当前位置:9136范文网>实用文档>工作计划>八年级数学教学工作计划

八年级数学教学工作计划

时间:2025-02-24 09:35:58 工作计划 我要投稿

【热门】八年级数学教学工作计划三篇

  时间过得可真快,从来都不等人,很快就要开展新的工作了,写一份计划,为接下来的学习做准备吧!计划怎么写才能发挥它最大的作用呢?以下是小编帮大家整理的八年级数学教学工作计划3篇,仅供参考,希望能够帮助到大家。

【热门】八年级数学教学工作计划三篇

八年级数学教学工作计划 篇1

  教学目标:

  1.(1)掌握角平分线的尺规作图方法;理解过直线上一点作这条直线的垂线的尺规作图原理;(2)理解并掌握角的平分线的性质定理。(3) 会运用角平分线的性质进行推理论证,解决相关的几何问题;(4)进行数学活动的过程中,能进行有条理地思考,形成简单的推理能力; (5)使学生经历探索角平分线的性质的过程,领会用操作、归纳、推理论证得出数学结论的思想方法。

  教学重点:角平分线的尺规作图及角平分线的性质及其应用。

  教学难点:角平分线的尺规作图方法的提炼与角平分线性质的灵活应用。

  教学过程:

  活动一、知识回顾

  1、不利用工具,请你将一张用纸片做的角分成两个相等的角。你有什么办法?再打开纸片 ,看看折痕与这个角有何关系?

  2、请叙述角平分线的定义。

  活动二、情景引入

  如图,是一个角平分仪,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗?

  证明:在△ACD和△ACB中

  AD=AB(已知)

  ∵ DC=BC(已知)

  CA=CA(公共边)

  ∴ △ACD≌△ACB(SSS)

  ∴∠CAD=∠CAB(全等三角形的对应角相等)

  ∴AC平分∠DAB(角平分线的定义)

  活动三、新知探究

  一、根据角平分仪的制作原理怎样作一个角的平分线?(不用角平分仪或量角器,要求尺规作图)

  二、怎样用尺规作图方法作已知直线的垂线?(过这条直线上一点)

  (1)平分平角∠AOB(如下图所示)

  (2)通过上面的步骤,得到射线OC以后,把它反向延长得到直线CD,直线CD与直线AB是什么关系?

  (3)结论:作平角的平分线即可平分平角,由此也得到过直线上一点作这条直线的垂线的方法。

  三、探究角平分线的性质

  1、已知:如图,OC平分∠AOB,点P在OC上,PD⊥OA于点D,PE⊥OB于点E,PD与PE有何关系?并证明。

  解:PD与PE相等。证明如下:

  ∵OC平分∠AOB(已知)

  ∴∠1=∠2 (角平分线的定义)

  ∵PD⊥OA,PE⊥OB (已知)

  ∴∠PDO=∠PEO (垂直的定义)

  在△PDO和△PEO中

  ∠PDO=∠PEO (已证)

  ∵ ∠1=∠2 (已证)

  OP=OP (公共边)

  ∴△PDO≌△PEO (AAS)

  ∴PD=PE (全等三角形的对应边相等)

  2、由此得到角平分线的.性质:角的平分线上的点到角两边的距离相等。

  3、利用此性质怎样书写推理过程?

  ∵OC平分∠AOB,点P在OC上,且 PD⊥OA于D,PE⊥OB于E

  ∴PD=PE(角的平分线上的点到角两边的距离相等)

  活动四、例题讲解

  例。已知:如图,△ABC的角平分线BM、CN相交于点P.

  求证:点P到三边AB、BC、CA的距离相等

  证明:过点P作PD 、PE、PF分别垂直于AB、BC、CA,

  垂足为D、E、F

  ∵BM是△ABC的角平分线,点P在BM上

  ∴PD=PE (角平分线上的点到角的两边的距离相等)

  同理:PE=PF.∴ PD=PE=PF.

