当前位置:9136范文网>教育范文>教学反思>《实际问题与方程》教学反思

《实际问题与方程》教学反思

时间:2023-03-27 18:55:18 教学反思 我要投稿

《实际问题与方程》教学反思汇编15篇

  身为一名人民教师,课堂教学是重要的任务之一,通过教学反思可以有效提升自己的教学能力,我们该怎么去写教学反思呢?下面是小编精心整理的《实际问题与方程》教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。

《实际问题与方程》教学反思汇编15篇

《实际问题与方程》教学反思1

  本节课的教学内容非常重要,列方程解简单的实际问题既是解决问题的一种策略,又是十分重要的数学数学方法,对以后的数学乃至其他一些学科的学习发挥着基础作用。

  列方程解简单的实际问题是学生第一次接触,它具有固定的解题步骤和格式,告诉学生这些步骤是必须遵循的书写格式是应该模仿的`,因此,在教学这环节时,采用接受学习的方法,结合例题的解题过程,通过谈话和板书,把解题步骤呈现给学生。

  在解题过程中,凡是学生自己能做的,都让学生做,虽然采用的是接受式学习方式,但仍然发挥了学生的主观能动性。在总结列方程解简单的实际问题的基本步骤时,引导学生根据老师的讲解过程得出:写设句—根据等量关系式列方程—解方程—检验—写出答语。并概括成顺口溜:方程解题真方便,找准等量是关键。等式性质来解答,千万不要忘检验。

《实际问题与方程》教学反思2

  实际问题与方程紧跟在用等式的性质解方程的后面,是在学生会简单的运用解方程,而去把实际问题抽象成方程的过程。教学列方程解决实际问题,需要引导学生在解决问题的过程中,进一步掌握相关方程的解法,积累分析数量关系以及把实际问题抽象为方程的经验,进而适时地把获得的知识和方法应用于解决其他一些类似的问题。

  例1,相对而言比较简单,但是对于学生却仍旧是一个不容易接受的难点,他们能够清楚的知道用4.21-0.06=4.15(m),但是却没办法把这样的式子用方程抽象概括出来。

  例1的.教学,我是按照“求谁设谁”的思路来讲的。

  第一步,看一看求的是谁?学生很明显的就能够知道求的是原跳远记录,而求得是它,我们就把它设成x,而这个时候,我便教授了未知量,即我们不知道的量就是未知量,所以求谁,谁就是未知量。

  第二步,找关系。找的关系就是题目中告诉我们的。比原纪录多,在数学上就用到了四则运算的加,也就能够得到数学关系上的原纪录+超出部分=小明的成绩。

  最后列式,则把具体的数字带进去,原纪录是x,超出部分0.06,小明成绩4.21,列的式子也就变成了x+0.06=4.21.

  将实际问题与方程的解法来分步的教给学生,学生学起来明显的变得轻松,但是找未知量对学生而言还存在着一些困难。

  例如做一做中的“我们拿桶接了半小时,共接了1.8kg的水,求每分钟浪费多少水?”明明我们看来很简单的问题,学生却找不到未知量应该是什么,只有极少的同学能够知道要把每分钟浪费的水设成未知数x。

  这就让我意识到了,在方程里,有很多变化的问题,学生不能够把握,因此在设计下一节课的时候,我在一开始就让未知量在条件中变没了,组织学生根据之前积累的知识去寻找关系,具体设置的题目有这样差不多的几个:

  1、长方形的长是6m,面积是24平方米,宽是多少?

  2、小明走了半个小时,走了120m,小明每分钟走多少m?

  3、小红买了5只钢笔,花了24元,每支钢笔多少元?

