关于八年级数学说课稿模板汇总9篇
作为一位杰出的教职工,很有必要精心设计一份说课稿,编写说课稿是提高业务素质的有效途径。优秀的说课稿都具备一些什么特点呢?下面是小编为大家整理的八年级数学说课稿9篇,希望对大家有所帮助。
八年级数学说课稿 篇1
各位领导、老师们:
大家好!
今天我说课的内容是义务教育课程标准实验教科书《数学》八年级上册第十二章12.3.1等腰三角形性质第一课时。下面,我从教材分析、教法分析、学法分析、教学过程、教学反思五个方面来汇报我对这节课的教学设想。
一、教材分析
1、教材的地位与作用:
本节课内容是在学生掌握了一般三角形和轴对称的知识,具有初步的推理证明能力的基础上进行学习的。使学生学会分析、学会证明,在培养学生的思维能力和推理能力等方面有重要的作用。通过等腰三角形的性质反映在一个三角形中“等边对等角”的边角关系,并且是对轴对称图形性质的直观反映(三线合一)。它所倡导的“观察---发现---猜想---论证”的数学思想方法是今后研究数学的基本思想方法。等腰三角形的性质也是论证两个角相等、两条线段相等、两条直线垂直的重要依据,因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。
2、教学目标:
知识技能:理解掌握等腰三角形的性质;运用等腰三角形的性质进行证明和计算。
过程方法:通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力。
解决问题:通过观察等腰三角形的对称性,及运用等腰三角形的性质解决有关的问题,提高学生观察、分析、归纳、运用知识解决问题的能力,发展应用意识。
情感态度:通过引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
(根据教材内容的地位与作用及教学目标,因此我将把本节课的重点确定为:等腰三角形的性质的探究和应用。由于对文字语言叙述的几何命题的证明要求严格且步骤繁琐,此时八年级学生还没有深刻的理解和熟练的掌握,因此我将把本节课的难点定为:等腰三角形性质的推理证明。)
3、教学重点与难点:
重点:等腰三角形的性质的探索和应用。
难点:等腰三角形性质的推理证明。
二、教法设计:
教法设想:我采用探索发现法和启发式教学法完成本节的教学,在教学中通过创设情景,设计问题,引导学生自主探索,合作交流,组织学生动手操作,观察现象,提出猜想,推理论证等。有效地启发学生的思考,使学生真正成为学习的主体。
三、学法设计:
在学生学习的过程中,我将从两个方面指导学生学习,一方面老师大胆放手,让学生去自主探究等腰三角形的性质,另一方面,在对等腰三角形性质的.证明过程中,老师要巧妙引导,分散难点。这样做既有利于活跃学生的思维,又能帮助他们探本求源,这样也体现了以“教师为主导,学生为主体”的新课改背景下的教学原则。
四、教学过程:
根据制定的教学目标,围绕重点,突破难点,我将从以下七个方面设计我的教学过程:
1、创设情景:
首先向同学们出示精美的建筑物图片,并提出问题串:(1)什么是轴对称图形?这些图片中有轴对称图形吗? (2)里面有等腰三角形吗?然后向学生介绍等腰三角形的定义以及边角等相关的概念,由于学生小学就已经接触过,所以学生很容易理解。再提出第三个问题:(3)a.等腰三角形是轴对称图形吗?b.等腰三角形具备哪些性质呢?引出本节课的课题-我们这节课来探究等腰三角形的性质。--板书课题。
2、动手操作,大胆猜想:
①拿出课下制作的等腰三角形的纸片,它是轴对称图形吗?对称轴是谁?用你手中的纸片说明你的看法?②等腰三角形沿对称轴折叠后,你能得到哪些结论?(看谁得到的结论多)
③分组讨论。(看哪一组气氛最活跃,结论又对又多.)
然后小组代表发言,交流讨论结果。
④归纳:你能猜想得到等腰三角形具有什么性质?你能用文字语言归纳一下吗?
(教师引导学生进行总结归纳得出性质1,2)
性质1:等腰三角形的两底角相等。(简写成“等边对等角”)
性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。(简称“三线合一”)
(设计意图:由学生自己动手折纸活动,根据等腰三角形轴对称性,大胆猜测等腰三角形的性质,培养学生的观察分析、概括总结能力。也发展了学生的几何直观。教师在学生猜想的基础上,引导学生观察、完善、归纳出性质1和性质2。培养了学生进行合情推理的能力。)
3、证明猜想,形成定理:
你能证明等腰三角形的性质吗?
对于这种几何命题的证明需要三大步骤:分析题设结论,画出图形写出已知和求证,最后进行推理证明。这对于八年级学段的学生难度较大,为了突破难点,我决定设计以下三个阶梯问题:
(1)找出“性质1”的题设和结论,画出的图形,写出已知和求证。
(2)证明角和角相等有哪些方法?(学生可能会想到平行线的性质,全等三角形的性质)
(3)通过折叠等腰三角形纸片,你认为本题用什么方法证明∠B=∠C,写出证明过程。
问题1的设计使得学生顺利地将文字语言转化为符号语言,帮助学生顺利地写出已知和求证;
问题2提供给学生了解题思路,引导学生用旧的知识解决新的问题,体现了数学的转化思想。找到新知识的生长点,就是三角形的全等。
问题3的设计目的:因为辅助线的添加是本题中的又一难点,因此让学生对折等腰三角形纸片,使两腰重合,使学生在形成感性认识的同时,意识到要证明∠B=∠C,关键是将∠B和∠C放在两三角形中去,构造全等三角形,老师再及时设问:你认为可以通过什么方法可以将∠B和∠C放在两个三角形中去呢?再次让学生思考,由于对知识的发生,发展有了充分的了解,学生探讨以后可能会得出以下三种方法:
(1)作顶角∠BAC的平分线,
(2)作底边BC的中线,
(3)作底边BC的高。以作顶角平分线为例,让一生板演,其他学生在练习本上写出完整的证明过程。以达到规范学生的解题步骤的目的。其他两种证法,让学生课下证明。这样,学生就证明了性质1,同时由于△BAD≌△CAD,也很容易得出等腰三角形的顶角平分线平分底边,并垂直于底边。用类似的方法还可以证明等腰三角形底边的中线平分顶角且垂直于底边,等腰三角形底边上的高平分顶角且平分底边,这也就证明了性质2。
(设计意图:教师精心设计问题串引导学生通过动手,观察,猜想,归纳,猜测出等腰三角形的性质,发展了学生的合情推理能力,同时也让学生明确,结论的正确性需要通过演绎推理加以证明。这样把对性质的证明作为探索活动的自然延续和必要发展,使学生感受到合情推理与演绎推理是相辅相成的两种形式,同时感受到探索证明同一个问题的不同思路和方法,发展了学生思维的广阔性和灵活性。)
(4)你能用符号语言表示性质1和性质2吗?