  即点P到边AB、BC、CA的距离相等

  活动五、实践应用

  1.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF.求证:CF=EB

  分析:要证CF=EB,首先我们想到的是要证它们所在的两个三角形全等,即Rt△CDF≌Rt△EDB.

  现已有一个条件BD=DF,还需要我们找什么条件?

  注意到题设条件:AD是∠BAC的平分线,DE⊥AB于E, ∠C=90°故有:DC=DE (角平分线的性质)

  进而可用HL证明上述两个直角三角形全等

  证明:∵∠C=90°∴DC⊥AC

  又∵AD是∠BAC的平分线,DE⊥AB于E

  ∴∠DEB=90°,DC=DE(角平分线的性质)

  在Rt△CDF和Rt△EDB中

  DF=DB(已知)

  ∵

  DC=DE(已证)

  ∴ Rt△CDF≌Rt△EDB(HL)

  ∴ CF=EB(全等三角形的对应边相等)

  2、已知:如右下图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.

  求证:EB=FC.

  证明:∵AD是△ABC的角平分线,且DE⊥AB于E,DF⊥AC于F

  ∴∠DEB=∠DFC=90°(垂直的定义)

  DE=DF(角平分线的性质)

  在Rt△DEB和Rt△DFC中

  BD=CD

  ∵

  DE=DF

  ∴Rt△DEB≌Rt△DFC(HL)

  ∴EB=FC(全等三角形的对应边相等)

  3.已知:如图,△ABC的两个外角的平分线BD与CE相交于点P.

  求证:点P到三边AB,BC,CA所在直线的距离相等。

  证明:作PF⊥BC于F,PG⊥AB于G,PH⊥AC于H.

  又∵△ABC的两个外角的平分线BD与CE相交于点P

  ∴PG=PF , PF=PH(角平分线的性质)

  即PG=PF=PH

  ∴点P到三边AB,BC,CA所在直线的距离相等。

  活动六、归纳总结

  1、定理:角平分线上的点到这个角的两边距离相等。

  2、定理的使用形式:

  ∵OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D,E(已知)

  ∴PD=PE(角平分线上的点到这个角的两边距离相等)。

  尺规作图:①作已知角的平分线;②过直线上一点作这条直线的垂线。

  作业布置: 1.预习课本P21~P23

  2.完成课本P22T2,P23T4,5

八年级数学教学工作计划 篇2

  为了顺利完成本学期的教育教学任务,使学生掌握基础知识和技能,完成本学期的学习任务,特制定本计划:

  一、学情分析

  我所教学的是高寺中学20xx级5班,现有学生58人,其中男生34人,女生24人;上期末数学考试最高分97分,最低分18分,平均分67,80分以上19人。总体上看,学生的数学成绩较差,及格的同学仅68.1%。在学生的数学知识上看,基本概念,基本计算,以及基本的空间与图形知识都极其欠缺,数学的思维混乱,不能独立思考,多数学生学习积极性高,能主动的学习,有70%的同学有上进心,但主动性不够,需要老师的引导,这要求老师注意引导学生明确正确的学习目的,养成正确的学习方法;但也有10%左右的学生学习目的不明确,一天贪玩好耍,不能积极主动的完成学业,甚至不能完成老师布置的作业,这需要老师在培养学生的专长入手,激发他们广泛的爱好和兴趣。有80%的学生心理素质较稳定,思想健康,人格健全,性格开朗,能和老师沟通。能按照老师的要求完成学习任务;有10%左右的学生情绪波动大,怕吃苦,甚至个别的还有耍“小皇帝”脾气的,大部分学生的学习态度端正,目标明确,上课能够专心听讲,及时认真地完成课堂作业,但是也有个别学生因为父母外出打工,自己留守在家,生活上无人照顾,学习上无人指导,产生厌学思想,生活自由,学习自制力差等现象!

