当前位置:9136范文网>教育范文>教案>植树问题教案

植树问题教案

时间:2022-09-12 13:20:19 教案 我要投稿

植树问题教案

  作为一位无私奉献的人民教师,常常要写一份优秀的教案,教案是实施教学的主要依据,有着至关重要的作用。那么写教案需要注意哪些问题呢?以下是小编收集整理的植树问题教案,欢迎阅读,希望大家能够喜欢。

植树问题教案

植树问题教案1

  教材分析

  本册教材的数学广角主要是渗透有关植树问题的方法。它通过生活中常见实际问题,让学生发现规律,抽取出植树问题的数学模型,再用来解决简单的实际问题。本课时是本单元的第一课时,是探讨关于一条线段并且两端都要栽的情况。

  这是学生第一次接触“植树问题”,是后继学习的准备,需要正确建立数学模型。

  教学目标

  1、发现“植树棵数”与“间隔数”的规律,建立“树的棵数=总长÷间距+1”的数学模型。

  2、能利用数学模型解决简单的实际问题。

  3、在解决问题的过程中发现规律,建立模型,应用模型,建立初步的解决植树问题的方法。

  4、体会数学模型的生活意义与作用,体验到学习的喜悦。

  学习重点:采取什么策略正确解决“一条线段并且两端都种”的植树问题。

  学习难点:发现“植树棵数”与“间隔数”的规律,建立“树的棵数=总长÷间距+1”的'数学模型。

  预设过程

  一、尝试解题发现问题

  1、揭题:今天我们来研究植树方面的问题。(板)

  2、课件呈现学习材料,请学生尝试。

  3、反馈,形成争议:

  1)100÷5=20

  2)100÷5+1=21

  4、提出研究问题:植树棵数正好等于间隔数,还是间隔数加1呢?(板)我们来研究。

  二、研究规律

  1、议:在晒场的一侧(8米)种小树,两端都种,可以怎么种?

  2、生述师画,发现棵数比间隔数多1。

  3、自己尝试画图,完成表格。

  4、议:你发现什么?

  5、:当在路的一侧种树时,如果两端都种,棵数=间隔数+1,也就是等于总长÷间距+1。(板)

  6、分析尝试题的正确解法

  三、练习

  1、变式练习

  2、扩展练习

  1、完成1-1。

  1)议:已知什么,求什么?(师在模型的相应地方画√)

  2)尝试完成,并反馈。

  2、完成1-2。

  1)议:已知什么,求什么?(师在模型的相应地方画√)

  2)议:怎么求总长?(板)

  3)尝试完成,并反馈。

  3、完成2。

  1)议:已知什么,求什么?(师在模型的相应地方画√)

  2)议:从间隔10米,能停41辆,能求出什么?求出总长后,怎么安排这51辆车?

  3)尝试完成,并反馈。

  四、

植树问题教案2

  教学内容:教科书106页例1及相关内容。

  教学目标:

  1.通过猜测、实验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。

  2.培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

  教学重点:

  发现并理解两端都栽的植树问题中间隔数与棵树之间的关系。

  教学难点:

  运用“植树问题”的解题思想解决生活中的实际问题。

  教学准备:多媒体课件、直尺、学习纸。

  教学过程:

  一、 谜语引入做铺垫:

  1.师:同学们,记得上一次上课前老师给同学们除了一个谜语,同学们一下子就猜出来了,今天老师又带来了一个谜语。

  师说谜语,学生回答(手)

  师:真厉害!现在举起你们的右手,手心向我,尽量把五指张开,大家看,每两个手指间都有一段?(距离)。在数学中,我们把这一段距离就叫做一个间隔。(板书:间隔)5个手指间有几个间隔呢?(4个),4个手指呢?(3个),3个手指呢?(2个),2个手指呢?(1个)。好,同学们可以把手放下了。

  2.现在请第一小组的前5位同学站起来,站起来的这5位同学之间有没有间隔?(有)。从第一位同学到最后一位,一共有几个间隔呢?(4个)后面一位同学也请站起来,现在有几位同学?几个间隔呢?(6位,5个),再站起来一位,现在是?(7位同学,6个间隔)。好,请坐,谢谢你们。

  手指之间有间隔,刚才站起来的同学间有间隔,我们在植树时,树与树之间也要有间隔,那么今天我们就以植树为例探讨与间隔数有关的问题。

  板书课题:植树问题

  二、探索新知

  1.出示例题:植树节到了,同学们要在100m的小路一边植树,每隔5m栽一棵(两端要栽)。一共要栽多少棵树?

  2.理解题意:

  师:在这道题中,你们发现了什么数学信息?

  生回答(总长度100m,5m一棵)。课件演示。

  师:每隔5m一棵是指两棵树之间的距离是5m,我们把这个距离叫做间隔长度。

  师:还要注意哪些重要的信息?生:一边。师:一边是什意思?路有左右两边,只要在一边栽树,另一边不栽。生:两端要栽。师:路的起点和终点都要栽。

  课件演示。

  3.学生猜想:

  师:你们猜一猜,一共要栽多少棵树?谁来说说。

  生回答。怎样得到的。师板书:100÷5=20(棵)等等。

  师:到底要栽多少棵呢?哪一种猜想是对的.,我们要检验一下,你们认为怎样检验?(画图)100m的小路每5m画一棵,5m画一棵,这样画下去你们觉得?(太麻烦)。为什么麻烦?(100里面有20个5m),怎么办呢?

  像这样数据大、比较复杂的问题,我们可以先从简单的情况入手进行研究,我们可以选择100m中的一小段,如果是15m的小路,可以栽几棵?20m呢?

  4.学生操作:

  师:请同学们拿出学习纸,我们用线段表示小路,把小路的长度缩小100倍,学习纸上15cm的线段表示15m的小路。20cm表示20m,我们用5cm一个间隔表示5m一个间隔。可以用你喜欢的图案表示一棵树。画好后,完成下面的表格。

  学生操作。师巡视。画好的互相检查。

  5.学生汇报:

  师:请一个同学汇报一下结果,15m的小路?生:3个间隔,4棵树。

  师:同意吗?我们来演示一下栽的情况。首先起点处栽一棵,隔5m栽一棵。

  第3棵树时,师问:还要栽吗?(要)为什么?(两端都要栽)起点栽一棵,终点也就是末尾也要栽一棵。

  大家看,15里面有几个5m?(3个),也就是3个间隔。1、2、3,3个间隔,1、2、3、4,4棵树。3个间隔4棵树。刚才那位同学的回答是正确的。20m的小路?(4个间隔,5棵树)。我们来看,(课件演示)还是5m一个间隔,终点还要栽一棵。20里面有几个5m?(4个)几棵树?(5棵)。4个间隔5棵树,回答正确。

  6.尝试列式:

  师:你发现了什么规律,不画图,你知道25m要栽几棵树吗?试一试。

  学生尝试列式。汇报,师板书:25÷5=5(个间隔)5+1=6(棵)

  学生说列式想法:5m一个间隔,25m里有几个5m就有几个间隔,求出的是间隔数,棵数比间隔数多1,所以要加1。

  师:为什么要加1,你怎么知道棵数比间隔数多1(从刚才表格得到的规律)你们同意吗?(同意)。

  7.理解规律:

  如果说5个间隔就栽5棵树会出现什么情况呢?我们来看,一个间隔对应一棵树,5个间隔就是5棵树,这样栽完了吗?(没有)为什么?(末尾没栽,这是一端栽一端不栽)5个间隔栽5棵树行吗?(不行),应该栽几棵?(6棵)。

  要使两端都栽树,棵树和间隔数有一个怎样的关系呢?谁来说。

  (棵树比间隔数多1,反过来,间隔数比棵树少1)

  8.巩固强化,得出结论:

  师:同学们都明白了两端都栽的情况下,棵树和间隔数之间的关系,现在老师出几道题考考大家,7间隔栽几棵树?20个间隔栽几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?非常好!