  像这样的,未知量在问题中的,让学生直接去问题里面看,这个时候,考验学生的就变成了学生的积累情况了。

  1、考验的是面积的计算公式

  2、考验的是速度=路程÷时间

  3、考验的是单价=总价÷数量

  而对于题目中的“比去年高”、“超过原纪录”、“二倍”、“二倍少”……学生根据题意用加减乘除列式,学生掌握的情况则比较好。

  用方程解决生活中的实际问题,就是让学生找准未知数,读懂题目中的数量关系,而日常规律的积累也占据着十分重要的位置。

  所以,在做方程联系实际的时候,要加强学生对题意的理解,也要加强学生日常规律的积累,而找到关系去解方程更是要不断的去加强练习。

《实际问题与方程》教学反思3

  求解有关浓度配比问题的应用题,关键是明确溶液“稀释”或“加浓”前后,哪些量不变,哪些量改变,从而建立等量关系。

  由实际问题引入的`目的在于使学生从直观上理解溶液在“稀释”或“加浓”前后有关量的变与不变.从而为最终使有关浓度配比问题的应用题顺利求解铺平道路。

《实际问题与方程》教学反思4

  这节课主要让学生理解并掌握如何利用一元一次方程解应用题,将实际问题转化为数学问题,找等量关系,设合理的未知数,解决实际应用!

  这节课的设置是由带学生参观动物园这一条主线,通过利用一元一次方程解决在参观过程中遇到的一些实际问题,如出发时的租车问题,到动物园要买票问题,以及到动物园以后遇到的一些问题等,都可以紧紧带着学生的`思绪通过边游览边进行数学知识的学习,让学生深刻体会到数学与实际紧密性,从而增加学生学习数学的兴趣。

  教学中要突出实际问题想数学问题的转化过程,关键是找等量关系,以及设未知数列方程,类比以前学过的列方程求解的知识,让学生自己通过探究、讨论找等量关系,以及设合适的未知数,进而列出一元一次方程对问题进行求解,通过学生展示探究结果,老师作简单总结点评,让学生体会数学的实用性。

  在教学过程中有一些学生不能抓住题目给的已知条件找出等量关系,列出的方程不对,应正确引导学生如何将实际问题转化为数学问题、找等量关系,把文字术语转化成数学式子,列出正确的一元一次方程。

《实际问题与方程》教学反思5

  学生在解方程的基础上进一步学习《用方程解决实际问题》,通过我的教学实践和教学反思,我觉得学生在学习这个单元的过程中,教师还要着重注意以下几个方面的问题:

  一、重视关键句分析训练,让学生感悟方程的思想。

  解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。由于我知道我们现在的数学课堂教学对等量关系式的训练不够重视,于是我课前谈话中用了很多时间对等量关系式的写法进行了训练。先从倍数关系,再到相差关系,然后两种关系合并,要求学生分别写出等量关系式,为本节课的教学打下良好的基础。为了突出根据关键句写等量关系式,我出示例题后,直接问:“三句话中你觉得哪一句最重要,为什么?”让学生根据“20xx年的东北虎只数比20xx年的3倍还多100只,写出三种等量关系,有三种关系式就对应着三种解法,哪一种关系式最容易想到。让学生感受到要提高正确率,我们可以从最容易的入手,学生已经掌握了“求一个数比另一个数的几倍多几(或少几)”的实际问题,我们就要引导学生,充分利用已有的知识经验解决新的问题。学生是学习的主体,出示问题后让学生尝试解决问题,教师通过巡视,充分了解学生的困难以及想法,然后才能很好的组织交流。为了使学生认识到方程的思想,我故意让学生先交流用倒推策略解决问题,当交流完列式后让学生说出每一步所表示的意识时,学生感到困难,再次问学生用倒推策略解决时,还可能出现什么错误,这样从两个方面让学生认识到用倒推策略解决的不足,才能更好的让学生主动愿意来学习用方程来解。方法的优劣是比较出来的,当然也是因人而异的。方程为什么要写设语,方程是怎样列出来的,把未知转化为已知条件,才能更好的利用我们最容易想到的等量关系式列出方程才能大大提高正确率。解完例题再次比较总结,列方程是怎样想的,而倒推策略是怎样想的。然后再总结列方程解决问题的一般步骤,只有让学生充分感受到方程的作用和价值,学生才会自愿用列方程来解决新的问题。