  二、教材分析:

  1、本学期的教学内容共计五章:

  第十二章数的开方由平方根和立方根开始,进而学习实数的相关知识,第十三章整式的整除主要介绍了幂运算、整式的乘法和除法、乘法公式、因式分解几个基本的运算,主要培养和提高学生的运算能力。

  第十四章勾股定理主要探索勾股定理及其应用,以培养学生的形象思维、模型的建立为主。

  第十五章平移与旋转主要介绍了图形的基本变换,让学生在实际操作中探索总结规律。

  第十六章平行四边形的认识介绍了平行四边形的性质特征以及几类特殊的平行四边形,使学生对几何学有了初步的认识。

  2、体系结构:

  (1)数学内容的引入,采取从实际问题情景境入手的方式。贴近学生的生活实际,选择具有现实背景的素材,建立数学模型,使学生通过问题解决的过程,获得数学概念,掌握解决数学问题的技能和方法。

  (2)教材内容的呈现,努力创设学生自主探究的学习情况和机会,适当编排应用性、探索性和开放性的,发挥学生的主动性、留给学生充分的时间与空间,自主探索、促进学生数学思维能力、创造能力的培养与提高,为学生的终身可持续发展奠定良好的基础。

  (3)教材内容的编写,把握课程标准,同时又具有弹性,编入一些选学内容,以适应较高程度学生学习的需要,使不同水平的学生都得到发展。

  (4)教材内容的叙述、行当介绍数学内容的背景知识与数学史料等,将背景材料与数学内容融为一体。激发学生学习数学的兴趣,引导学生体会数学的文化价值。

  (5)现代信息技术的应用在教材中占有适当地位,有利于学生理解概念、自主探索、实践体验。

  3、教材体例。

  (1)教材的正文中,根据教材内容的实际需要,适当设置了一些相应的栏目;如“观察”、“思考”、“实验”、“想一想”、“试一试”、“做一做”等,给学生适当的思考空间,让学生通过自主探索,获得体验和感受,掌握必要的知识。

  (2)结合教材各块内容,安排一些有关的阅读材料,涉及数学史料、数学家故事、实际生活中的问题、数学趣题、知识背景等,扩大学生的知识面,增强学生的应用意识和对数学的兴趣,对学生进行爱国主义和人文主义精神教育。

  (3)控制习题总量,降低难度,增加探索、开放、实践类型的习题,按照不同的要求,编制不同水平的练习题,按课时给出随堂练习,每一节设置习题,有必做题和选做题,每章的复习题设程度不一的A、B、C、三组,以满足不同层次的学生的发展需要。

  (4)增强了研究性课题学习,给学生更多的发展空间,让学生自己动手,提高解决问题与合作交流的能力。

  (5)每一章的开始,设置有展现该章主要内容的导图与导入语,以期激发学生的学习兴趣与求知欲。

  三、教学目标

  第十二章数的开方

  1、让学生经历又一次数系的扩展过程,进一步体验数学发展源于实践,又作用于实际的辩证关系。

  2、理解平方根、算术平方根、立方根等概念;认识平方与开平方、立方与开立方间的关系;会用平方、立方的概念求某些数的平方根与立方根,并用根号表示,会用计算器求一个非负数的算术平方根及任意一个数的立方根。

  3、了解无理数和实数的概念,知道实数与数轴上的点一一对应。

  4、能估计某些无理数的大小,培养学生的数感与估计能力,会进行简单的实数运算。

  第十三章整式的乘除

  1、探索并了解正整数幂的运算法则(同底数幂的'乘法、幂的乘方、积的乘方、同底数幂的除法),并会运用它们进行计算。

  2、探索并了解单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会进行简单的整式乘法运算。

  3、会由整式的乘法推导出乘法公式,了解两个乘法公式的几何背景,并能运用公式进行简单的计算。

  4、通过从幂的运算到整式的乘法,再到乘法公式的学习,了解乘法公式来源于整式乘法,又运用于整式乘法的辩证过程,并初步认识到事物发展过程中“特殊——一般——特殊”的一般规律。