  如果用一个等式来表示间隔数和棵数之间的关系,应该怎样写?

  间隔数+1=棵树(棵树—1=间隔数)

  大家把这个关系齐说一次。

  要求棵数必须要知道?(间隔数)

  已知总长度和间隔长度怎样求间隔数?

  总长度÷间隔长度=间隔数齐读一次。

  9.运用方法,验证例题:

  师:现在我们回到例题,100m的小路一边植树,每隔5m栽一棵(两端要栽),到底要栽多少棵树?你猜对了吗?

  看看黑板上这种做法对吗?生回答,集体讲评。课件出示正确列式。

  三、巩固练习:

  1.同学们在全长400m的小路一边植树,每隔8m栽一棵树(两端要栽),一共要栽多少棵树?

  学生完成,板演,讲评。、

  把一边改为两旁,生独立完成,集体讲评。

  2. 工人叔叔正在架设电线杆,相邻两根间的距离是200m。在总长3000m的笔直路上,一共要架设多少根电线杆(两端都架设)?

  师:这道题和我们今天学的植树问题有联系吗?(有)谁来说一说。

  生回答,师引导找到联系,在课件上标示。

  学生独立完成,板演,集体讲评。

  3.在一条笔直的公路一侧植树,每隔6m种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?

  学生独立完成,师提醒:先求间隔数。

  四、课堂小结。

  (略)

植树问题教案3

  植树问题是在一定的线路上,根据总路程、间隔长和棵数进行植树的问题。下面给大家提高了植树问题例3的教案设计,一起来看看吧!

  教学内容:人教版新课标实验教材,四年级数学 下册P120的例3,P121的做一做,练习二十第4、6、7题

  教学目标

  1、掌握在一个封闭图形中植树问题的解答方法,并能灵活运用这一基本方法解决生活中存在的与“植树问题”类似的实际问题。

  2、在探索和解决问题中,体会从简单到复杂的数学推理方法,体验数学学习成功的喜悦,增强学好数学的信心。

  教学重难点:掌握封闭图形中“植树问题”的解决方法

  教具准备:正方形,围棋棋盘、棋子

  教学过程

  一、激趣导入

  脑筋急转弯:把4棵树栽成4行,每行数数都有2棵?怎么栽?

  1、让学生独立思考,提示学生可用画图的方法进行思考。

  2、全班交流,找出方法,并在正方形上把它表达出来。

  3、观察这个图形,你有什么发现?与我们前面学习的植树问题有什么不同?

  4、在学生的思考中,导入新课,板书课题:植树问题

  二、探索规律

  1、教学例3

  (1)出示围棋棋盘

  数一数

  围棋棋盘的最外边每边能放几个棋子?(19个)

  (2)算一算

  最外层一共可以摆放多少个棋子?

  学生先独立思考,寻找出自己的计算方法

  全班交流,学生叙述自己的算法和结果

  方法一:19×4=76(个)

  方法二: 19×4-4=72(个)

  方法三: 18×4=72(个)

  (3)议一议

  全班交流,指名叙述每种方法的理由。

  方法一忽略了角上算重的情况,多算了4个。

  方法二考虑了4个角上算重了,所以在总数中去掉了多算的4个。

  方法三每边都只算一个端点,这样每边有18个,3边正好是6个。

  (4) 比一比

  你用了哪种思考方法,还有其它方法吗?你认为哪种方法最好?

  (5) 想一想

  前面我们已经学习了在一条线段上植树的问题,知道间隔数和棵数之间的关系,那么我们现在来观察一下,围棋最外层摆放的棋子有多少个间隔?学生自主探究:数一数间隔数,指名回答,围棋最外层摆放的棋子数等于最外层每两个棋子的间隔数。

  (6)类推

  钟面上有几个数?想一想:钟面上每两个数之间有几个间隔?一个五边形有几个顶点?如果在五边形的水池边摆上花盆,使每一边都有5盆花,最少需要多少盆花?

  (7)归纳规律

  与前面学习的内容比较及在练习中你发现了什么?即封闭的图形的“植树问题”有什么规律?组织学生讨论,在学生回答的基础上总结出:植树的棵数正好等于间隔数。

  2、解决问题

  (1)补充习题:24名学生做游戏,大家围成一个正方形,每边人数相等,四个角上都有人,每边各有几名同学?

  (2)学生自主探究或和同伴交流,教师巡视指导后进生用画图的方法帮助理解。

  (3)集体交流,指名学生说出算理。

  (4)教师有针对性地进行指导,并启发学生以每边人数求总人数的方法进行验证。

  三、巩固练习

  例3后面的“做一做”

  四、课堂小结

  今天我们学习的是封闭图形内的“植树问题”。你发现了什么规律?

  五、作业布置:练习二十第4、6、7题。

  教学反思

  一、寻找例题间的联系

  封闭图形中的植树问题例3教学前,学生只是通过直观的方式与以往的知识经验来解决的,此时的学生很少把它看作植树问题,因此教学时我安排摆棋子一环节,主要用意在于:1、巩固练习围棋问题中的解决方法。2、通过这道题把它与植树问题进行沟通,使学生知道其实这些题也可以用植树问题的.思考方法来解决。3、虽然教参中并没有强求学生一定要探索出封闭图形植树问题中的规律(即间隔数等于棵数),但这个规律对学生后继的学习很重要,学生可以利用这个规律更容易解决一些实际问题,比如:在解决正多边形的植树问题时,特别是在解决封闭曲线的植树问题(如绕一个圆形的溜冰场一周种树时)显得尤为方便。否则,学生很难想到用间隔数去解决问题,也和前面的例1、例2失去了联系。所以我要通过这道题来与植树问题进行沟通,初步感知规律,然后再回到例3中的问题,引导学生用植树问题的思考方法再次解决例3。并在沟通的过程中,让学生有所感悟:封闭图形的植树问题都可以按照一端种一端不种的植树问题的规律(即间隔数就等于棵数)来加以解决。

  二、精心设计教学流程

  教学时我是这样设计的:大屏幕出示围棋图,先让学生数一数每边有多少棋子,学生数出每边都有19个棋子。然后,接着问学生那正方形的4条边也就是一周一共多少颗棋子?放手让学生自己去解决出现了不同的结果,很多学生开始都认为每边放19个棋子,四条边,就用19×4=76个,而有的通过数,发现实际只数出有72个棋子,那为什么是72个而不是76个呢,有少部分同学能够发现“四个顶点上的不能重复算”,因此他们能够很快地列出算式:19×4-4=72个。最后,还有没有其他的方法,19×2+17×2=72个,还有18×4=72,然后老师重点引导新思路为什么是18×4,让学生自己去争论,发现规律:封闭图形棵树等于间隔数。

  三、反思不足促进教学

  不足之处:

  1. 对于围棋中得植树问题,数量相对比较大,学生想象比较难,教学时引导不够,学生思考不到位。最好应该放慢教学速度,给学生动手操作的时间,这样感触更加深刻。

  2.部分学生区分不开:间隔数和间距的概念,应该结合生活中得实例来说明。

  3.在学习了三种类型的植树问题之后,对于给出的一些生活中类似植树问题相类似的问题,学生搞不懂是哪一种类型的植树问题。

  植树问题对于学生的掌握,相对比较难,以上是我在教学中发现的学生中存在的问题,针对这些问题,安排一节练习帮助学生巩固和掌握。

植树问题教案4

  学情分析

  由于学生初次接触“植树问题”,这部分的学习内容学生一定会很感兴趣,学习的热情也会比较高涨,但根据以往的教学经验,这部分内容对于整体学生来说是不容易理解和掌握的。学生已经掌握了关于线段的相关知识,也具备了一定的生活经验和分析思考能力与计算能力,因此为了让学生能更好地理解本单元的'教学内容,在教学过程中应对教材进行适当的整合,并充分利用原有的知识和生活经验,来组织学生开展各个环节的教学活动。

  教学目标

  1.认识不封闭曲线路上间隔排列中的简单规律。

  2.会解决问题中“两端都栽”情形的植树的实际问题。

  教学重难点

  重点:间隔排列中的简单规律

  难点:两端栽树棵数与间隔数之间的关系。

  教学过程

  一、口算:(白板出示)

  48÷6=? 13×3+1=? 83+42+17=? 32÷8+1=? (13-1)÷2=

  100÷5+1=? (73-1)÷8=? 12×4=? 1000÷10=? 35÷7+1=

  二、谈话导入

  师:同学们你们知道每年的植树节是几月几日吗?