  二、重视解方程的技巧训练,让学生知其所以然。

  前面学生已经接触过用等式的性质解一种关系的方程,而今天第一次要解答两种关系的方程,这里学生必然会产生较大的障碍。这种技能技巧的训练与获得也要体现教学的开放性。当学生尝试解答完了,在交流的时候我是有策略的.。我让学生说出列出的方程与最后的结果,让学生比较说出方程的左边有什么变化。这样让所有的学生明确了解方程的目标,也就是要抵消掉“乘2”和“减22”。要达到目的有几种方式,先消“乘2”再消“减22”,或者反之,当然一起消也是一种选择。我通过巡视发现也前两种选择,哪种对哪种错,我们教师只是学生学习的组织者、引导者、合作者。我认为最高明的做法就是让学生自主的去发现,去否定自己,寻找正确的做法。于是我把两种做法都板书在黑板上,并予以充分肯定。那两种都对吗?这是学生也想弄清楚的事情,怎么办?检验,第一种对的,我让学生一起来口答检验,第二种错的我故意自己来检验,把“X=54代入原方程,54减22等于32,再乘2得64,所以X=54是原方程的解”。这时,学生产生异议,然后引导学生认识到解方程也要符合混合运算顺序。接着我再乘热打铁,如果把写关系式比作穿衣服,那么解方程就相当于脱衣服,和X先有关系的是2,那就是X的内衣,“减22”就是外衣,脱衣服能先脱内衣再脱外衣吗?通过这样的比喻让学生印象更加深刻。这样也方便解释解方程的过程书写:把2X当做一个整体。内衣还没脱,所以要照抄。

  总之,一堂课要上得精彩,教师在课前要多做准备工作,教材钻研得透彻,当然还得学会进行取舍。本节课我对等量关系式的时间花得太多了一些,这样就会影响到学生对方程的思想体验得不够充分。

《实际问题与方程》教学反思6

  例6是这个单元比较难的内容,它集中了单位“1”未知和多(或少)百分之几两大知识点在内,上学期求单位“1”的方程,只学了单位“1”未知时求多(或少)多少的一步方程。所以这一知识点还是有难度的,难在找数量关系式。学生不太习惯从“比九月份节约20%”这样的条件中找数量关系式,虽然这一条件上学期已经常分析,但是主要是应用“九月份用水量×20%=十月份比九月份节约的用水量”,而本例题确要利用这一关系句和线段图找出“九月分用水量-十月份比九月份节约的用水量=十月分用水量”,因而这是此例的.难点所在。

  今天教学了这一课的内容,从学生的学习情况来看,找单位“1”的量学生是没问题的,主要是数量关系式有一部分学生还是掌握得不好。

  练习四的第6、8、9两题我是让学生在课堂上完成的,第六题形同例题,仅有3个孩子解答不正确。第八题正如我所料,错的学生不少。先让学生自己独立完成,再集体交流。单位“1”的量是已知的,用乘法;单位“1”的量是未知的,用解方程或除法。第9题的第(1)个问题学生错的较多,尽管在例题和做练一练的时候已经强调多的量或少的量,但做这题的时候有一部分学生还是不会把10%X与节约的量对应起来,学得不够灵活。

《实际问题与方程》教学反思7

  学生从五年级就开始接触简易方程,经历一年多的学习对于方程有了一定的认识,然而为何要设单位“1”的量为未知数这个问题在列方程解决稍复杂的分数实际问题时就一直困扰着学生。列方程解决稍复杂的百分数实际问题是小学阶段的最后一个有关方程学习的单元,因此有必要从本质上去拨开学生心中为何要设单位“1”的量为未知数的那团云。正好借助这节课通过对比分析的方法帮助学生很好的解决这个困惑。

  案例描述:苏教版数学六年级下册教材

  教材例5:朝阳小学美术组有36人,女生人数是男生人数的80%。美术组男生、女生各多少人?

  学生能很快根据题目条件进行相关的找单位“1”分析数量关系的解题前期准备,经历这这两步后学生通过已有经验可以很快确定用方程的策略来解决这个问题。

  在教学的过程中,笔者故意提出:这里男生人数和女生人数都是未知的,那么你们觉得怎样设未知数比较合理呢?学生在底下开始异口同声地回答设单位“1”的量也就是男生人数为未知数比较合理。设美术组有男生X人,女生就有80%X人。那么根据等量关系式:男人人数+女生人数=36学生很自然地列出方程

  X+80%X=36。就在大家十分“得意”的时候,一个小男孩发表了自己不同的意见:“也可以把女生人数设为X。”刚开始很多同学觉得有点不可思议,以前做这类问题不都是将男生人数(单位“1”)设为未知数X的吗?抓住这个千载难逢的机会,我就让他说说他是怎么想的。他是这么说的:设女生人数是X人,男生人数是X÷80%人,根据等量关系式:男人人数+女生人数=36列出方程:X+X÷80%=36。听完他精彩的发言,大家恍然大悟,原来还可以这样?