  5、探索并了解单项式除以单项式,多项式除以单项式的法则,并能进行简单的整式除法运算。

  6、了解因式分解的意义及其与整式乘法之间的关系,从中体会事物之间可以互相转换的辩证思想。

  7、会用提取公因式、公式法(直接用公式不超过两次)进行因式分解。

  8、让学生主动参与到一些探索实践过程中去,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的愿望与能力。

  9、通过本章一些生活实例的学习,体会数学与生活的密切联系,在一定程度上了解数学的应用价值,提高数学学习兴趣。

  第十四章勾股定理

  1、经历由情境引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力。

  2、体验勾股定理的探索过程,掌握勾股定理,会用勾股定理解决相关问题。

  3、掌握勾股定理的逆定理,会运用勾股定理的逆定理解决相关问题。

  4、运用勾股定理及其逆定理解决简单的实际问题。

  5、感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。

  第十五章平移与旋转

  1、通过具体实例认识图形的平移变换,探索它的基本特征,理解“对应点所连的线段平行且相等”以及“对应线段平行且相等,对应角相等”等基本性质。

  2、能按要求作出简单的平面图形通过平移后的图形。

  3、通过具体实例认识图形的旋转变换,探索它的基本特征,理解“对应点到旋转中心的距离相等”以及“对应线段相等,对应角相等”等基本性质。

  4、认识旋转对称图形,并能按要求作出简单的平面图形通过旋转后的图形。

  5、通过具体实例认识中心对称,探索它们的基本性质,理解“连接对称点的线段都经过对称中心,并被对称中心平分”这一性质,并理解中心对称图形是旋转角度为180°的旋转对称图形。

  6、了解图形全等的概念,能识别全等多边形(三角形)的对应顶点、对应角和对应边,知道全等多边形(三角形)的对应角、对应边分别相等。能体会图形的三种变换与图形全等的关系。

  7、灵活运用轴对称、平移与旋转或它们的组合进行图案设计,感受和欣赏这些图形的变换在现实生活中的运用。

  8、在观察、操作、推理、归纳等探索过程中,发展学生合情推理能力,进一步培养学生的数学说理的习惯与能力。

  第十六章平行四边形

  1、通过经历运用图形变换探索图形性质的过程,体验数学研究和发现的过程,并得出正确的结论。

  2、在对平行四边形的原有认识的基础上,探索并掌握平行四边形的性质。

  3、探索并掌握几种特殊的平行四边形——矩形、菱形、正方形和各自所具有的特殊性质。

  4、掌握梯形的概念,探索并了解等腰梯形的有关性质,并会运用将梯形分解为平行四边形与三角形的方法来解决一些简单的问题。

  5、了解平行四边形、矩形、菱形、正方形及梯形相互之间的一些关系。

  6、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生数学说理的习惯与能力,并要求学生能熟练书写规范的推理格式。

  四、教学措施

  1、认真学习教育教学理论,结合落实课标理念。将“合作分组教学”的课堂教学模式渗透于教学。让学生通过观察、思考、探究、讨论、归纳,主动地进行学习。改进教学方法,充分利用多媒体,挂图,实物等创设情景进行教学,力求课堂教学的多样化、生活化和开放化,师生互动、生生互动,构建高效课堂。运用新课程标准的理念指导教学,积极更新教育理念,关心爱护学生,公平对待学生。

  2、培养学生兴趣和良好习惯。兴趣是最好的老师,激发学生的兴趣,给学生适时介绍数学家,数学史,数学趣题,补充数学相应课外思考题,扩充资源,通过各种途径培养学生的兴趣。教育关键就是培养习惯,良好的学习习惯有助于学生稳步提高学习成绩,发展学生的非智力因素,促进学习兴趣与良好习惯培养。

  3、创设和谐教学氛围。引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生写小论文,写复习提纲,使知识来源于学生的构造。