  生:3月12日

  师:那你们植过树吗?

  生:没有 有

  师:那今天老师就来带领大家一起来研究数学上的 “植树问题”吧!

  出示课题(ppt):植树问题

  准备:

  伸出左手 五指张开 每相邻两个手指之间有一个缝隙,这个缝隙也称做间隔。

  5—4 也称做间隔数是4 ; 4-3 3 ;? 3—2 2 ;?? 2—1? 1 ;

  ?? 那大家植树时是不是这样植的?每相邻两棵树之间有一定的距离,也称做间距。

  三、探究新知

  下面让我们一起来研究,出示课件例题1

  (1)理解题意

  师:认真读题,你认为哪些词语最关键?

  生:全长100米 ?? ? 一边

  每隔五米 间隔 ?两端都要栽

  问题:一共需要几棵树苗?棵数

  (这些同学审题真仔细)

  师:那什么叫做每隔五米?两端都要栽?

  生:每相邻两棵树之间的间隔距离是5米?

  小路的最开始和末尾各栽一棵。

  师:同学们说的可真好,那请大家观看课件,跟着老师一起通过ppt再次深刻理解题意,认真看,小声跟着说……好!那你认为一共应该栽多少棵小树呢?

  师:100米太长了,我们可以用简单的数来试试。20米(师把100改成20),师在黑板上画出线段图,让学生清楚看出需要5棵小树苗。师:怎样写算式呢?20÷5=4() 4+1=5()

  (老师重点强调单位名称和答)

  师:把20米换成30米、35米呢?(学生在练习本上计算,后同桌对答案)

  师:那么大家来看黑板上,间隔数和棵树之间有什么联系?

  生:棵数=间隔数+1? 多找几个同学回答

  师:出示课件 一起读。

  师生共同回头看例1,学生在练习本上计算。

  师出示课件ppt例1的计算过程

  100÷5=20(个)

  20+1=21(棵)

  答:一共需要21棵小树苗。

  (表扬—你真了不起,写的跟答案一模一样,点赞!)

  四、巩固练习(ppt呈现)

  1、5路公交车线路全长12千米,相邻两站之间的路程都是1千米,一共设有多少个车站?

  2、把“1千米”改成“2千米”

  3、在一条长20米的小路一侧,每隔4米放一盆植物(两端都放),一共需要多少盆植物?

  4、两侧都放呢?

  5、大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端都不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树

  五、思考题

  学校的大钟8时敲响8下,14秒敲完。11时敲响11下,敲完需要多长时间?

  六、谈收获

  通过今天的学习,老师很佩服你们的专注力,你们真了不起!那么你的收获是什么呢?

  (师生共同本课内容,下课。)

植树问题教案5

  教学内容:

  《义务教育教科书.数学》五年级上册p106—107。

  教材分析:

  “植树问题”是义务教育课程标准实验教科书四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、两端不栽以及封闭图形(方阵问题)等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  学情分析:

  学生已经学习了除法的含义、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  设计理念及思路:

  “数学广角”系统而有步骤地向学生渗透数学思想方法,尝试把重要的数学思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来。

  解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被平均分成若干段(间隔),由于路线不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。“植树问题”的本质是对应问题,只要明确了“间隔”与“树”这两者之间的对应关系,突出“一一对应”的思想,再以此为基础并通过适当变化就可以应对各种变化了的情况。

  为了更好的落实教学目标,本节课在教材的处理上我作了如下调整,把原例题中的路长“100米”改为“20米”,把“两端要栽”这个条件去掉了。数据改小有利于学生思考,也便于学生动手操作,但并不影响我们要研究的数学问题。“两端要栽”这个条件去掉了,旨在让学生在一个开放的情境中,通过动手操作、演示用一一对应的思想方法去探究植树问题中间隔数与棵数的关系。再通过展示现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后用发现的规律尝试用数学的方法来解决实际生活中的简单问题,从而使学生建立起深刻、整体的表象,提炼出植树问题解题思想方法。

  教学目标:

  1.知识技能。

  借助直观,通过间隔和数的对应,理解间隔数与植树棵数的规律,建立不同情境下植树问题的数学模型。

  2.数学思考。

  (1)学生在参与观察、动手操作、比较等数学活动中,发展解决问题的意识和能力,能清晰地表达自己的想法。

  (2)学会独立思考,体会数形结合、一一对应、化归、建模等数学思想方法。

  3.问题解决。

  (1)能运用所得到的规律解决实际问题。

  (2)能和他人合作交流。

  4.情感态度。

  (1)能积极参与数学活动,对数学有好奇心和求知欲。

  (2)在数学学习过程中,体验获得成功的乐趣,建立自信心。

  (3)感受数学在日常生活中的广泛应用,体验植树问题的价值和作用。

  教学重、难点

  重点:探究棵数与间隔数之间的关系,运用一一对应,建立植树问题模型,会应用植树问题的模型解决一些相关的实际问题。

  难点:应用植树问题的模型灵活解决一些相关的实际问题。

  教学准备

  多媒体 笔 直尺

  教学方法

  讲授、演示、讨论交流、操作练习等

  教学过程:

  一、课前互动、引出课题

  师:想让自己的头脑变得更聪明的同学请以最佳的状态坐好,都有这个美好的愿望,光说不练可不行。这节课就让我们走上思维的道路,一起去迎接新的挑战吧。请看老师给你们带来的课前思维训练题:

  1.一根木头长10米,要把它平均锯成9段,需要锯几次?

  2.四年级在三楼,每上一层要走20个台阶,一共要走多少个台阶才能到三楼?(每层台阶数相同)

  师:锯木头和上楼梯是生活中常见的现象,我们把它叫做“植树问题”,今天这节课我们就一起来研究有关植树问题的知识。(板书课题:植树问题)

  二、探索规律、建立模型

  (一)创设情境,出示问题。

  园林工人打算在一条长20米的笔直小路一边植树,请同学们按照每隔5米栽一棵的要求帮忙设计一份植树方案,并说明理由。

  师:从这份要求上,你能获得哪些信息?

  (预设:20米长的小路,一边,每隔5米栽一棵)

  师:每隔5米是什么意思?

  (预设:两棵树之间的距离是5米,每两棵树的距离都相等)

  (二)动手操作,设计方案

  同桌二人合作,摆一摆或画一画

  (三)交流汇报,展示作品

  师:大多数同学已经完成了,谁来汇报(汇报后展示)

  (预设:我们小组设计栽了5棵树。在一条长20米的路上,开始先栽一棵,然后隔5米栽第二棵,再隔5米栽第三棵……再隔5米栽第五棵。)

  师:不错,老师期待你更精彩的表现,他们设计了5棵,还有不同方案吗?

  (预设:我们小组设计栽了4棵树,开头的地方没栽,先隔5米栽第一棵……隔5米栽第4棵。)

  师:为什么开头的地方不栽?

  (预设:因为有的时候在一条路的一头可能会有障碍物,所以不能栽。)

  师:你想得真周到,真是个既细心又爱动脑的孩子。是呀,如果在路的一端有建筑物就只能在另一端栽了!同学们的设计真精彩啊!还有不同的'设计方案吗?

  (预设:如果路的两端都有建筑物,可以栽3棵。)

  师:你回答的太棒了,老师感到震撼!对,有的时候在路的两端都会有障碍物,这个时候路的两端就不能栽树。

  (四)比较方案,探究规律。

  1.间隔数与总长、间距的关系。

  (1)出示植树的三种情况,学生观察相同点。

  师:同学们真有创造力!短时间内根据要求设计出了三种不同的方案,你们都有资格成为一名设计师了。现在请用你们雪亮的眼睛看一看,这三种方案中相同的地方是什么?

