- 相关推荐
从问题到方程的教案
作为一位无私奉献的人民教师,就有可能用到教案,借助教案可以让教学工作更科学化。那么问题来了,教案应该怎么写?下面是小编帮大家整理的从问题到方程的教案,仅供参考,欢迎大家阅读。
从问题到方程的教案1
教学目标:
1、理解方程是解决现实生活问题的一种手段;
2、初步掌握从现实生活问题到列出方程一般途径。
能力目标:培养学生观察、归纳能力和团结协作的意志品质。
教学重点:初步掌握从现实生活问题到列出方程的一般途径。
教学难点:正确找出问题中的等量关系。
教学过程:
一、复习提问。请一位同学上黑板写出一至两个方程,让学生感知方程概念。
二、新授内容。
(一)创设情境,引入新课
1、出示问题①:图5—1,(图上标明:砝码质量,1kg和5kg,两个相同小球的质量为xkg)
2、师:观察这个图形,你可以列出方程吗?
3、师:你列出方程的依据是什么?(即等量关系)
(二)大胆推测,积极探索
1、师:从上述问题的解决可以看出,方程是解决现实生
活问题的一种手段,那么用方程解决的生活问题一般途
径是什么呢?
2、观察问题一的解决过程,学生分小组讨论的同时教师
画出思维线路图:
实际生活问题 列出方程
针对讨论后的.结论:教师点评,从实际问题中要设出未知
数、列出代数、找出等量关系等。
(三)提出新问题验证猜想,初中数学教案《数学教案-从问题到方程(一)》。
1、出示问题②(书P140)
2、带学生认真审题。
3、师:谁能把这个问题数学化(即出未知数,用代数式表示有关量,找出等量关系等)。
4、为了能更容易地找出等量关系,我们可以作如下猜想:
胜场数
负场数
得分数
假设一
10
2
假设二
8
4
本题讨论
x
(归纳等量关系:得分数=胜场得分+负场分分,学生列出方程从而解决问题)
三、总结经验,形成成果
师:从问题①中,我们探讨是用方程解决现实生活问题的一般途径,在问题②中我们运用这信途径顺利列出了方程,请一位同学再把你的得出的这个结论再说明一下。
四、交流验证
学生讨论解决P141试一试
五、练习巩固P141练一练1、2
六、作业布置P143 1、2、3
从问题到方程的教案2
学习目标:
1.探索具体问题中的数量关系和变化规律,并用方程进行描述,进而让学生初步体验方程是刻画现实世界的一种有效模型。
2.通过观察所列的方程的特点,掌握一元一次方程的概念并能够熟练识别一元一次方程
3.进一步培养学生观察、思考、分析问题、解决问题的能力,渗透建模的数学思想。
4.感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣。
学习难点:
分析与确定问题中的等量关系,能用方程来描述和刻画事物间的等量关系。
教学过程:
一、创设情境,引入新课
问题一:
甲、乙两城市间的铁路经过技术改造,列车在甲乙两城市间的运行速度从80千米/时提高到100千米/时,运行时间缩短了3小时.甲、乙两城市间的路程是多少千米?
変式1:甲、乙两列车都从A市驶向B市,甲车用了3小时,乙车用了2小时。已知乙车的速度是甲车速度的2倍少40千米,甲、乙两车的速度分别是多少?
変式2:甲、乙两列车都从A市驶向B市,甲车用了3小时,乙车用了2小时。已知乙车的速度是甲车速度的2倍少40千米,A、B两城市间的路程是多少?
二、合作质疑,探索新知
问题二:小明用50元钱购买了面值为1元和2元的邮票共30张,他买了多少张面值为1元的邮票?
如果设面值为1元的邮票买了x张,那么面值为2元的邮票买了_______张.
买面值为1元的邮票的钱+买面值为2元的邮票的钱=50元.
可得方程____________________
问题三:某通讯公司有两种手机话费付费方式:第一种方式不交月租费,每分钟付话费0.6元;第二种方式每月交月租费50元,每分钟付话费0.2元.一个月通话多少分钟时,两种付费方式费用相同?
三、自主归纳,形成方法
1、学生自主归纳:如何从问题到方程?
2、自主归纳一元一次方程的特点,并举例说明
四、巩固练习:
根据实际问题的意义列出方程
1.甲车的速度为60km/h,乙车的速度80km/h,两车同时同地出发,反向而行,经过多长时间两车相距280km?
2.小丽花50元钱买了面值为1元和2元的.两种邮票,如果面值为2元的邮票比面值为1元的邮票少5张,那么,这两种面值的邮票各买了多少张?
3.一个长方形足球场的周长是300m,它的长比宽多30m,求这个足球场的长.
五、课堂小结,感悟收获
1、从实际问题到方程,一般要经历哪些过程?
2、列方程的关键是什么?
【课后作业】
班级姓名学号
一、选择:
1.下列方程是一元一次方程的是()
A.B.C.D.
2.根据下列条件能列出方程的是()
A.一个数的与另一个数的的和B.与1的差的4倍是8
C.和的60%D.甲的3倍与乙的差的2倍
3.七年级二班共有学生48人,已知男生比女生少2人,问七年级二班男生、女生各有多少人?设七年级二班男生有男生x人,则下列方程中错误的是()
A.B.C.D.
4.课外兴趣小组的女生人数占全组人数的,再加入6名女生后,女生人数就占原来人数的一半,课外兴趣小组原有多少人?若设原有x人,则下列方程正确的是()
A.B.C.D.
二、根据实际问题的意义列出方程
5.根据“x的5倍比它的35%少28”列出方程为________.