(设计意图:把文字语言转换为符号语言,让学生建立符号意识,这有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。——
4、性质的应用:
例一:在等腰△ABC中,AB=AC,∠A=50°,则∠B=_____,∠C=______
变式练习:
1、在等腰中,∠A=50°,则 ∠B=___,∠C=___
2、在等腰中,∠A=100°,则∠B=___,∠C=___
设计意图:此例题的重点是运用等腰三角形“等边对等角”这一性质和三角形的内角和,突出顶角和底角的关系,如
例一,学生就比较容易得出正确结果,对变式练习(1)、(2)学生得出正确的结果就有困难,容易漏解,让学生把变式题与例一进行比较两题的条件,让学生认识等腰三角形在没有明确顶角和底角时,应分类讨论:变式1(如图)①当∠A=50°为顶角时,则∠B=65°,∠C=65°。②当∠A=50°为底角时,则∠B=50°,∠C=80°;或∠B=80°,∠C=50°。变式2①当∠A=100°为顶角时,则∠B=40°,∠C=40°。②当∠A=100°为底角时,则△ABC不存在。由此得出,等腰三角形中已知一个角可以求出另两个角(顶角和底角的取值范围:0°<顶角<180°,0°<底角<90°)。
例二:在等腰△ABC中,AB=5,AC=6,则△ABC的周长=_______
变式练习:在等腰△ABC中,AB=5,AC=12,则 △ABC的周长=______
(设计意图:此例题的重点是运用等腰三角形的定义,以及等腰三角形腰和底边的关系,并强调在没有明确腰和底边时,应该分两种情况讨论。如例二,①当AB=5为腰时,则三边为5,5,6;②当AB=5为底时,则三边为6,6,5。变式练习①:当AB=5为腰时,三边为5,5,12;②当AB=5为底时,三边为12,12,5。此时同学们就会毫不犹豫地得出三角形的周长,这时老师就可以提出质疑,让同学们之间讨论(学生容易忽视三角形三边关系,看能否构成一个三角形)。
例三、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。
(例3是课本例题,有一定难度,让学生展开讨论,老师参与讨论,认真听取学生分析,引导学生找出角之间的关系,利用方程的思想解决问题,并书写出解答过程。本题运用了等腰三角形性质1,并体现了利用方程解决几何问题的思想。)
例四:
在△ABC中,点D在BC上,给出4个条件:①AB=AC②∠BAD=∠DAC③AD⊥BC④BD=CD,以其中2个条件作题设,另外2个条件作结论,你能写出一个正确的命题吗?看谁写得多。(分组讨论抢答)
5、巩固提高
(1)等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为度。
(2)如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=30。求∠1和∠ADC的度数。
(3)课本本章数学活动三“等腰三角形中相等的线段”
设计意图:
(1)题运用等腰三角形的性质1及等腰三角形一腰上的高的画法,由于题目没有图,要用到分类讨论的数学思想,学生能正确画出锐角和钝角三角形两种图形就容易得出结果,也渗透了一题多解。
(2)题同时运用了等腰三角形的性质1,性质2,还有三角形的内角和这三个知识点,培养学生对于知识的灵活运用,“讨论”是本章的数学活动3“等腰三角形中相等的线段”。与等腰性质的证明思路类似,先通过等腰三角形的对称性猜想距离是相等的,然后通过做辅助线构造全等三角形来进行严密的推理。更加说明了合情推理和演绎推理是相辅相成的。
6、课堂小结:不仅仅说你收获了什么,而是让学生从知识上,思想方法上,以及辅助线的做法上等方面具体总结一下。然后教师结合学生的回答完善本节知识结构。学生对于自己的疑惑提出小组内交流,还没解决则全班交流。
7、布置作业:
P55练习1、2、3题
P56习题1、4、6,(选做7,8题)
八年级数学说课稿 篇2
各位老师,你们好!我今天说课的内容是《一次函数》,现在给大家说一说当初我是如何跟学生一起学习这节内容的,希望各位多加指导!我将从以下几个方面给大家做一详细介绍:
一、 说教材
(一)本节内容在教材中的地位和作用
本课的内容是人教版八年级上册第14章第2节第2课时,就是课本115到116页的内容。在许多方面与正比例函数的图象和性质有着紧密联系,是本章中的重点。本节课安排在正比例函数的图象与一次函数的概念之后。通过这一节课的学习使学生掌握一次函数图象的画法和一次函数的性质。它既是正比例函数的图象和性质的拓展,又是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用。本节教学内容还是学生进一步学习“数形结合”这一数学思想方法的很好素材。作为一种数学模型,一次函数在日常生活中也有着极其广泛的应用。
(二)说教学目标
基于以上的教材分析,结合新课程标准的新理念,确立如下教学目标:
知识技能:
1、理解直线y=kx+b与y=kx之间的位置关系;
2、会利用两个合适的点画出一次函数的图象;
3、掌握一次函数的性质.