  4、关注学生情感态度、学习方法、目标实施。引导学生积极归纳解题规律,引导学生一题多解,通过变式训练,培养学生透过现象看本质,提高学生举一反三的能力。充分利用现实世界中的实物原型进行教学,展示丰富多彩的几何世界;强调学生的动手操作和主动参与,让他们在观察、操作、想象、交流等活中认识图形,发展空间观念;注重概念间的联系,在对比中加深理解,重视几何语言的培养和训练。提高学生素质,培养学生的发散创新思维,提高学习效率,做到事半功倍。

  5、做好课题研究。促进学生自主、合作,探究学习,把学生带入研究学习中,学会探究,合作,自主学习,拓展学生的知识面,培养兴趣,提高能力。开展丰富多彩的课外活动,开展对奥数题的研究,课外调查,操作实践,以优带差,培养学生探究合作能力,师生共同提高。

  6、实行分层教学。关注各类学生,布置作业设置A、B、C三等,分类分层布置,因人而异,课堂上照顾好好、中、待转化三类学生。发挥优生的帮扶作用,打牢基础知识,提升每一个学生的能力。

  7、抓落实常规,保证教育教学任务全面完成。

  坚持以教学为中心,强化治理,进一步规范教学行为,并力求常规与创新的有机结合,促进自己严谨、扎实、高效、科学的良好教风及学生严厉、勤奋、求真、善问的良好学风的形成。

  从点滴入手,了解学生的认知水平,查找资料,精心备课,努力创设宽松愉悦的学习氛围,激发爱好,教给了学生知识,更教会了他们求知、合作、竞争,培养了学生正确的学习态度,良好的学习习惯及方法,使学生学得有趣,学得实在,确有所得,向40分钟要效益;分层设计内容丰富的课外作业,教法切磋!

八年级数学教学工作计划 篇3

  一、 指导思想

  教学中落实新课改,体现新理念,培养创新精神。通过数学课的教学,使学生具有从事社会生产实践必须的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

  二、学情分析

  《一》八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。我任教的班级大部分学生非常活跃,但上课易注意力不集中,有少数学生不上进,思维不紧跟老师。要在本期获得更加理想成绩,老师和学生都要付出努力,多找能调动学生学习积极性的方法,培养能力,同时面向全体学生使每个不同的学生都得到不同的发展。

  《二》培优转差措施

  利用周一、周四补差,周二培优,教师对各种情况的同学进行辅导、提高,“因材施教、对症下药”,根据学生的素质采取相应的方法辅导。具体方法如下:

  1.课上差生板演,中等生订正,优等生解决难题。

  2.安排座位时坚持“好差同桌”结为学习对子。即“兵教兵”。

  3.课堂练习分成三个层次:第一层“必做题”—基础题,第二层:“选做题”—中等题,第三层“思考题”--拓广题。满足不同层次学生的需要。

  4.培优补差过程必须优化备课,功在课前,效在课上,成果巩固在课后培优。培优补差尽可能“耗费最少的必要时间和必要精力”。备好学生、备好教材、备好练习,才能上好课,才能保证培优补差的效果。要精编习题、习题教学要有四度。习题设计(或选编习题)要有梯度,紧扣重点、难点、疑点和热点,面向大多数学生,符合学生的认知规律,有利于巩固“双基”,有利于启发学生思维;习题讲评要增加信息程度,围绕重点,增加强度,引到学生高度注意,有利于学生学会解答;解答习题要有多角度,一题多解,一题多变,多题一解,扩展思路,培养学生思维的灵活性,培养学生思维的广阔性和变通性;解题训练要讲精度,精选构思巧妙,新颖灵活的典型题,有代表性和针对性的题,练不在数量而在质量,训练要有多样化。

  三、教材分析

  第十六章 二次根式:本章的主要内容包括:二次根式的的概念,性质,加、减、乘、除及混合运算。第一节是二次根式的定义,第二节、第三节是二次根式的乘除与加减。

  第十七章 勾股定理:直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余, 30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。

  第十八章 平行四边形:它是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形、梯形等特殊四边形的用处更多。本章是在学生前面学段已经学过的四边形知识、本学段学过的多边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上做进一步系统的整理和研究。