6.一年三班55人,一年八班29人,因植树需要从三班中抽出x人到八班,使得两班人数相同,则根据题意可列方程为_____________.
7.一个足球场的周长为310米,长和宽之差为25米,这个足球场的长和宽分别是多少?
8.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了22分。甲队胜了多少场?平了多少场?
9.三个连续奇数的和为57,求这三个数。
10.一位教师和一群学生一起去看足球赛,教师门票按全票价每人70元,学生只收半价。如果门票总价910元,那么学生有多少人?
11.某班学生39人到公园划船,共租用9艘船,每艘大船可坐5人,每艘小船可坐3人,每艘船都坐满.问大船、小船各租了多少艘?
12.议一议:育红学校七年级学生步行到郊外旅行,1班的学生组成前队,步行的速度为4千米/小时,2班的学生组成后队,速度为6千米/小时,前队出发1小时后,后队出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/小时。
问题1:后队追上前队用了多长时间?
问题2:后队追上前队时联络员行了多少路程?
问题3:联络员第一次追上前队时用了多长时间?
问题4:当后队追上前队时,他们已经行进了多少路程?
你能根据题意再提出两个问题吗?和你的同学交流一下
从问题到方程的教案3
教学内容:
§5.1从问题到方程(一)
教学目标:
知识目标:
1、理解方程是解决现实生活问题的一种手段。
2、初步掌握从现实生活问题到列出方程一般途径。
能力目标:培养学生观察、归纳能力和团结协作的意志品质。
教学重点:初步掌握从现实生活问题到列出方程的一般途径。
教学难点:正确找出问题中的等量关系。
一、复习提问。请一位同学上黑板写出一至两个方程,让学生感知方程概念。
二、新授内容。
教学过程:(一)创设情境,引入新课
1、出示问题①:图5—1,(图上标明:砝码质量,1kg和5kg,两个相同小球的质量为xkg)
2、师:观察这个图形,你可以列出方程吗?
3、师:你列出方程的依据是什么?(即等量关系)
(二)大胆推测,积极探索
1、师:从上述问题的解决可以看出,方程是解决现实生活问题的'一种手段,那么用方程解决的生活问题一般途
径是什么呢?
2、观察问题一的解决过程,学生分小组讨论的同时教师画出思维线路图:实际生活问题 列出方程针对讨论后的结论:教师点评,从实际问题中要设出未知数、列出代数、找出等量关系等。
(三)提出新问题验证猜想。
1、出示问题②(书P140)
2、带学生认真审题。
3、师:谁能把这个问题数学化(即出未知数,用代数式
表示有关量,找出等量关系等)。
4、为了能更容易地找出等量关系,我们可以作如下猜想:
胜场数
负场数
得分数
假设一
10
2
假设二
8
4
本题讨论
x
(归纳等量关系:得分数=胜场得分+负场分分,学生列出方程从而解决问题)
三、总结经验,形成成果
师:从问题①中,我们探讨是用方程解决现实生活问题的一般途径,在问题②中我们运用这信途径顺利列出了方程,请一位同学再把你的得出的这个结论再说明一下。
四、交流验证
学生讨论解决P141试一试
五、练习巩固
P141练一练1、2
六、作业布置
P143 1、2、3
从问题到方程的教案4
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的'应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆? (让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)
列方程:设需要租用x辆客车,可得。
44x+64=328 (1)
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
三、巩固练习
教科书第3页练习1、2。
四、小结。
本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业 。
教科书第3页,习题6.1第1、3题。
从问题到方程的教案5
一、复习提问。
请一位同学上黑板写出一至两个方程,让学生感知方程概念。
二、新授内容。
教学过程:(一)创设情境,引入新课
1、出示问题①:图5—1,(图上标明:砝码质量,1kg和5kg,两个相同小球的质量为xkg)
2、师:观察这个图形,你可以列出方程吗?
3、师:你列出方程的依据是什么?(即等量关系)
(二)大胆推测,积极探索
1、师:从上述问题的解决可以看出,方程是解决现实生
活问题的一种手段,那么用方程解决的生活问题一般途
径是什么呢?
2、观察问题一的解决过程,学生分小组讨论的同时教师
画出思维线路图:
实际生活问题 列出方程
针对讨论后的`结论:教师点评,从实际问题中要设出未知
数、列出代数、找出等量关系等。
(三)提出新问题验证猜想。
1、出示问题②(书P140)
2、带学生认真审题。
3、师:谁能把这个问题数学化(即出未知数,用代数式
表示有关量,找出等量关系等)。
4、为了能更容易地找出等量关系,我们可以作如下猜想:
胜场数 | 负场数 | 得分数 | |
假设一 | 10 | 2 | |
假设二 | 8 | 4 | |
本题讨论 | x |
(归纳等量关系:得分数=胜场得分+负场分分,学生列出
方程从而解决问题)
三、总结经验,形成成果
师:从问题①中,我们探讨是用方程解决现实生活问题的
一般途径,在问题②中我们运用这信途径顺利列出了方
程,请一位同学再把你的得出的这个结论再说明一下。
四、交流验证
学生讨论解决P141试一试
五、练习巩固P141练一练1、2
六、作业布置P143 1、2、3
【从问题到方程的教案】相关文章:
列方程解决实际问题教案03-06
《方程》教案02-22
《实际问题与方程》教学反思05-17
圆的方程的教案09-03
方程的意义教案03-30
《方程》教案15篇03-16
《实际问题与方程》教学反思15篇08-28
《实际问题与方程》教学反思(15篇)08-28
《实际问题与方程》教学反思(通用15篇)08-28