  (2)学生汇报,教师板书。(总长、间距、间隔数 20 5 4)

  (3)间隔数与总长、间距的关系。

  师:这三种方案的间隔数都是几?能用一个算式来表示吗?(20÷5=4(个))在这个算式中,每个数字分别表示什么?

  你们能说说怎样求间隔数吗?(总长÷间距=间隔数)

  问:要想知道有几个间隔,必须要知道哪两条信息?(总长、间距)

  师:接下来,咱们来比一比,谁的反应快?(如果一条小路长100米,每隔10米栽一棵树,一共有多少个间隔呢?如果每隔20米栽一棵树,一共有多少个间隔呢?)

  2.间隔数与植树棵数之间的关系。

  (1)学生观察不同点,教师讲解三种方法的名称,同桌交流棵树和间隔数的关系。

  问:刚才咱们找到了这三种方案的相同点,请同学们再用你们睿利的目光观察,不同的地方又是什么呢? (预设:植树的棵数不同、植树的方法不同)

  学生汇报后,教师讲解三种方法的名称。

  师:看来虽然间隔数相同,但是不同的植树方法,植树棵数是不同的。我们就来研究在不同的植树方法中,间隔数与植树棵数之间存在着怎样的关系。赶紧用你们的慧眼去发现吧,可以把你的发现和同桌分享。

  (2)汇报交流。(板书)

  (3)演示,明白原因。(演示:树与间隔之间的一一对应关系。)

  3.小结:解决植树问题方法

  师:会求植树的棵树吗?这三种关系可是个宝贝,你们想得到它吗?那请闭上眼睛,打开你的大脑主机,我要把这个宝贝输入你的大脑了,千万别开小差啊,出现死机现象那可麻烦啦,准备好了吗?我要开始传宝贝了……好,收到了宝贝的同学请用最美的姿势坐好。

  三、巩固应用、内化提高

  师:既然宝贝已经保存在你的大脑里了,那可不能让它天天睡懒觉,得常常拿出来发挥一下它的神奇作用。下面这几道题就需要它大显身手。请看:

  1.有一条500米的石子路,在石子路的一侧每隔5米栽一棵(只栽一端),需要准备几棵树?

  2.同学们在全长1000米的小路一边植树,每隔8米栽一棵(两端都栽)。一共需要多少棵树苗?

  3.大象馆和猩猩馆相距60米。绿化队要在两馆间的小路一侧栽树,相邻两棵树之间的距离是3米。一共要栽几棵树?

  4.在一条全长180米的街道两旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?

  四、课堂总结、拓展延伸

  师:今天我们一起研究了有关“植树的问题”,不过,我有一个疑问想请大家帮我解释一下:植树问题就仅仅是指植树这一种现象吗?

  生举生活中的其他例子,锯木头、上楼梯、安装路灯……

  回到大脑思维体操的题目,进一步理解每一个算式表示的意思。

  师:第一题锯木头属于哪种情况,第二题又属于哪一种情况呢?

  师:今天这节课,你觉得你最大的收获是什么?

  师:植树问题在我们的生活中无处不在,它美化着我们的生活,美化着我们的校园。其实在“植树问题”中,“植树”的路线可以是一条线段,也可以是一个封闭图形,比如正方形、长方形或圆形等。有兴趣继续探索吗?请利用本节课学到的方法回家和家长探讨。

  板书设计:

  (一条线段上的)植树问题

  方法 间隔数 棵数 关系

  总长 ÷ 间距

  两端都栽 4 5 棵数=间隔数+1

  只栽一端 4 4 棵数=间隔数

  两端不栽 4 3 棵数=间隔数-1

植树问题教案6

  教学内容:义务教育课程标准实验教材四年级下册《植树问题》,117页例1。

  教学目标:

  1. 使学生通过生活中的事例,初步体会解决植树问题的方法。

  2. 初步培养学生从实际问题中探索规律,找出解决问题的有效方法 的能力。

  3. 让学生感受数学在日常生活中的广泛应用,培养学生的应用意识 和解决问题的能力。

  教学重点:用解决植树问题的方法解决实际问题。

  教学难点:栽树的棵数与间隔数之间的关系。

  教具准备:多媒体课件。

  设计理念:新课标指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”同时指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。”结合新课标的要求,教学中力求发挥学生的主体地位,让他们动脑、动手、合作探究,经历分析、思考、解决问题的全过程,体会植树问题这一重要的数学思想方法。

  教学过程:

  一、谈话导入:

  师:同学们,你们喜欢植树吗?你植过树吗?(生答)植树能绿化环境,造福人类。在生活中,常常遇到在路的一边、间隔一定的距离植树,这就需要计算准备多少棵树苗。还有许多类似的问题:比如在公路两旁安装路灯、花坛摆花、站队中的方阵等等,在数学上,我们把这类问题统称为“植树问题”。

  二、揭示学习目标:(媒体出示)

  通过这节课的学习,我们要解决哪些问题呢?

  1. 能根据相关条件,求出需要多少棵树苗或计算两树间的距离。

  2. 能利用植树问题,灵活解决生活中类似的实际问题。

  三、探究新知:

  1. 出示例1:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?(生读题)

  师:你会计算吗?(让学生回答)你算的.对吗?请同学们自己动脑来验证一下。

  学习提示:(媒体出示)

  ①假如路长只有10米,要栽几棵树?如果路长是二十米,又要栽几棵树?请你画线段图来看看。(注意看图上有几个间隔和几个间隔点)

  ②通过上面的分析,你能找出什么规律?和同桌或小组内说说。

  ③现在你能算出一共需要多少棵树苗吗?

  ④你还有别的想法吗,在小组内说说。

  2. 学生自学探讨。(师巡视)

  3. 班内交流。学生回答后,师媒体演示间隔数和间隔点数的关系。

  总结规律:栽的棵数比间隔数多1。

  完成例题。

  四、变化巩固:

  1. 做一做:118页学生独立完成。订正时说说怎么想的,重点让学生明确先求出间隔数,即36棵树有35个间隔。

  2. 122页第2题。独立完成,同桌交流想法,可一生板演。

  五、检测反馈:(独立完成)

  1. 在一条长四百米的马路的一边,从头到尾每隔8米种一棵树。一共可以种多少棵树?

  2. 5路公共汽车行驶路线全长十二千米,相邻两站的距离是一千米。一共有几个车站?

  3. 从王村到李村一共设有十六根高压电线杆,相邻两根的距离平均是两百米。王村到李村大约有多远?

  学生完成后师批阅订正,发现问题及时解决。

  六、总结延伸:这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些不同的情况,希望大家开动脑筋,灵活处理。

植树问题教案7

  学习目标:

  1.探讨封闭曲线中的植树问题。

  2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法。

  3.在小组合作交流过程中,学会从不同角度思考问题。

  学习过程:

  一、自主探究

  例3:张伯伯准备在圆形池塘周围

  栽树。池塘的`周长是120m,

  如果每隔10m栽一棵,一共

  要栽多少棵树?

  1.分析:这个问题和前面学的有什么不一样?

  2.思考: 你想用什么方法来研究这个问题?

  3.出示表格

  4. 我可以把 ,我的发现是

  可以独立完成,也可以小组合作完成。

  二、课堂达标

  1.填一填

  (1)学校运动场的跑道一圈长400米,在内侧每隔10米插一面彩旗,一共可以插( )面彩旗。

  (2)正六边形的花圃每边有3盆花,顶点都有花,共有( )盆花。

  (3)同学们进行体操表演,48人围成正方形,4个顶点都有人,每边各有( )名同学。

  2. 判一判。

  (1)一个方阵,最外层每边8人,最外层一共88=64(人) ( )

  (2)在五边形水池边摆花盆,每边放4盆,最少需要15盆。 ( )

  (3)时钟3时敲3下用2秒,4时敲4下用4秒。 ( )

  3.圆形滑冰场的一周全长是150m。如果沿着这一圈每隔15m安装一灯, 一共需要装几盏灯?