  第十九章 一次函数:要求掌握一次函数的定义和性质,能够解决生活中的问题。第一节是函数的定义、图像,第二节是二次函数的`定义,图像与性质,以及它与方程、不等式的关系。

  第二十章 数据的分析:本章主要研究平均数(主要是加权平均数)、中位数、众数以及方差等统计量的统计意义。20.1节是研究代表数据集中趋势的统计量:平均数、中位数和众数。20.2节是研究刻画数据波动程度的统计量:方差。

  每章节都配有数学活动、小结、复习题则它是对本章知识的巩固与提高。

  四、教材目标及要求

  1、态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

  2、知识与技能:理解二次根式的的概念,性质,并利用其性质解决一些实际问题;会用勾股定理和逆定理解决实际问题;掌握各类四边形的定义、性质与判定,并能计算和论证实际问题;掌握一次函数的定义和性质,能够解决生活中的问题;掌握简单的描述数据的方法。

  3、过程与方法:通过探索、学习,使学生逐步学会正确、合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。围绕初中数学教材、数学学科“基本要求”进行知识梳理,围绕初中数学“六大块”主要内容进行专题复习,适时的进行分层教学,面向全体学生、培养全体学生、发展全体学生。

  五、本学教学重点与难点

  本学期重点是一次函数的定义和性质、平行四边形的定义、性质和判定,难点是平行四边形与各种特殊平行四边形之间的联系和区别以及中心对称,一次函数的应用。

  六、教法和学法指导方案

  教法:

  (1)指导学生学会预习的能力从而能带着问题听课.

  (2)课堂上学生会根据问题情境创设自己的思维能力

  (3)指导学生有效的有效的训练和与创新.

  (4)不要干预学生的思维,要正确引导发现问题解决问题的好习惯。

  学法:

  (1)学习能力的指导 包括观察力、记忆力、思维力、想象力、注意力以及自学、表达等能力的培养.

  (2).应考方法的指导 教育学生树立信心,克服怯场心理,端正考试观。

  (3)良好学习心理的指导 教育学生学习时要专注,不受外界的干扰;要耐心仔细,独立思考,不抄袭他人作业;要学会分析学习的困难,克服自卑感和骄傲情绪。

  对不同层次学生的数学学习能力的培养提出不同的要求;根据不同学习能力结合数学教学采取多种方法进行培养;根据个别差异因材施教,培养数学学习能力,采取小步子、多指导训练的方式进行;通过课外活动和参加社会实践,促进数学学习能力的发展.

  总之,教法和学法指导方案,要力求做到转变思想与传授方法结合,课上与课下结合,学法与教法结合,教师指导与学生探求结合,统一指导与个别指导结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法.

  七、教学措施:

  (1)注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。

  (2)批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。

  (3)按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。

  (4)及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。课后反馈。落实每一堂课后辅助,查漏补缺。精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。

  (5)积极参加继续教育与教研听课,并与与其它老师沟通,加强教研教改,提高教学水平。

  (6)经常听取学生良好的合理化建议。

  (7)以“两头”带“中间”战略思想不变。

  (8)深化两极生的辅导。

  八、课时分配:

  本书供义务教育八年级下学期使用,全书共需约62课时,具体分配如下:

  第十六章 二次根式 约9课时

  第十七章 勾股定理 约9课时

  第十八章 平行四边形 约15课时

  第十九章 一次函数约17课时

  第二十章 数据的分析 约12课时

【八年级数学教学工作计划】相关文章:

八年级的数学教学工作计划08-23

八年级数学教学工作计划08-20

八年级数学教学工作计划08-06

数学八年级上册教学工作计划05-15

八年级数学教学工作计划05-17

八年级下册的数学教学工作计划11-02

八年级上数学教学工作计划09-11

数学八年级的教学反思10-29

数学教学的工作计划09-23

数学教学的工作计划08-08