种教法进行优化组合,以达到促进学生学习方式的转变,实现教学目标的目的。

  四、说学法

  新课标指出:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。基于这样的理念,本课学生的学习方法主要有:自主发现法、操作体验法、合作交流法、自学尝试法等。

  1、学生在探究分数的基本性质时,学生主要采用自主发现法、操作体验法、合作交流法,学生在得出二分之一等于四分之二等于六分之三后,小组合作找出几组像这样大小相等的分数,在这一过程中学生为了能写出大小相等的分数,必然会产生对那组等式进行观察的愿望,从中有所发现。之后学生通过同伴间的交流,运用折纸、等多种方法证明自己写出的那组分数大小相等,他们在尝试中发现,在实践中体验。最后学生交流在写数过程中的发现,最后在讨论中明理,揭示出分数的基本性质。

  2、在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小不同的分数,并尝试完成做一做,达到检验自学的目的。

  当然,由于学生所处的文化环境、家庭背景和自身的思维方式的不同,不同的学生所采用的学习方法也不尽相同,作为教师要尊重学生的选择,允许学生用自己喜欢的方式学习数学。

  五、 说教学程序

  依据新的教学理念及学生的认知特点,将本课的教学设计为以下四个过程:即谈话导入、提出问题;自主探索、寻找规律;运用规律、巩固深化;反思评价,完善认知。

  第一、谈话导入、提出问题:

  前几节课我们学习了分数的意义以及数与除法的关系等内容,我想大家一定学的非常好对吗?先来考考大家!

  设计意图:这的样设计,直接扣入主题,体现了数学的简洁之美,迅速的点燃孩子们求知欲望的火花,从而为主动探究新知聚集动力。

  第二、自主探索,寻找规律。

  此过程共设计了以下三个环节:

  第一个环节:建立几组相等的.分数,提供探究的数据。

  设计意图:这样的设计,不仅复习了已有的知识,而且调动了孩子学习的积极性,用数形结合的思想理解分数的大小,从而很直观上建立起三组分子和分母各不相同而分数的大小确相等的数学。再通过学习已有的学习经验和手中的学具,让学生接着举出几组分数大小相等的分数,这样师生共同呈现的多组分数,为下面研究问题提供了大量的数据。

  第二个环节:小组合作,探究规律。

  设计意图:“疑是思之始,学之端”。这些分子和分母各不相同而分数大小确相同的分数之间一定存在着一些千丝万缕的联系,我们需要进一步的研究。这样的设计,最大限度的调动了孩子的学习积极性,使学生成为课堂学习的主人,让他们在独立自主,合作交流的基础上,对自己的所疑之处,提出合理的说明和解释,通过师生共同的梳理,把静态的知识转化为动态的求知程,从而得出结论。

  第三个环节:沟通联系,揭示规律。

  设计意图:联系分数与除法的关系,结合商不变的性质,进一步说明分数基本性质。这样的设计,从实践的观察和发现到理论的证明,层层深入的证明了我们发现规律的合理性,从而建立起“商不变的性质”与“分数的基本性质”之间的内在联系,新的学习活动与原有的认知结构相互作用,引起了认知结构的重新构建,这是从理论上对规律的证明,在大量的实践材料和理论证明中完成了“分数的基本性质”这一数学模型的构建过程。

  第三、运用规律、巩固深化、拓展思维

  设计意图:这一环节是进一步理解、深化新知识的重要环节,在设计练习题时,要体现“让不同的学生在数学上有不同的发展”这一新课程的理念。主要目的是培养学生的自主解题能力,在面对全体学生的基本上有所提高,注意对知识的巩固。立足于基本练习,注意练习与学生生活实际的联系,让学生学有价值的数学。通过综合练习培养学生的思维,也渗透“极限”和“归纳”的数学思想方法。

  第四、反思评价,完善认知

  你有什么收获?还有什么不明白的?你认为自己在今天课堂上的表现怎样?你帮助了谁或谁帮助了你?

  设计意图:这样的设计,不但让学生谈知识技能方面的收获,还着重让学生谈了学习的方法、情感态度方面的收获,再一次激起良好的情绪体验。

《分数的基本性质》说课稿15

  把单位“1”平均分成若干份,表示这样的一份或其中几份的数叫分数。表示这样的一份的数叫分数单位。分数的基本性质数学说课稿,我们来看看。

  分数的基本性质

  1.使学生理解和掌握分数的基本性质,能应用性质解决一些简单问题。

  2.培养学生观察、分析、思考和抽象、概括的能力。

  3.渗透形式与实质的辩证唯物主义观点,使学生受到思想教育。

  教学过程

  一、谈话我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、整数的互化方法。今天我们继续学习分数的有关知识。

  二、导入新课例

  1.用分数表示下面各图中的阴影部分,并比较它们的大小。

  1、分别出示每一个圆,让学生说出表示阴影部分的分数。

  (1)把这个圆看做单位1,阴影部分占圆的几分之几?

  (2)同样大的圆,阴影部分占圆的几分之几?