数学思考:
1、通过研究图象,经历知识的归纳、探究过程;培养学生观察、比较、概括、推理的能力;
2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。
情感态度:
1、通过画函数图象并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美;
2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
(三)说教学重点难点
教学重点:一次函数的图象和性质。
教学难点:由一次函数的图象归纳得出一次函数的性质及对性质的理解。
二、说教法学法
1、教学方法
依据当前素质教育的要求:以人为本,以学生为主体,让教最大限度的服务与学。因此我选用了以下教学方法:
1、自学体验法——利用学生描点作图经历体验并发现问题,分析问题进一步归纳总结。
目的:通过这种教学方式来激发学生学习的积极主动性,培养学生独立思考能力和创新意识。
2、直观教学法——利用多媒体现代教学手段。
目的:通过图片和材料的展示来激发学生学习兴趣,把抽象的知识直观的展现在学生面前,逐步将他们的感性认识引领到理性的思考。
2、学法指导
做为一名合格的老师,不止局限于知识的传授,更重要的是使学生学会如何去学。本着这样的原则,课上指导学生采用以下学习方法。
1、应用自主探究。培养学生独立思考能力,阅读能力和自主探究的学习习惯。
2、指导学生观察图象,分析材料。培养观察总结能力。
三、 说教学程序设计
(一)、创设情境,导入新课
活动1:观察:
展示学生作图作品(书P28例2),强调列表及图象上的点的对应关系。
课前一两分钟对学生上交的作图作品进行快速筛选,进量多选出一部分,课上多肯定多表扬多鼓励。再从中选取一两幅优秀的作品上课为示例。
目的有四:
1、根据学生的年龄特征:都具有强烈的表现自我的心理。大部分学生盼望在课上教师能展示自己的`作品,这样将最大限度地调动学生的学习积极性,其作图会比平时更规范更准确;也可以说完成了变教师课上被动讲为学生课外主动学习的过程,这样以来学生的所获更多,印象更深;
2、课上展示学生作品本身就是对学生完成作业情况的肯定,这又恰好给予了学生足够的成功感和荣誉感,这便增加了学生学习数学的信心,乐意学习数学,激发了学习热情,听课更加专心。
3、学生经历画图象进而感悟它的形状及与正比例函数图象的异同,为后面的发现规律作了准备。
4、令教师对学生有了更深层次的了解,能更好地把握课堂。
(二)尝试探索、体验新知:
活动1、观察探索:
比较两个函数图象的相同点与不同点?
第一步;根据你的观察结果回答问题。(书中原问题1、2、3)
目的:这样在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出了图象,让学生通过操作体验感悟两者之间的关系,问题变得直观形象,学生们非常容易地完成平移。
第二步:在学生作出的两条平行直线中,教师先引导学生观察正比例函数图象的交点情况,引用两点法(两点确定线);在此基础上引导学生发现“直线y=--6x+5与坐标轴交点”并思考:一次函数y=--6x+5又如何作出图象?
目的:这样通过启发学生视觉见到的两点,即与坐标轴的交点{(0,b),和(-b/k,0)两点};此交点的求法(学生易从填表中的数据发现),再反之引导学生抓住这两点画图象。就此题体验一次函数图象的两点确定;同时也教会了学生用两点法画一次函数图象。
活动2:知识再体验:在同一直角坐标系中画出四个K值不同的一次函数图象,并观察分析。
目的:进一步巩固两点作图法,为探究一次函数的性质作准备。
活动3:展示“上下坡”材料,解决象限问题。(多媒体展示)
目的:让学生触发漫画中“上下坡”的情景,引导思考k、b对图象的影响——设置化抽象为形象,化枯燥为生动,同时学生对这种直观的知识易接受,易理解,记忆深刻。从而突出了重点,攻破了难点。
活动4:师生互动(师生角色互换),提高拓展。(多媒体展出内容)
目的:通过这种师生互动角色转换形式,不但能尽快烘起课堂气愤,而且复习了本课的重点内容,对一次函数的性质理解的更透彻。
(三)课堂小结
引导学生回忆所学知识。通过这节课的学习你得到什么启示和收获?谈谈你的感受.
目的:总结回顾学习内容,有助于学生养成整理知识的习惯;有助于学生在刚刚理解了新知识的基础上,及时把知识系统化、条理化。
(四)作业布置
加强“教、学”反思,进一步提高“教与学”效果。
四、说板书设计
采用了如下板书,要点突出,简明清晰。
一次函数
正比例函数图像的画法:确定两点为(0,0)和(1,K)一次函数选择的两点为:(0,k)和(-bk,0)
五、说课后小结
实践证明,在教学中,充分利用教学方法的优势,为学生创造一个好的学习氛围,来引导学生发现问题、分析问题从而解决问题。多媒体课件支撑着整个教学过程,令学生在一个生动有趣的课堂上,能愉快地接受知识
八年级数学说课稿 篇3
一说教材
《等腰三角形的性质》是人教版教科书八年级上册第13章第三节第1课时的教学内容。在此之前,学生们已经学习了等腰三角形的定义以及轴对称,学生已经具备了一定的动手操作能力。这些知识为本节课的学习等腰三角形的性质起到了铺垫的作用。而本节课的知识为以后将为以后学习的四边形及多边形的相关知识奠定了基础。
二说教学目标
根据教学大纲和新课程标准的要求,我认真钻研教材,特制定以下三个教学目标:
1掌握等腰三角形的性质
2知道等腰三角形的性质的推理过程
3会灵活运用等腰三角形的性质解决相关的数学问题
三 说教学重、难点
结合八年级学生的年龄特点、心理特征和现有的知识结构。我认为本节课的重点是等腰三角形的两个性质即“等边对等角”;“三线合一”。
由于八年级学生的逻辑推理能力和理解运用能力还较弱,因此等腰三角形的性质的推理过程及会灵活运用等腰三角形的性质解决相关的数学问题是本节课的难点。
四 说教法和学法
本节课我采用的教法是启发式教学法、动手操作法。
学生的学法是:自主探究法、合作讨论法。
五说教学过程
本节课我主要是根据“四步五环节”教学法从以下五个环节进行教学的。
1 复习导入
通过教师在黑板上画一个三角形(任意取一个点为圆心,适当的长为半径画弧,在所画的弧上任意取两个点顺次连接这三个点所得的三角形是什么三角形?)的方法能确定是所画的三角形是等腰三角形。这样导入可以让学生知道如何用尺规作图做一个等腰三角形,并引导他们回忆等腰三角形的概念及腰、底边、顶角、底角的概念。
2探究新知
在同学们已经学习了轴对称的基础上通过对折剪纸观察猜想得出等腰三角形的性质,这样设计既能提高学生的动手操作能了,又能更直观的发现等腰三角形的三条性质即:对称性、等边对等角、三线合一。在此基础上教师在引导学生写出推理过程,同时也提高了学生的逻辑思维能力.