  三、知识拓展

  一条项链长60cm,每隔5cm有一颗水晶。这条项链上共有多少颗水晶?

植树问题教案8

  设计理念

  本课通过生活中的事例,调动学生已有的生活经验,接触一些重要的数学思想方法,经历猜想、实验、推理等数学探索过程,激发学生对数学的好奇心和探求新知的兴趣,增强学习数学的兴趣。以学生发展为本,着眼于数学思维能力的培养。注重引导学生充分体验探究过程,感受数学在日常生活中的广泛应用,培养学生的观察比较、动手操作、分析概括能力以及语言表达能力。

  教学内容

  《义务教育课程标准实验教科书数学》(人教版)四年级下册第117页。

  学情与教材分析

  “植树问题”是人教版四年级下册“数学广角”这个单元的一节内容。和前几册教材一样,主要是向学生渗透一些重要的数学思想方法。本课主要是渗透有关植树问题的一些思想方法,教学时通过现实生活中的一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  教学目标

  1、通过动手操作、小组合作,使学生能理解间隔数与植树棵数之间的规律,并将这种规律应用到解决类似的实际问题之中。

  2、培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力。渗透数形结合的思想,培养学生借助图形等方式解决问题的意识。

  3、培养学生的合作意识,养成良好的交流习惯。通过实践活动激发热爱数学的情感,感受数学与现实生活的密切联系,体验学习成功的喜悦。

  教学重点

  引导学生发现不封闭线路上,两端都栽时间隔现象的简单规律。

  教学难点

  运用规律解决类似的实际问题的方法。

  教学准备

  电脑课件、泡沫条、小树模型、表格等等。

  教学过程

  一、创设情境,引入新课

  1、初步感知植树方法的多样化

  师:春天是个植树的好季节,你们知道植树有哪些好处吗?

  植树原来有这么多的好处啊。这节课,我们就一起来研究植树中的数学问题。(板书课题)

  (课件出示)兰兰想在门前小路的一侧种上三棵小树苗来美化环境。你们能帮她设计出一种方案吗?

  请学生上台用课件演示:鼠标移动书苗介绍设计方案

  【学情预设:有的学生在小路两端各栽一棵,中间栽一棵;有的学生把三棵都栽在中间;有的学生从一端栽起,另一端不栽。】

  师示范给一种方案命名,其他方案请学生命名。

  结论:(1)两端都栽。

  (2)只栽一端。

  (3)两端都不栽。

  (板书)

  【设计意图:将生活中常见的植树问题,整体地呈现出来,培养学生“用数学”的意识,渗透“生活中处处有数学”的思想。放手让学生设计方案并冠名,充分体现学生的主体地位。】

  二、动手操作,探究新知

  1、教学例1

  本节课我们主要学习两端都栽的植树问题。

  (1)出示例1:六年级的学生想在全长100米的校园小路一边植树,每隔5米栽一棵(两端都栽),一共要准备多少棵小树苗?

  读完题目,你们获得了哪些信息?

  猜猜看,一共要准备几棵小树苗?

  【设计意图:培养学生认真审题的好习惯。学生在猜想的过程中可能会出现几种不同的答案,到底哪种答案对呢?留下悬念,引发思考,激发学生探究新知的欲望。】

  (2)学具操作,初步探究

  到底谁的答案是对的呢?我们先取100米中的一小段20米来研究。

  小组合作,用学具模拟栽树。思考:两端都栽的时候,应该栽多少棵?

  学生展示学具,汇报模拟结果。

  【学情预设:学生汇报:每隔5米栽一棵,所以在5米,10米,15米,20米的地方各栽一棵。两端都要栽,所以在0米的地方又栽一棵,一共是5棵。】

  (3)教学画线段图

  我们用一条线段来代表20米长的小路,用几个点来代表小树苗。这就是我们经常要用到的线段图,线段图可以很好地帮助我们思考。(课件展示)

  师:这几个点除了可以代表小树苗,还能代表其他的东西吗?引导学生发现点可以表示很多物体。

  师:两点间的距离可以用哪个词语来表示呢?(间隔)

  生活中你们还见过哪些间隔,能举些例子吗?

  刚才在植树中,你们发现了几个间隔(数)呢?是怎么知道的?

  【学情预设:学生可能会说是数出来的,可能会说是算出来的……每一种方法教师都予以肯定。】

  【设计意图:老师呈现解决问题常用的方法:遇到复杂问题想简单的,从简单问题入手去研究。让学生利用学具模拟实际种树去检验,学生兴趣比较大,做到人人动手实践,丰富了学生的感性材料,并自然过渡引出线段图,为学生顺利发现并总结规律打下了基础。】

  师:同学们在刚才栽树的过程中,还发现了什么?

  【设计意图:给学生一个思考的空间,使学生发现植树时要准备树苗的问题并不能简单地用除法来解决。】

  (4)感知规律

  如果让你们来栽树,在这条20米的小路上,要使每棵树之间的距离相等,还可以每隔几米栽一棵树?

  【学情预设:学生会提出每隔1米,2米,4米,10米,20米栽一棵。】

  出示表格,根据学生的回答将间隔填上。

  小组合作:选择一、两种间隔,用喜欢的方法找出间隔数和棵数,填入表格中。

  总长

  间隔(米)

  间隔数(个)

  棵数(棵)

  20米

  (两端都栽)

  5米

  4个

  5棵

  1米

  2米

  4米

  10米

  20米

  填好表格后,小组派代表汇报结果。

  【学情预设:学生可以用画线段图、算一算、数一数等方法完成。】

  【设计意图:学生自由选择方案,并选择用自己喜欢的方式来找出间隔数和棵数,体现教学方法的开放性。展示学生不同的探究方法,体现“不同的学生学习数学的水平可以不同”的教育思想。】

  谈论交流:两端都栽时,植树的棵数与间隔数之间有什么关系?

  得出结论:两端都栽树时,棵数比间隔数多1。也可以说间隔数比棵数少1。

  板书:(两端都栽)间隔数+1=棵数

  质疑:为什么两端都栽时,棵数比间隔数多1?

  配合学生的回答,课件展示

  【设计意图:启发学生透过现象发现规律,也就是在两端都栽时,棵数比间隔数多一。】

  (5)练习

  老师有几个问题想请你们用刚才所学的规律以抢答的形式来帮忙解决。

  两端都栽时,7棵树有几个间隔呢?9个间隔有几棵树?12棵树有几个间隔呢?20个间隔有几棵树?……

  【设计意图:全体学生一起抢答,知识得到了巩固,同时也活跃了课堂的气氛。】

  (6)验证

  我们利用这个规律来算一算,两端都栽时,100米到底应该种多少棵树?看看前面哪些同学猜对了。

  【设计意图:学生经历了分析、思考、解决问题的全过程,同时利用所学的规律加以验证。从中得到解决问题的方法,丰富了学生的解题策略,体验到成功的喜悦。】

  三、应用规律

  (1)任意一纵队的学生起立

  师:谁能应用刚才所学的知识提几个数学问题?

  【学情预设:学生可能会提:有几个间隔?头尾两个同学相距多少米?每相邻两个同学间隔有多少米?】

  (2)学校小路一侧插上12面彩旗,两头各插一面,每两面彩旗之间相隔6米,这条小路长多少米?

  (3)工人架设电线杆,每两根电线杆之间的电线长100米,从第1根到第9根之间要拉多长的电线?

  (4)学校组织40名同学参加车鼓队排练,请你设计一下队形?可能会排成几排?

  【学情预设:1排、2排、4排、5排、8排……】

  师:如果老师想排成一排,每两个同学的`间隔是2米,想想,这个车鼓队伍头尾相距多少米?

  如果老师想排成两排呢?