  (3)同样大的圆,阴影部分用分数表示是多少?

  2、观察比较阴影部分的大小:

  (1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)

  (2)阴影部分的大小相等,可以用等号连接起来。

  3、分析、推导出表示阴影部分的分数的大小也相等:

  (1)4 幅图中阴影部分的大小相等。那么,表示这4 幅图的4个分数的大小怎么样呢?(这4个分数的大小也相等)

  (2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。

  4、观察、分析相等的分数之间有什么关系?

  (1)观察 转化成 , 的分子、分母发生了什么变化? ( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍。)

  (2)观察 例2.比较 的大小。

  1、出示图:我们在三条同样的'数轴上分别表示这三个分数。

  2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:

  3、观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律。(1)这三个分数从形式上看不同,但是它们实质上又都相等。(教师板书: )(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?

  三、抽象概括出分数的基本性质

  1、观察前面两道例题,你们从中发现了什么变化规律? 分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变。

  2、为什么要零除外?

  3、教师小结:这就是今天这节课我们学习的内容:分数的基本性质 (板书:基本性质)

  4、谁再说一遍什么叫分数的基本性质?教师板书字母公式:

  四、应用分数基本性质解决实际问题

  1、请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似? (和除法中商不变的性质相类似。)

  (1)商不变的性质是什么? (除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)

  (2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算。 2、分数基本性质的应用:我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解决一些有关分数的问题。例3 把 和 化成分母是12而大小不变的分数。

  板书:

  教师提问:

  (1) ?为什么?依据什么道理?( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )

  (2)这个6是怎么想出来的?(这样想:2?=12,26=12,也可以看12是2的几倍:122=6,那么分子1也扩大6倍)

  (3) ?为什么?依据的什么道理?( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )

  (4)这个2是怎么想出来的?(这样想:24?=12,242=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是102=5)

  五。课堂练习

  1、把下面各分数化成分母是60,而大小不变的分数。

  2、把下面的分数化成分子是1,而大小不变的分数。

  3、在( )里填上适当的数。

  4、 的分子增加2,要使分数 的大小不变,分母应该增加几?你是怎样想的?

  5、请同学们想出与 相等的分数。规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、分母是分子的4倍为:4、8、12、16无数个。

  六、课堂总结今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好。

  七、课后作业

  1、指出下面每组中的两个分数是相等的还是不相等的。

  2、在下面的括号里填上适当的数。

  分数的基本性质(说课稿)

  理解了分数的意义,认识真分数、假分数和带分数,掌握了假分数和带分数、整数的互化方法之后,就要学习分数的基本性质。

  分数的基本性质在分数教学中占有十分重要的地位,它是约分、通分的理论依据,而约分、通分又是分数四则运算的重要基础。只有理解和掌握分数的基本性质,能比较熟练地进行约分和通分,才能应用四则运算的法则正确、迅速地进行分数四则运算。因此,分数的基本性质是分数的意义和性质这一单元的教学重点之一。掌握分数与除法的关系,以及除法中被除数、除数同时扩大或同时缩小相同的倍数商不变的规律,是学好分数基本性质的基础。

  学生在学习和掌握分数的基本性质过程中,叙述性质内容时常常把分子、分母同时乘上或者除以相同的数(零除外)中的同时零除外丢掉。出现这类问题的原因是:对分数的基本性质没有真正的理解;对零为什么要除外的道理也不太清楚。分数基本性质是建立在:分数的意义、商不变的性质的基础上学习的,由于学生进入高年级,抽象思维有了一定的基础,在培养学生探索规律、应用一些数学方法进行迁移类推、思维的严密性以及思维的灵活性等方面,都应该进一步予以加强。这种思想方法以及能力的培养,对今后研究统计知识及其学生的终身学习都具有非常重要的作用。

  分数的基本性质是以分数大小相等这一概念为基础展开研究的,由于学生在中年级已经对商不变的性质有了较深入的理解,所以在教学实践中要有意识的加强分数与除法之间的联系,以便把旧知识迁移到新的知识中来。

  在教学中,采用小组合作学习的办法,通过给3张纸涂色、折叠、观察、探索进行规律性的总结。在进行小组汇报时,教师揭示了知识间的联系,鼓励学生用不同的理解方法、不同角度进行汇报分数基本性质的可行性,为学生的思维留下了创造空间。在学生总结规律后,为了加深对分数的性质的理解,还可以让同学举一些符合规律的例子进行说明。教学实践中,要注重培养学生揭示知识间的联系、探索规律、总结规律的能力。

【《分数的基本性质》说课稿】相关文章:

《分数的基本性质》的说课稿06-25

分数的基本性质说课稿06-26

分数的基本性质说课稿15篇11-04

《分数的基本性质》教案08-25

分数的基本性质教学设计05-11

《分数的基本性质》教学设计04-16

分数的基本性质教学反思10-26

《分数的基本性质》教学反思11-15

分数的基本性质的教学反思04-01

分数的基本性质教案范文07-04