  仔细回想这个聪明男孩的问题,原来数学真的需要动脑。这个问题在学习分数除法之前教材是一直在回避的,到了这里我灵机一动将题目改成:教材例5:朝阳小学美术组有36人,女生人数是男生人数的2倍。美术组男生、女生各多少人?那你觉得这个问题我们以前是怎么解决的?学生很自然的想到把一份数男生人数设为X人,女生有2X人,方程:X+2X=36。那如果一定要把女生人数设为X人呢?学生思考了一会列出:X+X÷2=36,这个方程没有学习分数除法之前学生是没有办法解出来的,可能这就是教材一直回避的重要原因吧。但是学生学习了分数除法,理解了分数和百分数的意义之后凭借自己的理解列出超乎常规的方程的勇气是值得肯定的。经过这两个问题的对比,学生明白了设未知量也是很重要的。课上到这里,并不是去推翻学生已有的经验,而是让学生有这样一种意识:数学很多时候不是一种硬性规定,遇到这类问题只能设单位“1”的量为未知数。于是我顺水推舟让学生比较了这两个方程:X+80%X=36、X+X÷80%=36哪一个解起来不较容易?学生通过计算终于明白:X+80%X=36方程的'优越性,于是又回到了:男生人数和女生人数都是未知的,那么你们觉得怎样设未知数比较合理呢?通过这样的对比进一步让学生体验到了:设男生人有X人(单位“1”的量为未知数的)合理性,不仅仅能很快表示出女生80%X人,而且X+80%X=36是学生熟悉的形如:aX+bX=c(这里a,b,c已知),而X+X÷80%=36这个方程不是学生熟悉的类型,是需要学生根据除法将它转化为aX+bX=c,这一步转化至关重要。经过上述的两次对比学生终于明白了:为什么在设未知量的时候一般要把单位“1”的量设为未知数了。有了这样的深刻的体验,学生解决这类问题就十分自然,心中的困惑可能就会烟消云散。

《实际问题与方程》教学反思8

  在这节课之前的学习中,学生已经掌握了用方程组表示问题中的条件及解方程组的相关知识,而且探究了用方程组解决具有现实意义的实际问题。这一节共安排了五个实际问题,这些问题比前面的问题更接近现实,数量关系相对比较隐蔽,因此这些问题的分析解决难度比以前的问题也要大些。这节课更为关注建立二元一次方程组数学模型的“探索”过程。它不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理优化的思想意识为学生解决实际问题提供了理论上的科学依据。所以我觉得设计此课的重点应该是使学生在探究如何用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用。

  教学中我应该根据学生的实际,选取学生熟悉的背景,让学生体会数学建模的思想。在教学中应发挥自主学习的积极性,引导学生先独立探究,再进行合作交流。基于以上原因,这节课的设计我选择了“学案导学”法,就是是以学案为载体,导学为方法的教学活动,其显著优点是发挥学生的`主体作用,突出学生的自学行为,倡导学生自主学习,自主探索,自我发现,是学生学会学习,学会合作的有效途径。其操作要领主要表现为问题教学、导学导练、当堂达标。体现学案的人文性:名人名言、建议的口气、温馨的提示等等,我想这些对于创设民主、和谐的课堂氛围,激发学生探究的积极性都是十分必要的。

  这节课之后,我感觉目标已经达成,但还要做好以下几点:

  1、

  2、

  3、

  4、

  5、

  6、

  7、

  将问题精细化处理,设计好问题分析 在课堂上多进行激励和评价,对学生具有积极的指导作用 注重细节,提高解题正确率 关顾不同阶层的学生,提高学生整体的学习水平 做好板书设计,给学生做题留出充足的空间 培养学生良好的思维习惯,提高分析问题的能力 加强教师的专业学习,储备好丰厚的知识

  

《实际问题与方程》教学反思9

  列方程解决实际问题,是新课标教材中使用比较多的一种解决逆思维的实际问题的解题方法,它改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础,易于学生运用知识的正迁移、结合思维方法正确解决此类的实际问题,学生学得轻松、灵活、有效,很好地提高了课堂教学的效率。