  (5)我们的城市建设正在火热进行中,市里决定在一条长20xx米的街道两侧安装节能路灯,(两端都要安装),每隔50米安一座,算算看一共要安装多少座路灯?

  【设计意图:应用知识解决孩子们身边的问题,解决学校的问题,解决社会公益问题,提高了学生解决生活实际问题的能力。充分体现了新课标“数学学习内容应当是现实的,有意义的,富有挑战性的”的理念。】

  四、全课总结

  学完这节课,你有什么想对老师或者同学们说的呢?

  五、课外思考

  为了进一步美化我们的校园,学校准备沿着宣传廊一旁摆上漂亮的花。宣传廊全长约60米,如果每隔6米摆一盆花,你想怎么摆?一共需要购买多少盆花?

  【设计意图:把探究活动延伸到课外,为下一节课的教学做好铺垫。】

  设计思路:

  《植树问题》是人教版小学数学实验教材四年级下册新增的一个内容,其目的是向学生渗透一些重要的数学思想方法。教材通过现实生活中一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  上课伊始,对学生们进行环境保护教育,让学生意识到植树和生活有紧密的联系,而且植树中还藏着有趣的数学问题,激发学生的求知欲。

  导入新课后,让学生成为学习的主人,学生经历了猜猜,试试,画画,填填等多种学习形式,自主探究出规律。整个过程培养了学生的动手操作能力,自主探究能力,小组合作交流能力。学生自由选择方案,体现教学方法的开放性,在教师的引导下,学生很快地发现了规律,并构建起植树问题的数学模型,为下一节课的教学打下坚实的基础。

  在练习巩固环节,让学生运用新获得的数学知识来解决生活中的实际问题,让学生意识到生活中处处有数学,数学源于生活,又用于生活,激发学生的学习热情。

  本课设计的立足点在于学生的发展,把学生探索规律的过程作为课堂的中心点,把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。

植树问题教案9

  设计说明

  1.重视知识的迁移和转化。

  知识迁移法就是利用新旧知识间的联系,启发学生进行新旧知识对照,由旧知识去思考、领会新知识,学会学习的方法。上节课我们已经学习了两端栽树时的间隔数与棵数之间的关系,掌握了两端栽树的解题方法,为本节课的学习打下了基础。学生已经发现了“两端栽树”的规律,这时老师提出如果两端都不栽树,棵数和间隔数之间又会有怎样的规律呢?有了前面学习的基础,学生的思维非常活跃,想表达的欲望也很强烈。通过动手操作,形成知识的迁移和转化,引导学生发现并总结规律,让学生的研究成果被认可,让学生有成就感,从而也增强了学生学习数学的'信心。

  2.重视独立探究与合作交流相结合。

  《数学课程标准》明确指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。”有了前面的学习基础,先放手让学生独立探究,再合作交流。通过简单的例子验证前面的猜测,发现两端都不栽树的规律。在这个过程中,学生对复杂问题从简单入手的数学思想又有了更深刻的体验。

  课前准备

  教师准备:PPT课件

  学生准备:直尺

  教学过程

  ⊙对比引入,揭示课题

  1.出示复习题:在一条60m长的小路的一旁栽树,每隔3m栽一棵(两端都栽),一共要栽多少棵树?

  (1)要求学生说一说自己是怎样解决这个问题的。(指名汇报)

  (2)对于两端都栽的植树问题,棵数和间隔数之间有怎样的关系?你能用一个式子表示它们之间的关系吗?(指名回答:棵数=间隔数+1)

  2.引入新课。

  师:同学们对于上节课的知识掌握得非常好!如果老师把上题改为:在一条60m长的小路的一旁栽树,每隔3m栽一棵(两端不栽),一共要栽多少棵树?

  (1)想一想,这道题与上一道题相比较,有什么变化?

  (2)说一说你是怎么理解“两端不栽”的。(学生思考后自由汇报)

  师:这节课我们就来研究一下“两端不栽”的植树问题,看一看棵数与间隔数之间有怎样的关系。(板书课题)

  设计意图:让学生在熟悉的情境中借助已有的知识经验开展学习,充分调动学生学习的积极性,让学生在不知不觉中进入学习环境。

  ⊙合作探究,发现规律

  1.从简单的数据分析,发现两端不栽的规律。

  (1)教师引导学生用画线段、摆图形、摆小棒等自己喜欢的方法在小组内研究,并完成下面的表格。

  总长

  间距(3m)

  间隔数(个)

  棵数(两端不栽)

  6m

  间距(3m)

  2

  1

  9m

  间距(3m)

  3

  2

  12m

  间距(3m)

  4

  3

  15m

  间距(3m)

  5

  4

  18m

  间距(3m)

  6

  5

  …

  …

  …

  …

  (2)填写完后在小组内交流一下,你是用什么方法进行验证的?从这个表格中你发现了什么规律?(生自由汇报:两端不栽,棵数比间隔数少1或间隔数比棵数多1)

  设计意图:学生是学习的主人,设计丰富的探究活动,采用多样的学习方式,引导学生主动参与探究的过程。教师放手让学生想一想、画一画、说一说,既满足了学生的表现欲望,又培养了他们自主探究的意识。教师恰当地向学生渗透“遇到比较复杂的问题先想简单的问题,从简单的问题入手来研究”这一数学思想。

  2.自主学习,应用规律解决教材107页例2。

  (1)课件出示教材107页例2:大象馆和猴山相距60m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3m。一共要栽多少棵树?

  ①认真读题,分析题意,说一说自己发现的数学信息。

  ②独立思考,怎么解决。

  ③组内交流,确定方法。

植树问题教案10

  教学内容:人教版五年级上册第七单元第一课植树问题

  教学目标:

  知识与技能:

  (1)理解植树问题中一条线段两端都植树的特征,并能应用规律解决问题。

  (2)通过猜测操作,验证,交流的方式探究两端都不种的植树问题。

  (3)从封闭曲线(方阵)中发现植树问题的规律。

  过程与方法:

  培养学生观察能力、操作能力以及与人合作的能力。

  情感态度与价值观:

  学生通过观察、操作、交流等活动探索新知。

  教学重难点:

  教学重点:在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的一些简单实际问题。

  教学难点:基本规律的提炼和方法的应用。

  教学准备:

  教具准备:课件

  学具准备:练习本

  教学过程:

  一、课前谈话。

  同学们,学校旁边有一条长100米的小路,老师要在栽几棵树苗,想请你们当回小小设计师帮忙设计行吗?(行)今天我们来研究研究植树问题中的奥秘。

  二、探究规律。

  (一)1.出示题目

  这条小路长100米,每5米栽一棵小树苗(两端要栽),一共可以栽多少棵?可能会有部分学生会马上列出算式:100÷5=20(棵)

  ①理解题意

  a、 指名读题,从题中你了解到了哪些信息?

  b、 理解“两端”是什么意思?

  指名说一说,然后实物演示。

  指一指哪里是小棒的两端?

  说明:两端要栽就是小路的两头要种。

  ②学生动手操作。

  拿出小棒,同桌间互相说一说,画一画,摆一摆。

  ③同桌互相讨论后,全班汇报交流

  a、指名说一说:你一共摆了多少根小棒?

  上黑板上来摆给大家看一看。

  b、数一数你们刚才摆的小棒,它们之间有几个间隔?一共摆了几根小棒?

  c、间隔与种树的棵数有什么关系?

  ④师说明:开始大家算出的100÷5=20,这个20并不是表示可以栽20棵树,而是指共有20个间隔。

  2.改变题目条件变为:

  在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案,并说明理由。(可用线段图表示)

  1.学生试解答

  2.用小棒检验

  3.说一说你的想法

  间隔数与栽树的棵数又有什么关系呢?

  学生试说后,教师小结。

  4. 基本练习:同学们做操,某竖行从第一人到最后一人 的`距离是24米,每两人之间相距2米,这一行 有多少人?