3理解与运用
为了让学生熟练的掌握等腰三角形的三个性质,我设计了一道相关证明题,让学生先自主探究不会的`同学请教会做的给其讲解进行兵练兵,再找一名学生将解题过程板术黑板上,教师进行点评,以提高学生书写完整、简洁的解题过程的能力。
4强化巩固
在这一教学环节中我设计了2道求角度的问题,让学生通过由易到难的探究过程将所学的知识进一步升华,培养学生的探究精神。
5小结
设计三个问题让学生通过思考讨论回答出来,从而把本节课的知识系统化。以提高学生的总结概括能力。
本节课我采用观察法和动手操作法导入新课充分的调动了学生学习的主动性和积极性顺利完成的预定的教学任务,取得了良好的教学效果。
八年级数学说课稿 篇4
一、教材分析
1、教材的地位和作用
正方形在小学学生已经接触过。在现实生活中随处可见,应用非常广泛,它是学生非常熟悉的一种图形。《正方形》是在学生掌握了平行线、三角形、平行四边形、菱形、矩形等有关知识及轴对称图形和中心对称图形等平面几何知识,并且具备有初步的观察、操作、推理和证明等活动经验的基础上出现的。目的在于让学生通过探索正方形的性质,进一步学习、掌握说理、证明的数学方法。这一节课是前面所学知识的延伸和概括,充分体现了平行四边形、菱形、矩形、正方形这些概念之间的联系、区别和从属关系,同时又是高中阶段继续学习正方体、正六面体必备的知识。
2、教学重点难点
教学重点:正方形的概念和性质。
教学难点:理解正方形与平行四边形、菱形、矩形之间的内在联系及正方形的性质和应用。
3、学生情况分析
我是一所山区中学的数学教师,我任教的班级学生基础一般,但学生学习积极性高,求知欲、表现欲强,具有一定的独立思考和探究的能力。但该班的学生在口头表达能力方面稍有欠缺,所以在本节课的教学过程中,我注重学生的说理能力、口头表达能力以及推理能力的培养。
4、教材的处理
在本节课前,学生已经学习了平行四边形,菱形,矩形,他们已经掌握了这些图形的意义、性质及其应用。因此,我对教材进行了如下处理:首先展示现实生活中的一组图片,让学生感知正方形,引入课题;通过观赏一室内装饰图案,运用多媒体课件呈现出图中的平行四边形、菱形、矩形、正方形,唤起学生的有意记忆和联想,在学生已有知识的基础上,自主探索新知识;通过运用多媒体演示图形的变化,让学生通过观察探索、归纳总结出正方形的意义、性质;最后应用正方形的意义和性质解决问题,使所学知识得以掌握。
二、目标分析
(一)知识与技能
1、理解正方形的概念,掌握正方形性质以及正方形与平行四边形、菱形、矩形之间的关系。
2、能正确运用正方形的性质进行简单的计算、推理、论证。
(二)过程与方法
1、通过本节课的学习培养学生观察、动手、探究、分析、归纳、总结等能力。
2、培养学生的合情推理意识,主动探究的习惯,逐步掌握证明的方法。
3、渗透从一般到特殊,化未知为已知的数学思想及转化的数学思想方法。
(三)情感态度与价值观
1、让学生树立科学、严谨、理论联系实际的良好学风。
2、培养学生相互讨论、相互帮助、团结协作的团队精神。
三、过程分析
课堂教学是学生数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的养成的主要途径。根据本节的教学内容,新课程标准的要求,学生的实际情况,我设计了以下五个主要的教学环节。
(一)、创设情境、引入课题
前苏联著名数学家辛钦指出:“我想尽力做到在引进新概念、新理论时,学生先有准备,能尽可能地看到这些新概念、新理论的引进是很自然的,甚至是不可避免的。我认为只有利用这种方法,在学生方面才能非形式化地理解并掌握所学到的东西。”这段话很精辟道出了引入新知识的一个重要原则──由自然到必然,就是说,在引进概念前,要让学生感到这是很自然的而且是不可避免的。
因此,本节课我创设以下情景,引入课题。
观察1:正方形的地板砖、印章、钟表、包装盒等
提问:你发现了什么?
(这些物品的表面都是正方形,利用正方形可以制作许多漂亮的图案。)
这节课我们一起来研究正方形。
板书课题————正方形。
观察2:一室内装饰图案,里面有平行四边形,菱形,矩形、正方形。
提问:前面我们学习了平行四边形、菱形、矩形,那么正方形与平行四边形、菱形、矩形之间有什么关系?
学生充分欣赏、观察第一组图片,真切地感受现实生活中存在的一种图形——正方形,让学生深刻体会到数学源于生活的真谛,揭示这节课的课题——正方形。通过观赏一室内装饰图案,运用多媒体课件呈现出图中的平行四边形、菱形、矩形、正方形,而平行四边形、菱形、矩形是学生已经学过的知识,非常熟悉,新课程标准指出教学过程的设计要从学生已有的认知结构出发,注重新旧知识的.联系。这样使学生自然联想到:正方形与平行四边形、菱形、矩形之间有什么关系?激起学生思维的火花。
(二)、探究新知,形成概念
1、 复习回顾、开启思维
(1)想一想:矩形、菱形与平行四边形之间的边与角有什么关系?
(学生思考回答后课件展示图形的变化过程①②,使学生在图形的动画变化过程中了解由边、角的变化可使图形发生变化)
(2)量一量:正方形与菱形、正方形与矩形及平行四边形之间的边、角又有什么关系?