  六年级数学(上册)的第一单元就是在学生五年级学过的解方程的基础上进一步学习《用方程解决实际问题》,通过我的教学实践和教学反思,我觉得学生在学习这个单元的过程中,教师还要着重注意以下几个方面的问题:

  一.重视关键句分析训练,提高学生的分析能力。

  解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。如:例1中的关键句:“大雁塔的高度比小雁塔高度的2倍少22米”,根据这句话学生的思维就会直觉的写出这样的相等关系:“大雁塔的高度=小雁塔的高度×2-22”。如果小雁塔的高度不知道就可以直接写出方程,这样问题就很快解答了;通过学习和思考,学生就会很快掌握类似这样的“一个数比另一个数的几倍多几(或少几)”的实际问题,学生就会根据自己的理解和直觉思考用“一个数=另一个数×倍数±几”这种相等关系,如果另一个数是1倍数不知道,可以用方程直接解答。因此学生如果学会抓住关键句分析与思考,能很快提高我们的课堂教学的效率,提高学生的解题能力,对学生的直觉顿悟思维有很大的促进作用。

  二.重视学生的语言训练,提高学生的表达能力。

  在分析关键句的同时,我们不能仅仅局限于会解答实际问题的层面上,要通过找出关键句、用语言分析关键句,提高学生的思维能力,让学生在学习的过程中关注他们探究知识的方法和过程,理解学生的思维方法,通过交流与学习相互补充和提高。因此,在教学这部分知识的同时,我多次通过语言表达训练学生分析关键句、列出相等关系的口头表达能力。

  在教学例2时我通过出示学生熟悉的生活素材:六(1)班有学生48人,男生是女生人数的1。4倍。让学生独立思考和讨论找出题目中的相等关系,学生根据全班48人,知道用“男生人数+女生人数=全班人数”的相等关系,再结合“男生是女生人数的1。4倍。”把题目中的女生人数看做1倍数,那么男生人数就是1。4倍数,如果用x表示女生人数,那么男生人数就是1。4x,这样方程就很快列出来:1。4x+x=48;

  如果把第一个条件改成“合唱组男生比女生多48人。”又如何解决呢?让学生自己讨论和交流,自己解答。学生根据刚才的学习体会,很快找到解决的方法。

  通过学生的分析、交流与语言反馈表达,不仅提高了学生的表达能力,更主要的'体现了学生的主体性,让学生在相互学习和交流中进行学习上的互补,同时也很好地发挥了教师的主导作用,通过学生之间的互帮互学,在交流中可以促进学生直觉顿悟思维的有效组织与思考,便于学生很好的组织自己的语言,理清自己的思维,长期训练,对学生的思维能力有很大的提高。

  三.重视学生的综合训练,提高学生的整体思维。

  在学生学会找准关键句、分析关键句的基础上,通过教学我觉得还要结合学生的掌握情况,进行基础性、综合性等训练,使学生的直觉顿悟思维等有层次、有条理得到训练与提高。

  在教学中我多次通过训练学生的基础表达拓展到解决实际问题的能力上来,学生学的轻松、愉快、有效。如通过基础训练:苹果是梨的2。5倍,如果梨是x 千克,那么苹果和梨一共有x千克,苹果比梨多x千克,梨比苹果少x千克……,类似这样的题目,长期用短时间训练学生的表达能力,学生对这样的实际问题解决时就能熟能生巧。不仅如此,还要通过适当的变式题目,训练学生的综合思维,适当提高学生的解题难度,促进学生的思维不断得到提高,如我在教学中把“合唱组人数是美术组人数的3倍,合唱组人数比美术组多12人。”这样基础题目通过改编成以下的题目:“合唱组人数是美术组人数的3倍,如果从合唱组调6人到美术组,则两个小组的人数同样多。”让学生比较、交流与思考,通过比较和思考发现题目的差别,找出题目中两组人数差的共同点,找到解题的共同处,对学生直觉顿悟思维有很好的帮助和提高。

  教学中我多次通过训练学生的直觉思维,让学生在学习、辨析、交流与反馈表达中使学生的思维在顿悟中豁然开朗,从中感受到学习的乐趣,增强学习数学的信心,通过本单元的教学和反思,学生的解题能力和思维能力通过训练和培养得到了有效的提高,促进了教与学的共同提高。