  5. 提高练习:园林工人沿公路一侧栽树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  (二)出示例2

  1、学生读题,理解题意

  ①“两馆间的小路”指的是哪一段?

  ②“小路两旁”指的是要栽几边?

  2、学生互相合作,用小棒摆一摆

  师提示:我们现在可以假设大象馆和猩猩馆相距18米,其它条件不变,用小棒摆一摆,说一说。

  要求完成:

  ①你一共摆了几根小棒?

  ②每一边的小棒根数和间隔数之间有什么关系?

  3、全班交流

  4、教师小结

  这种情况属于两端都不种的植树问题,即植树棵数=间隔个数—1。

  (三)用摆小棒的方法教学例3

  教师小结:两端封闭的情况下 植树棵数=间隔个数

  三、练习应用

  1.一要木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

  2. 在教学楼前植树,每4米栽一棵,20米内可以在多少棵树?

  四、课堂总结

植树问题教案11

  教学过程:

  教学内容:

  教学目标:

  1、通过猜测、试验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律。

  2、引导学生构建数学模型,解决实际生活中的有关问题。

  3、培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

  教学重点:发现并理解两端都栽的植树问题中间隔数与棵树的规律。

  教学难点:运用“植树问题”的解题思想解决生活中的实际问题。

  教学准备:课件、白纸

  教学过程:

  一、情境出示,设疑激趣

  教师:哪位同学知道我们国家设立的植树节是在哪一天?(3月12日)在这一天的植树活动中,遇到了这样一个问题。(课件出示问题)

  例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

  教师:你能利用所学的知识解决问题吗?(板书)你认为哪一个结果是正确的?

  【设计意图】

  直接出示例题的情境,通过学生的尝试解答,既是对教学起点的了解,又利用两种不同的结果设置疑问,激发了学生探求新知的热情。

  二、经历过程,感受方法

  教师:可以用怎样的方法进行检验呢?实践是检验真理的唯一标准,虽然我们不能去户外植树,但是我们可以在草稿本上画一画。遇到了什么困难?

  预设:100 m太长了,不太好画。(追问:那我们可以怎么办?)

  学生:可以先用简单的数试一试。(课件出示)

  【设计意图】

  使学生经历分析思考的整个过程,感受“猜测──验证”的学习方法。在实际操作中发现问题有助于激发学生的思考,从而深刻地体会“从简单事例中发现规律,并利用此规律解决较复杂问题”的`数学思想。

  三、探索实践,建立模型

  教师:先看看20 m的距离,在两端都栽的情况下可以栽几棵树。实物投影或课件出示:教师:说说你是怎么想的?预设:20÷5=4,20 m被平均分成4段,因为两端要栽,所以要栽5棵树。

  教师:再画一画,25 m可以栽几棵树?(学生操作)谁来说说你的想法?

  预设:25÷5=5,就是把25 m平均分成了5段,因为两端都要栽,所以要栽6棵树。还可以这样画:这里的蓝色线段表示什么?(间隔数)红色线段呢?(植树棵数)

  (根据学生回答,教师在课件上输入数据)你发现了什么规律?

  预设:棵数要比间隔数多1。(追问:可以用怎样的一个式子表示?)棵数=间隔数+1。教师:谁能说说为什么要“+1”?(因为两端都要栽,所以栽树的棵树比间隔数多1。)你能用发现的规律解决开头的问题吗?(指名回答,分析讲解)

  教师:回顾这个问题的解答过程,说说你的想法。

  归纳小结:在解决较复杂或数据较大的问题时,可以先从简单数据出发得出规律,然后将规律运用于复杂问题进行解决。

  【设计意图】

  “画示意图──抽象出线段图──不画图”的教学过程,体现了从具体到抽象、从特殊到一般的设计理念,也正是在这一进程中,通过积极有效的教学活动,使学生建立起“一条线段两端都栽”这类植树问题的数学模型。

  四、利用新知,解决问题

  教师:根据刚才学到的知识,还可以解决许多生活中的问题。(课件出示问题)

  1、在一条全长2 km的街道两旁安装路灯(两端也要安装),每隔50 m安一盏。一共要安装多少盏路灯?

  教师:读完这个题目,你觉得有哪些地方需要特别引起注意?

  预设1:单位不统一,要先进行转化再计算。

  预设2:两旁。(追问:表示什么?)就是两边。你能通过画图的方法表示出“两旁”吗?在计算时该怎样体现?(先算出一边的路灯的数量,再乘以2。)

  学生练习,指名回答。

  2 km=20xx m(20xx÷50+1)×2=82(盏)

  答:一共要安装82盏路灯。

  教师:20xx÷50算的是什么?(间隔数)“+1”说明了什么?(两端都要安装)

  2、马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?教师:仔细读题,认真思考,说说你对这个题目的理解。

  引导得出:要求一共栽多少棵银杏树,实际就是求梧桐树的间隔数。由“棵数=间隔数+1”可得“间隔数=棵数—1”。

  25—1=24(棵)

  答:一共要栽24棵银杏树。

  教师:可以用怎样的方法验证结果是否正确?(可以先用比较简单的例子,通过画线段图的方法进行验证)和这题有关的简单的例子,我们只要张开一只手。五个手指相当于题目中的?(梧桐树)每两个手指之间栽一棵(银杏树),可以栽几棵?你还有其他的方法吗?

  【设计意图】

  练习中的实际问题,相比例题有一些变化,对于学生的理解能力提出了更高的要求。第1题用画图的方法直观地表示出“两旁”,解决了算式中为什么要“×2”的问题;第2题先让学生思考,说说自己的理解,验证的环节既是对方法的回顾,又体现了数学的趣味性。

  五、逆向思考,拓展新知

  园林工人沿一条笔直的公路一侧植树,每隔6 m种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

  教师:读题并思考,要求“从第1棵到最后一棵的距离”就是求什么?(路长)跟例题相比,有什么不同?

  预设:例题是知道了路长求栽树的棵数,这题是知道了栽树的棵数,求路线长度。教师追问:该怎样解答呢?试一试,并说说你的思路。

  (36—1)×6=210(m)

  答:从第1棵到最后一棵的距离是210 m。

  教师:“36—1”算的是什么?(间隔数)再根据“间隔数×间隔距离=路长”计算。

  【设计意图】

  通过变式练习,加深学生对例题中发现的规律的理解。该题是植树问题数学模型的逆向应用,有了前一题“间隔数=棵数—1”的知识为基础,学生应该能比较容易地解决这一问题。对于学习有困难的同学,也可引导他们用画线段图的方法解答。

  六、回顾思考,全课总结

  教师:通过这一节的学习,你有什么收获?跟大家交流一下。

  根据学生回答,强调:

  1、解决两端都要栽的植树问题的数学模型:棵数=间隔数+1。

  2、当遇到较为复杂的数学问题时,可以先从简单的事例中发现规律,然后应用找到的规律来解决原来的问题。

  【板书设计】

  植树问题(两端要栽)总长÷间距=间隔数间隔数+1=棵数100÷25+1=21(棵)

植树问题教案12

  一、教材概述

  二、教学目标(知识与技能、过程与方法、情感态度与价值观)

  1、使学生理解并掌握一个封闭图形的植树问题的规律。

  2、学会用不同的方法分析具体的数学问题。

  3、经历数学问题的探究过程,体验用不同的思路解决问题的方法。

  4、沟通数学知识与生活之间的密切联系,激发学生的学习兴趣,培养学生的动手操作能力,发展学生的发散思维。

  三、学习者特征分析

  学生已经初步掌握关于一条线段的植树问题,但是,这个内容学生理解起来还是比较困难,特别是中下的学生。因此,在这基础之上,要让学生借助围棋盘,动手摆一摆,通过小组合作来一起探讨封闭曲线中的植树问题。

  四、教学策略选择与设计

  自主探索 合作交流 总结规律

  五、教学环境及资源准备

  投影仪,每小组一副围棋。

  六、教学过程

  教学过程教师活动预设学生行为设计意图及资源准备

  一、创设情境教师投影出示教材第120页例3情境图。

  教师:图上两位小朋友在干什么?(下围棋)

  你对围棋有哪些了解?