(3)说一说:正方形的概念。
(4)议一议:正方形与平行四边形、菱形、矩形之间有什么关系?
(学生合作交流,讨论探究正方形与平行四边形、菱形、矩形的边、角变化关系,然后课件展示图形的变化过程③④⑤,使学生在图形的动画变化过程中再一次了解由边、角的变化可使图形发生变化)
让学生回顾矩形、菱形与平行四边形的关系,既复习了已有的知识,又使学生产生联想:正方形与它们有什么关系,哪些东西发生了变化,从而激起学生强烈的求知欲望,迫切希望知道正方形与平行四边形、菱形、矩形之间哪些东西变化了,让学生动手量,分组讨论、探究正方形与平行四边形、菱形、矩形之间的由边、角变化而使图形之间发生了变化,揭示它们之间的内在规律,激励学生主动探索、大胆想象,体现了新课程理念:让学生经历数学知识的形成与应用的过程,使学生在认识事物时有了从“一般到特殊”的解决问题的思路,引导学生初步掌握“观察、分析、总结”的学习方法,从而有效地攻克了本节课的难点。
2、 共同探讨,类比归纳
(1)比一比:看谁填得又快又好:平行四边形、矩形、菱形的性质。(教师将事先准备好的表格在上课之前发给学生,让学生填完表格的前三列,教师检查,表扬填得好的同学),你知道正方形的性质吗?(学生讨论完成第四列)提问:你是怎样确定正方形的对称轴的?
(2)讲一讲:你是怎样得出正方形的性质的。
新课程的基本理念讲到:教学活动必须尊重学生已有的知识与经验。而平行四边形、菱形、矩形的性质,学生已经很熟悉。教学中我首先印好上面的表格,设计比一比,看谁填得又快又好,意在让全体学生参与到教学中来,回顾了所学知识,,同时开启学生联想的大门:正方形既是特殊的平行四边形,又是特殊的菱形和矩形,那么它就同时具有平行四边形、菱形和矩形的性质。然后学生类比归纳出正方形的性质,体现了“把所学知识建构在已学知识的基础上”的新课程理念,培养学生主动探索的习惯和创新意识。
(3)平行四边形有一个角是直角且邻边相等时变成了正方形,矩形的邻边相等时是正方形。想一想:你能否利用对角线的变化来判断一个四边形是正方形呢?试试看。
(教师在学生分组讨论、答辩后,再借助课件展示学生讨论的由对角线变化判定一个四边形为正方形的方法。)
利用对角线的变化,判断图形之间的变化,培养学生类比归纳的能力,学生在合作探讨中,培养学生的团结协作、共同探索的习惯,同时训练了学生的发现、归纳、总结的能力。
(三)、具体应用,形成技能
1、讲练结合、促进迁移
练习1、已知:如图1,正方形ABCD,对角线AC、BD交于点O ,AC=4
求:⑴、图中∠BAC= , ∠AOB .
⑵、与OA相等的线段有 ,AB= 。
⑶、正方形的周长是 ,面积是 。
图1
练习2、抢答:下列说法是否正确,错误的请说明理由。
①正方形一定是矩形。 ( )
②四条边都相等的四边形是正方形。 ( )
③有一个角是直角的平行四边形是正方形。 ( )
④两条对角线相等且互相垂直平分的四边形是正方形。 ( )
⑤两条对角线相等的菱形是正方形。 ( )
⑥菱形的对角线互相垂直且相等。 ( )
心理学研究表明:八年级学生集中注意力的时间约为25——35分钟,此时设计抢答题可以活跃课堂气氛,消除疲劳,充分调动学生学习的积极性。共同辨析正误,多问几个为什么,使平行四边形、菱形、矩形、正方形这几个概念越辩越清晰,同时培养了学生善于思考,勤于探索的好习惯。
例1、已知:如图1,正方形ABCD被它的两条对角线AC、BD分成四个小三角形,
求证:△AOB、△BOC、△COD、△DOA是全等的等腰直角三角形。
(引导学生用多种方法加以证明:如利用三角形全等;利用正方形的两条对角线是它的对称轴证明;画正方形沿对角线剪开证明等。)
例题1是证明题,意在培养学生的逻辑思维能力、推理能力、书写及语言表达能力,教师要引导学生用多种方法加以证明,鼓励学生从不同的角度解决同一问题,培养学生的发散思维能力。
2、动手操作、解释原理
例2、把一张长方形的纸片如图2那样折一下,可以截出正方形纸片,这是为什么呢?
如果是长方形木板,又怎样从中截出面积最大的正方形木板呢?
图2
例3、现学校有一正方形的花园,为方便游客观赏,要修两条直的小道通过花园(道路宽度忽略不计),把花园分成面积相等的四个部分,请你设计出尽可能多的修路方案,画出草图(不写画法、证明)
第2题引导学生利用所学知识联系生活实际解决问题,让数学贴近生活,达到生活材料数学化,数学教学生活化。把数学学习的内容与生活实际有机结合起来,使学生感受数学与生活的密切联系,增强学生学习数学的驱动力,激发学生学习数学的浓厚兴趣。
第3题让学生设计尽可能多的修路方案,既培养学生的创造性思维能力、发散思维能力,又揭示了正方形的本质,只要是通过正方形的中心且互相垂直的两条直线,就可将正方形分成面积相等的四部分。
3、深化目标、拓展延伸
例4、如图3,边长是1的正方形ABCD绕点A顺时针旋转30°得到正方ABCD,求图中阴影部分的面积。
利用多媒体的动画功能,使正方形ABCD绕点A顺时针旋转30°得到正方形ABCD,让学生仔细观察得出△ADE≌△ABE,再利用∠DAD=30°,正方形边长为1,求得△ABE的面积,从而得出阴影部分的面积,学生积极参与到探索活动之中,去寻找知识在应用中的衔接点,形成正确的应用观,培养学生选择适当的数学方法解决问题的能力。
(四)、归纳小结、深化新知
请同学们回答以下三个问题
1、本节课你学到了那些数学知识?你还有什么疑惑?