《实际问题与方程》教学反思10

  今天学习了《列方程解决实际问题》,学生经历列方程解决一步计算的实际问题的学习过程,在练习中学生对列方程解决实际问题的一般步骤和方法掌握不太好。

  本节课我重视学生对数量关系的理解和列方程与数量关系的对应的方程。如:例7的数量关系:小军的成绩-小刚的成绩=0.06米,对应的方程是x-1.39=0.06,如果数量关系:小军的成绩-0.06米=小刚的成绩,对应的方程是x-0.06=1.39。

  本节课学生设未知数x的.后面单位名称会丢掉。在本节课教学中使用的数量关系,实际上就是以前的“…比…多…”和“…比…少…”应用题的数量关系,数量关系:大数-小数=差,大数-差=小数,差+小数=大数。

《实际问题与方程》教学反思11

  列方程解决简单实际问题,是在学生学习了利用等式的性质解简单方程的基础上,将实际问题抽象成方程的过程。

  经过第一课时的教学后,我发现大部分学生对于列方程解决简单实际问题的过程,掌握得较好,只有个别同学在格式上稍有问题。列方程解决实际问题的难点是:根据实际问题找出等量关系式,再列出方程。但是有些理解能力较弱的学生不知道怎样来找等量关系式。所以我在设计第二课时练习课的时候,我先教会学生找出题目中等量关系式方法。我要学生小结出平时做的.练习题中经常会出现的一些等量关系,如下:

  1、根据常用的数量关系确定等量关系。

  例如:甲乙两地相距1820千米,汽车每小时行130千米,求汽车从甲地到乙地需要多少小时?

  等量关系式:速度×时间=路程。由此可以列出方程:

  2、根据几何公式确定等量关系。

  例如:平行四边形的面积是11.2平方米,底是5.6米,它的高是多少米?

  等量关系式:底×高=平行四边形的面积,根据这个公式列出方程。

  3、根据题目中有比较意义的关键句确定等量关系。

  4、类似于这样的找等量关系的题目,是同学错的最多的题目,我让学生分两步做:

  第一,找出题目中有比较意义的关键句;

  第二,按照关键句中,文字表述的顺序列出等量关系式。

  例1:钢琴的黑键有36个,比白键少16个,白键有多少个?

  第一,找出有比较意义的关键句“比白键少16个”,第二,按照关键句中文字描述的顺序,“比白键少”,“少”就是“减”,用“白键的个数—16个=黑键的个数”,再根据等量关系式列出方程。

  例2:一只大象的体重是6吨,正好是一头牛体重的15倍。一头牛的体重是多少吨?

  第一,找出找出有比较意义关键句,“正好是一头牛体重的15倍”,第二,按照关键句中文字描述的顺序,“是一头牛体重的15倍”,看到“……的几倍”,应该用乘法,“一头牛体重×15=一只大象的体重”,再根据等量关系式列出方程。

  总之,列方程解实际问题只要找出数量间的相等关系,再列方程就可以了,等量关系式变化很多,因此方法较多,从不同的角度找出不同的数量关系式,可以列出不同的方程。我觉得对于理解水平较弱的学生不能仅仅满足于用方程做出了这道题就可以了,而是要让学生真正认识到用方程解题的优势,选择适合自己的一种方法就可以了,并且要养成良好的检验习惯。

《实际问题与方程》教学反思12

  教学内容:书本74页例2

  教学目标:分析稍复杂的两步计算的应用题的数量关系,寻找等量关系式。

  教学重难点:找等量关系式列方程。

  教学过程:

  一、忆旧引新

  说说下面各题的等量关系:

  如:①、红花是黄花的3倍

  ②、红花比黄花的3倍多2朵。(等)

  二、兴趣谈话引入新例(74页例2),后出示情景图。

  1、让生说说从图中知道了哪些信息?要解决什么问题?