平行四边形
正方形
菱形
矩形
2、展示平行四边形、菱形、矩形、正方形四种图形的包含关系图,引导学生回顾正方形的定义和性质,并说出这几种图形之间的联系与区别。
3、 你对老师有何建议和看法,欢迎课后和老师交流。
(全班学生积极思考,相互讨论,然后自由发言。)
让学生小结,不仅回顾了所学知识,而且培养了学生归纳、概括的能力。通过小结,学生的发散思维能力和创新能力得到了加强,并向学生展示了人类认识世界的规律是由特殊到一般、由具体到抽象,使学生站在一个新的高度来认识所学内容。新课后的总结能起到画龙点睛的作用,同时有利于帮助学生理清知识的脉络,形成完整认知结构。
(五)、布置作业,提高能力
1、必做题
(1)已知正方形的一条边长为1cm,求它的对角线长。
(2)已知正方形的一条对角线长为4cm,求它的边长和面积。
2、选做题
(2)如图5,正方形ABCD的对角线BD上有一动点P,PE⊥AB,PF⊥AD,垂足分别为E、F,试指出△EOF的形状?说说你的理由。
原苏联心理学家维果茨基研究指出:“学生的发展有两种水平,第一种称为现有发展水平,表现为学生运用已有知识经验独立完成任务;第二种称为最近发展区,是一种准备水平,表现为学生还不能自行完成任务,需要教师的帮助,但是经过启发也许他就能独立完成任务。”教学就是要把最近发展区水平转化为现有水平。根据学生不同层次的知识水平,为了使学生巩固所学知识,我安排了难度不一的课外题。第一题为必作题,设计了有关正方形的周长、面积、对角线、边长的计算,目的是进一步理解正方形的性质,并考察学生掌握的情况。第二题是选作题,供学有余力的学生完成,体现分层教学,增加有能力的学生学习数学的兴趣和欲望。从而使不同的学生学到了不同的数学,每一个学生都得到了充分的发展。
四、教学评价
前面分析,正方形的概念和性质是本节课的重点,而正方形的有关知识对后续的学习又显得尤为重要,因此本节课中教师的课前准备与课堂组织显得非常重要。在教学过程中,通过创设问题情境,积极引导、启发学生探索思考,使学生学会学习、学会探索、学会研究。同时,借助设计制作的多媒体课件辅助手段,极大地提高了课堂教学效益。因此,在本节课中,教师作为学习活动的组织者、引导者、参与者的身份得到了很好的体现。
学生是课堂的主人,本节课中,学生在教师创设的情境下,自主探索,合作交流,积极参与课堂教学,主动构建新的认知结构,他们学习的积极性得到充分发挥,因此学生的主体地位也得到很好地保证。
由于学生的个体差异表现为认知方式与思维策略的不同,以及认知水平和学习能力的差异,所以在整个教学过程中,都应尊重学生在解决问题过程中所表现出的不同水平,尽可能地让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平。在学生回答时,通过语言、目光、动作给予鼓励与赞许,发挥评价的积极功能。尤其注意鼓励学有困难的学生主动参与学习活动,发表自己的看法,肯定他们的点滴进步。对出现的错误耐心引导他们分析其产生的原因,鼓励他们改进;对学生思维的闪光点予以肯定鼓励;对学有余力并对数学有浓厚兴趣的同学,通过布置选做题去发展他们的数学才能。
五、 教学反思
数学教学由于数学学科的特点,使得数学教学要突出数学的特点,在展示数学知识的过程中,要把数学思维的教学展示出来,使学生在学习数学的结论性知识的同时获得大量的过程性知识。同时,让学生经历对数学知识归纳总结的全过程。本节课的教学设计具有以下特点:①突出知识的纵横特点;②展示思维的“形”美“神”奇;③体现数学的学用结合;④重视学法的潜移默化。
以上就是我对本节课的教学设计,不足之处恳请各位专家赐教。最后祝大家生活愉快,事业有成。
八年级数学说课稿 篇5
本节课的重点内容是:平行四边形的性质3即平行四边形的对角线互相平分。林老师这节的流程是这样的。先复习平行四边形的性质1和2。然后在平行四边形上增添一条对角线,问:得到什么?再增添一条对角线呢?引出四对全等的三角形,再由全等得出对应边相等,从而引出平行四边形的性质3。然后通过7道例题或练习来巩固性质3。练习有学生答,老师写,也有直接让学生板书,师生共同批改。
亮点:
书上的例3讲完之后,进行了变式练习,师问:如果让Ef动起来,请问oE=of还成立吗?渗透了从静到动,一题多变,举一反三的思想。教师本节课教学设计比较流畅,板书设计清楚,明朗。
建议:
虽说教师本人的教学设计比较流畅,然而因她的上课语速太快,问题与问题之间留给学生思考时间过少,教师自已讲得太多。可能会导致学生方面知识点及书写的能力难以落实。本节课对于性质3本身,我觉得她的解释还不够到位,应该问学生两点:性质中的“互相平分”你是如何理解的.?在性质3应用时,应怎样书写即它的几何语言。关于例4的处理,似乎过于匆忙。原因是因为在整堂课中,教师的板书过多,和在学生口答时教师重复学生的话过多而花了一些时间。例4我认为学生基本上还有能力完成的,教师可以直接让学生书写,教师巡视指导。最后教师只要总结性的问:例4用到了哪些知识点?再总结一句话:求对角线的长,可以先求出它的一半。
改正两点:
1、上课语速一定要放慢些,借用姜校长的一名话:“不知道是不是我老了,我听课总跟不上林老师的步伐。”我也是这样的感觉,试问两位数学老师都跟不上,那学生能跟上吗?2、希望林老师自己尽量再少讲,让学生尽量再多练。
八年级数学说课稿 篇6
尊敬的各位评委、各位老师:
大家好!今天我说课的题目是《整式的乘法》,下面我就教材、教法与学法指导、教学设计和教学反思四个方面来向大家介绍一下我对本节课的理解与设计。
一、说教材:
1、教材的地位与作用:本节课是学生在学习了单项式乘以单项式、单项式乘以多项式之后安排的内容,既是单项式与多项式相乘的应用与推广,又为今后学习乘法公式作准备。同时,还可以激发学生对数学问题中蕴含的内在规律进行探索的兴趣和培养学生知识迁移的能力;其得出的过程涉及数形结合,整体代换等重要的数学思想。因此,它在整个初中阶段“数与式”的学习中占有重要地位。
2、教学目标:根据教材内容和学生实际情况,我确定了三个教学目标:
(1)知识与能力:通过自己的探索,用几何和代数两种方法得出多项式与多项式的乘法法则;
(2)过程与方法:在学生探究的过程中培养学生的思维能力及分析和解决问题的能力,体会数形结合的思想和整体代换的思想;(3)通过数学活动,让学生对数学产生好奇心和求知欲,从而体会到探索与创造的乐趣。
3、教学重难点:多项式乘以多项式法则的推导过程以及法则的归纳和应用。
二、说教法和学法指导:
为了充分调动学生的参与意识,更好地落实各项目标,本节课以学生的数学活动为主线,以让学生参与为本课的核心,以自主、合作、探究、实践为学生的主要学习方式,在此基础上,我采用了如下的教学方法:尝试法、实践法、讨论法、发现法,让学生全员参与,全员活动,让学生和老师、学生和学生之间互动,特别是让学生展示、点评、质疑,充分调动了学生的积极性,发挥学生的潜能。
三、说教学设计:
本节课的主要教学过程设计了“导学达标——探究释疑——拓展延伸——内化迁移”四个基本环节。
1、导学达标:
在这个环节首先检查了学生的预习案完成情况,针对预习中存在的问题进行点拨。然后由一个实际问题引入课题,激发学生兴趣,最后再解读本课的学习目标、重难点,让学生带着目标和问题展开本节课的学习。
2、探究释疑:
这一环节一共设计了两个探究活动。
第一个探究活动让学生进行了拼图游戏,通过比较所表示的拼出的大长方形面积,从而发现多项式乘以多项式的法则,然后和预习案中用代数方法所得出的结论进行比较。此时,教师引导学生进一步认识到多项式乘以多项式本质上与单项式乘以多项式一样都是乘法分配律的'应用,从而突破了难点,进而让学生体会到转化以及数形结合的思想。
在得出多项式乘法的法则后,我让学生试着用文字表述它,学生的叙述开始不一定完善,在此教师要帮助学生认识到法则的本质,并最终得出多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.
接下来我设计了一道例题,例题是课本的题目,其目的是熟悉、理解法则。完成例1时,教师引导学生严格按照法则来做,并认真板书,规范了学生的解题过程,起到了示范作用。在完成例题之后,为了让学生检验自己对法则的理解和掌握程度
八年级数学说课稿 篇7
我今天说课的课题是《不等式的基本性质》,它是北师大版八年级下册第一章第二节的内容。今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法:
本节内容不等式,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用,所以对不等式的学习有着重要的实际意义。同时,不等式的基本性质也为学生以后顺利学习解一元一次不等式和解一元一次不等式组的有关内容的理论基础,起到重要的奠基作用。
根据《新课程标准》的要求,教材的内容兼顾我校八年级学生的特点,我制定了如下教学目标:
知识与技能:
1。 感受生活中存在的不等关系,了解不等式的意义。
2。 掌握不等式的基本性质。
过程与方法:经历不等式的基本性质的探索过程,初步体会不等式与等式的异同。
情感态度与价值观:经历由具体实例建立不等式模型的过程,进一步符号感与数学化的能力。
教学重难点:
重点:不等式概念及其基本性质
难点:不等式基本性质3
教法与学法:
1。 教学理念: “ 人人学有用的数学”
2。 教学方法:观察法、引导发现法、讨论法.
3。 教学手段:多媒体应用教学
4。 学法指导:尝试,猜想,归纳,总结
根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。
下面我将具体的教学过程阐述一下:
一、创设情境,导入新课
上课伊始,我将用一个公园买门票如何才划算的例子导入课题。
世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?
(此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)
紧接着进一步提问:若人数是x时,又当如何买票划算?
二、探求新知,讲授新课
引例列出了数与数之间的不等关系和含有未知量120<5x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。
接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。
(1)a是负数;
(2)a是非负数;
(3) a与b的和小于5;
(4) x与2的差大于-1;
(5) x的4倍不大于7;
(6) y的一半不小于3
关键词:非负数,非正数,不大于,不小于,不超过,至少
回到引入课题时的门票问题120<5x,我们希望知道X的`取植范围,则须学习不等式的性质,通过性质的学习解决X的取植
难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。
以上是我对这节课的教学的看法,希望各位专家指正。谢谢!
八年级数学说课稿 篇8
各位老师:
你们好!
今天我要为大家讲的课题是《全等三角形的判定》。
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
1、教材所处的地位和作用:
在此之前学生已学习了全等三角形的定义、性质,对全等三角形有了一定的了解,这为过渡到本节的深入学习起着铺垫作用。本节内容是在本章内容中,占据重要的的地位。以及为其他学科和今后的几何学习打下基础。
2、教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
①对全等、对顶角、对应边、对应角的定义,能够熟练掌握,并达到更深一层的理解。
②能够利用尺规画出全等的三角形,学生具有一定的作图能力。
③掌握并理解三角形全等判定定理中的sss和sAs。
④能够运用sss和sAs判定定理判定三角形是否全等,利用三角形全等解决一些实际问题。⑤通过教学培养学生分析问题,读图分析,解决实际问题,培养学生运用知识的能力,培养学生加强理论联系实际的能力,
(3)情感目标:通过的师生共同摸索判断全等三角形全等的方法,激发学生学习兴趣。
3、重点难点:①掌握并理解三角形全等的判定定理
②运用定理判定三角形全等,利用全等三角形解决实际的问题和几何题
二、教学策略(说教法)
1、教学手段:为了让学生充分理解和掌握三角形判定定理,突破难点,我在教学过程中,采用两探究引出定理,两个运用定理的例子,来进行教学。探究中主要用尺规作全等三角形的方法中引出全等三角形的条件,进而得出定理。这样学生就更容易理解和掌握定理。在用两个练习巩固知识。
2、教学方法及其理论依据:为了调动学生学习的积极性,充分体现课堂教学的主体性,我采用自学、议论、引导教学法,以学生为主体,老师为主导,引导学生运用观察、分析、概括的方法学习这部分内容,在整个教学过程当中,贯穿以学生为主体的原则,充分鼓励和表扬同学。
3、学情分析:(说学法)
1、八年级学生的思维已逐步从直观的.形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。
2、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。
3、学生在在讨论学习中体验学习的快乐。讨论交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。
4、教学程序:
(1)复习回顾上节课内容:
定义:能够完全重合的三角形叫做全等三角形,重合的边叫对应边,重合的角叫对应角
性质:全等三角形对应边和对应角相等
三角形全等的性质让我们知道AB=A’B’Bc=B’c’Ac=A’c’∠A=∠A’∠B=∠B’∠c=∠c’,满足六个条件中这一部分,能确定△ABc≌△A’B’c’,先让学生画出△ABD,再让学生在画△A’B’c’过程中明白,确定一个条件或两个条件下不能确定两个三角形全等,通过适当时间的引导探究得出得出,当AB=A’B’Bc=B’c’Ac=A’c’时,只能画出一个A’B’c’满足条件,于是得出定理:三个对应边相等的两个三角形全等,简写成sss。
(3)得出定理,我通过讲解简单的例题,让学生懂得定理sss定理的运用。
(4)探究2:
得出:定理两边和它们的夹角对应相等的两个三角形全等,简写成sAs
(5)通过解决生活实例,讲解三角形全等的运用。
(6)练习:在适当的时间过后给出参考答案,并进行简单的讲解。
(7)小结:通过本节课的学习,你有哪些收获?
(8)我的板书:我会把复习内容和这节课的定理用红色粉笔标明在左边,中间板书探究和例题的内容,右边板书练习的参考答案。
(9)布置作业:P37,第1,3题。
八年级数学说课稿 篇9
一、教材分析:
本节的教学内容是第13章第2节的第5小节,在本节课之前,学生已经进行了“边角边”、“角边角”、“角角边”的学习探索。三角形全等的证明既是几何推理证明的起始部分,对学生的后续学习起着铺垫作用,是后面等腰三角形、四边形与特殊四边形的学习基础,同时也是培养提高学生逻辑思维能力的良好素材,对学生的演绎推理能力锻炼有非常重要的作用。
二、学生情况分析
在本节学习之前,学生已经经历了一周的推理证明的.训练,所以学生的证明能力已经有所提升,解题思路也有所凝练,相对而言储备了一定的方法和技巧,但是对于辅助线的引用练习的不是很多,因此学生还没有什么经验。
三、教学目标、重点和难点
(一)教学目标:
1、让学生通过实践操作探索出“边边边”的基本事实,并掌握其推理格式。
2、能够应用“边边边”的基本事实解决实际问题。
(二)教学重点:
掌握“边边边”的基本事实。
(三)教学难点:
灵活运用“边边边”解决问题。
四、教法学法
(一)教法
在本节课的课堂教学中我采用讲授、讨论式、演示、互动式、体验式、操作式、谈话、练习等教学方法,凸显学生的主体地位和教师的主导地位,突出课标的四性<实践性、趣味性、自主性、开放性>,适时启发点拨引导,适当采用多媒体教学手段,帮助学生更好地掌握知识、熟练技能、培养学生的能力,
(二)学法
我采用自主、探究、合作的学习方法,让学生在动手操作、动脑思考、交流讨论的过程中学习本节课的知识、掌握方法、提高技能、形成能力;达到体验中感悟情感、态度、价值观;活动中归纳知识;参与中培养能力;合作中学会学习。
五、教学过程
复习引入:复习已经学过的全等三角形的三种判定方法,为新知做好铺垫;然后引入新课,激发学生的学习兴趣。
明确目标:简洁明了的学习目标使学生在开始学习之初就能够明确目标,明确努力的方向,做到有的放矢。
定向学习:在整个自学过程中,我注意用语言引导学生,使其把握住主旨目标,充分利用教材和导学提纲完成自学。由于上一阶段的学习和练习,学生储备了一定的经验,所以要自主完成例1应该是不成问题,而且基础训练的内容学生也能比较容易完成。
精讲点拨:在“边边边”的简单应用的基础上,再稍加拓展。
巩固训练:在此环节中我着重加入了对辅助线的引导渗透,对学生的思维能力进行拓展、提升,以确保让尖子生吃的饱。
六、课后反思
在教学过程中,我注重调整了自己的“角色”,因为学生已经结合教材进行了自学,所以在课堂上,更应实现学生的自主,故课堂即是学生的演练场,教师就针对学生出现的问题进行点拨、指导,对于共性问题重点提示,引起全体同学重视,从而加深印象。正所谓问题即课题,有疑、有错才有讲解!本节课的教学,按照本人的设计非常顺畅的进行下去了,学生对于我在三角形全等这一部分知识的处理方式,都能够适应、接受,这也反映出这样的教学方式对于学生新知识的接受还是比较适合的。教无定法,不同的知识、不同的学生,可能要采用不同教学方式,需要我们因课因人灵活选择。
【八年级数学说课稿】相关文章:
数学说课稿12-26
八年级数学《反比例函数》说课稿01-11
【实用】八年级数学说课稿3篇12-18
八年级数学说课稿范文(精选15篇)08-19
八年级数学说课稿范文九篇08-17
有关八年级数学说课稿3篇09-02
八年级数学说课稿范文合集10篇09-19
初中数学说课稿02-05
小学数学说课稿12-19
关于八年级数学说课稿汇总五篇09-30