  2、让生根据信息和问题列出题中的等量关系式,列出方程并解方程。

  板书:黑色皮的块数×2-4=白色皮的块数

  解:设共有x 块黑色皮。

  2x -4=20

  2x=20+4

  2x =24

  x=24÷2

  x =12

  答:-----------------。

  3、引导生用不同方法列方程。

  4、小结:列方程解决问题的主要步骤:①弄清题意,设未知量为x 。②分析题意,找等量关系。③根据等量关系列出方程。④解方程。⑤检验。

  三、巩固拓展:

  1、1.根据方程列出等量关系式。

  粮店运来72吨大米,比运来的面粉的3倍多12吨。运来面粉多少吨? 根据( ),列方程:3x +12=72

  根据( ),列方程:72-3x =12

  2.先说说下列各题的.数量关系,再列方程解决问题。

  花布每米35元,比黄布的3倍少12元。黄布每米多少元?(提示取值)

  四、作业:书本第75~76页第5、6、9题。

  教学反思:

  本节课是用方程解稍复杂的应用题,是在学生已有知识经验的基础上进行学习的,都是抓住解题关键,即先找出题里的等量关系,再根据等量关系列出方程并解答,再而检验。学生知道了用方程解答应用题的步骤。只是部分学生未会找题里等量关系,所以仍需多练。

《实际问题与方程》教学反思13

  最近,我们学习的是六下列方程解决稍复杂的百分数实际问题,共花了四课时的学习时间,因为是稍复杂问题,条件信息变多,数量关系难找清楚,单位1有时已知,有时未知,需要分析清楚。学生在此前已学习了简单的分数、百分数应用题的基础上学习的,而且学生已经会用方程解答和倍、和差问题。

  课前我思考:新的知识点的生长点在哪儿,起点又在哪儿呢?细读例题,教学时我设将例题改成学生熟悉的倍关系,接着改成分数关系,组织学生找单位“1”、说数量关系,以唤起学生对旧知的回忆,便于迁移到新知的学习中。

  教学例5时,我组织学生先根据例题,学习“如何画线段图、如何找等量关系式、如何正确设未知数X的问题以及如何正确设另一个未知数的问题、如何利用结果和条件中的数量关系来检验计算结果是否正确”等。学生普遍能够画出线段图、找准等量关系式,解决上面问题不大。

  例6——已知一个数量,以及一个数量比另一数量多(少)百分之几,求另一个数量(单位“1”)的学习,学生就开始吃力了。

  课堂上老师最累和学生最怕是找出适合列方程的数量关系式。引导学生观察线段图中各线段,在各线段的关系中寻找等量关系,仍有部分学生有困难。学生提到九月份的用水量+十月份比九月份节约的用水量=十月份的用水量,九月份的用水量-节约的用水量=十月份的用水量,九月份的用水量-十月份的用水量=节约的用水量。我没有引导学生及时选择合适的,而是让学生自己选择适当的进行列方程,让学生在自己的'思考下,尝试中找到适合的等量关系。在全班交流中明确等量关系。

  这个环节让我真切感受到部分学生对于寻找数量关系有困难。猜测着可能他们不清楚题目中的数量,也可能不会选择哪个数量关系式才适合列方程,还可能画线段图本身对他来说就是很困难的。到底平时作业不可能每道题目去画线段图(而且学生画线段图能力参差不齐),所以对部分学生来说找出合适的数量关系式非常困难。

  正确检验也是本课的难点,不是所有的学生掌握,也没有要求学生全部理解。其中检验是否如何“比九月份节约20%”这个条件,这种检验方法掌握的学生不多。

  后来,从小学数学教学网上看到有老师这样设计了准备题:

  从看算式补充条件,引出例题6。“青云小学十月份用水440立方米,_____________,九月份用水多少立方米? 440×80% 440÷80% 440×(1-80%)与其他老师有同感,觉得这样的填空设计非常富于启发性。

  在练习时,问题就开始大大小小的出现了:列方程时题目的等量关系式找不到,方程照样是对的;什么时候适合用方程,学生没有思考,反正不管三七二十一都用列方程的方法来解决;有的题目学生不想列方程,模仿记忆用除法计算,不知道为什么这么做……,这一个又一个问题的出现,也让我反思,这一单元就近该怎么教与学呢?

《实际问题与方程》教学反思14

  虽然是第四年教学列方程解决实际问题,但教完第一课时仍觉迷惘,想想我对本单元的认识真是非常功利,认为本单元只要让学生学会两点,

  一、会解形如ax±b=c、ax÷b=c、ax±bx=c的方程;

  二、列方程解答两、三步计算的实际问题。

  总之,一切以“解”为出发点,注重的是解决问题的结果。经过学习,我知道其实更深意义的教学应当另有所求:即以“学解”为出发点,注重的是解决问题的.过程,也就是要让学生经历寻找实际问题中数量关系并列方程解答的全过程。这一单元的价值在通过学习,增强学生用方程解决实际问题的意识和能力,进一步丰富解决问题的策略,帮助学生加深理解方程是一种重要的数学思想方法。

  回顾我第一课时的教学,成功之处在于较好地培养了学生的思维。首先我设置了这样一个导入题:西安小雁塔高43米,(师述:大概14、15层楼高)而大雁塔的高度是它的2倍少22米,大雁塔有多高?然后由导入题引出关键句,标准量,数量关系式三个名词概念(为将来的学习作一铺垫)。再将导入题与例1进行比较异同,在对比中明确例1为什么要用方程来解比较合宜,从而体现了用方程解作为一种顺思维它存在的价值,让学生较轻松的构建方程模型。

  失败之一:

  由于高估了学生的已有能力,解方程过程教学过于放松,没有强调书写规范,更甚者对4X=36÷4这样的错误没有预见,以致于课堂作业很不中看,不过这些问题课后用十分钟和同学们讨论,同学们都能认识到错误,顺利过关。然而,追求尽善尽美的我们还是应当引以为戒。

  失败之二:

  没给出点时间让学生探寻其他解法。其实我私自认为将这一过程放在第一课时,有点难为我的学生。我应当先给他们建一个完整的方程模型,然后再是模型之上的升华。

  我准备在下一课时会补上这一环节。庆幸矣,我能及时领悟到列方程解决实际问题的教学精髓,下面的教学,该是我想方设法来实践了。

《实际问题与方程》教学反思15

  问题:已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

  函数也是解决实际问题的一个重要的数学模型,是初中的重要内容之一。其实这这类利润问题的题目对于学生来说很熟悉,在上学期的二次方程的'应用,经常做关于利润的题目,其中的数量关系学生也很熟悉,所不同的是方程题目告诉利润求定价,函数题目不告诉利润而求如何定价利润最高。如何解决二者之间跨越?于是在第二节课的教学时我做了如下调整,设计成三个题目:

  1、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件。要想获得6000元的利润,该商品应定价为多少元?

  (学生很自然列方程解决)

  改换题目条件和问题:

  2、已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件。该商品应定价为多少元时,商场能获得最大利润?

  分析:该题是求最大利润,是个未知的量,引导学生发现该题目中有两个变量——定价和利润,符合函数定义,从而想到用函数知识来解决——二次函数的极值问题,并且利润一旦设定,就当已知参与建立等式。

  于是学生很容易完成下列求解。

  解:设该商品定价为x元时,可获得利润为y元

  依题意得:y=(x-40)?〔300-10(x-60)〕

  =-10x2+1300x-36000

  =-10(x-65)2+6250300-10(x-60)≥0

  当x=65时,函数有最大值。得x≤90

  (40≤x≤90)

  即该商品定价65元时,可获得最大利润。

  增加难度,即原例题

  3、已知某商品的进价为每件40元。现在的售价是每件60元,每星期可卖出300件。市场调查反映:如调整价格,每涨价一元,每星期要少卖出10件;每降价一元,每星期可多卖出20件。如何定价才能使利润最大?

  该题与第2题相比,多了一种情况,如何定价才能使利润最大,需要两种情况的结果作比较才能得出结论。我把题目全放给学生,结果学生很快解决。多了两个题目,需要的时间更短,学生掌握的更好。这说明我们在平时教学中确实需要掌握一些教学技巧,在题目的设计上要有梯度,给学生一个循序渐进的过程,这样学生学得轻松,老师教的轻松,还能收到好的效果。

【《实际问题与方程》教学反思】相关文章:

《实际问题与方程》教学反思05-17

《实际问题与方程》教学反思15篇08-28

《实际问题与方程》教学反思(15篇)08-28

《列方程解决实际问题》教学反思08-29

《实际问题与方程》教学反思(通用15篇)08-28

《列方程解决实际问题》教学反思09-03

《列方程解决实际问题》教学反思(15篇)06-17

《列方程解决实际问题》教学反思15篇04-19

《列方程解决实际问题》教学反思(通用15篇)09-03