  师:在这小小的围棋盘下可有不少数学问题呢!

  板书课题:

  让学生畅所欲言。吸引学生的注意力,激发学生的.学习兴趣。

  二、探究新知

  (1)教师投影出示围棋盘。

  师:在围棋盘上一个点可以放一个子。

  (2)出示例3。

  围棋盘的最外层每边能放19个棋子。最外层一共可以摆多少个棋子?

  师:同学们算得都正确。还有其他的方法吗?

  师:你发现了什么?

  学生通过分析比较会发现:围棋盘最外层摆的棋子数等于最外层每两个棋子间的间隔数。

  (1)学生读题,理解题意。

  (2)动手在围棋盘上摆一摆,数一数,小组合作探究。

  (3)学生汇报。

  通过动手摆,认真的观察判断,分析比较,从中发现规律。培养学生的发散思维,动手能力。

  三、反馈应用

  (1)教材第121页做一做第1题。

  教师投影出示情境画面,出示第1题。

  (2)教材第121页“做一做”第2题。

  ①讨论:可以怎么摆放?

  ②最少需要多少盆花?

  (3)教材第121页“做一做”第3题。学生读题,理解题意。

  学生汇报。

  学生在小组中合作完成,然后教师指名汇报,全班集体订正。

  四、全课小结通过今天的学习活动,你有什么收获?

  板书设计: 植树问题(二)

  a.19×2+17×2=72(个)

  (19+17)×2=72(个)

  b.18×4=72(个)

  c.17×4+4=72(个)

  封闭图形:植树棵数=间隔数

植树问题教案13

  学情分析:

  四年级的学生以形象思维为主,而且抽象逻辑思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。

  教材分析:

  “植树问题”原本属于经典的奥数教学内容,而解决植树问题的思想方法是实际生活中应用比较广泛的数学思维方法。本册“数学广角”主要是渗透有关植树问题的一些思想方法。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  这个数学内容既需教师的有效引领,也需要学生的自主探究。而例1是探讨关于一条线段的植树问题并且两端都要栽树的情况,让学生先通过画线段,再来发现栽树的棵数和间隔数之间的关系,从而会应用植树问题的模型解决一些相关的实际问题。

  设计理念:

  《新课标》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”所以解题不是本节课教学的主要目的,主要目的是从实际问题入手,引导学生在培养学生通过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的'过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。

  教学内容:

  人教版实验教科书数学四年级下册第117—118页的例1及相应的“做一做”。

  教学目标:

  知识与技能:

  1、理解间隔概念,知道间隔数与棵树之间的关系,初步建构植树问题的数学模型。

  2、能根据数模解决简单的实际问题,培养学生观察、分析及推理能力。

  数学思考:

  1、让学生经历观察、猜想、自主实验、探究、交流,从中发现规律,抽取数学模型过程。

  2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

  解决问题:

  能够应用本节所建构的植树问题的数模以及探寻到的规律,针对实际情形灵活的来解决问题。

  情感态度与价值观:

  让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点:会应用植树问题的规律解决一些相关的实际问题。

  教学难点: 建构数模,探寻规律。

  教学准备:课件、实物投影仪、每组一张表格

  教学流程:

  一、创设情景,导入新课。

  1、猜谜语

  师:“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。猜到了吗?”“对!就是这双勤劳的双手。请同学们伸出左手五指张开,看看你能想到哪个数?”“5是指5个手指,胡老师想到了4,你知道在哪吗?”“在数学上我们把这些空格叫做间隔(板书:间隔)也就是说5个手指之间有4个间隔,间隔数是4。”

  “现在看老师的手变魔术了,5个手指有4个间隔,4个手指有3个间隔……你们找出手指数与间隔数之间的关系了吗?”(指名说)

  2、找间隔

  “生活中的间隔随处可见,请看大屏幕。你找到间隔了吗?”(出示课件2—4)

  “我们的身边还有间隔吗,一起来找找吧!”

  3、揭示课题

  出示课件5、6。师:“你更喜欢那组画面?怎样才能拥有这样美丽的环境呢?”

  “对!植树造林,美化环境是我们每个人应尽的义务!说到植树,大家知道吗?在我们数学王国里植树可是有一定的学问的。这节课我们就来探讨植树问题。”(板书:植树问题)

  二、自主探究,构建模型

  师:“春天到了,为了美化校园,我们学校也要植树,想当环境设计师吗?看看具体要求。”(出示课件7、8)

  1、设计不同方案

  师:“画一条线段表示12米的小路,你想怎么载就用示意图或线段图画出来吧!”教师巡视。

  2、展示不同方案

  投影仪展示学生的设计方案,问:“你是怎么画的?”

  师板书三种情况,分别是:两端都栽,只栽一端,两端都不栽。

  师:“今天这节课我们先来探讨两端都栽的情况。”

  3、小组探索、加强体验

  (1)提出问题

  出示例1(课件9)学生默读题目,找出关键词并做解释。

  师:“需要多少棵树苗呢?”指名说出不同的答案并板书。

  师:“现在出现了3种不同的答案,而且每种都有不少的支持者,到底哪种答案对呢?”小组讨论,并说出理由。

  (2)验证猜想

  演示课件9师:“我们用这条线段表示这条路,两端都种,先在头上栽一棵,再一棵一棵的栽……这样栽下去,你有什么感受?”(太麻烦)“老师也有同感,其实像这种比较复杂的问题,在数学上还有一种更好的研究方法,想知道吗?就是将复杂问题简单化,在这里100米太长了,我们可以先在短距离的路上种种看。”(出示课件10)

  分组画出不同路长的栽法,小组展示栽的棵数。师“为什么这么画?”

  (3)总结规律

  小组内填写表格,观察:“你发现了什么规律?”板书规律

  “刚才通过画图知道了棵数,能不能通过计算得到呢?”

  师:“根据刚才发现的规律你知道例1的答案了吗?会列式计算吗?”(出示课件11)

  4、运用规律

  (1)现在我们的小手的5个手指看成5棵树,你能说说今天发现的规律吗?同桌相互说一说。

  (2)出示课件12“比一比谁的反应快” 在两端都栽的情况下,有8个间隔共要种几棵树?有10个间隔共要种几棵树?如果已种了6棵树有几个间隔?如果已种了10棵树有几个间隔?

  三、巩固应用,内化提高

  师:在日常生活中,在我们周围有许多类似于植树问题的现象小明就在不同的地方找到了,咱们来看看吧。

  1、公共汽车上(出示课件13)

  2、公路上(出示课件14)

  3、上楼梯(出示课件15)

  4、钟表上(出示课件16)

  引导:师边模仿钟响边板书,学生击掌感受第一响与第二响之间有间隔。

  四、回顾整理,反思提升

  师:通过今天的学习,你有什么收获?

  “对!今天你们发现了植树问题中的重要规律,我们是怎么得到的?”“你还学到了什么方法?”(复杂问题简单化)

  “收获方法比收获知识更重要,祝贺大家!”

  板书设计:

  植树问题

  两端都栽

  棵数=间隔数+1

  间隔数=路长÷间距

  路长=间隔数×间距

  100÷5+1=21(棵)

植树问题教案14

  教学目标:

  1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

  2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

  教学重点:建立并理解“点数=间隔数+1”的数学模型。

  教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

  教学准备:课件。

  教学过程:

  一、情境出示,设疑激趣

  教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?

  预设:5根

  教师:那手指与手指间的空隙叫什么呢?

  预设:间隔

  教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?

  预设:4个间隔

  教师:现在再看,现在伸出了几根手指呢?

  预设:4根间隔

  教师:4根手指之间有几个间隔呢?

  预设:3个间隔

  教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?

  预设1:手指数比间隔数多1。

  预设2:间隔数比手指数少1.

  教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?

  预设1:手指数=间隔数+1。

  预设2:间隔数=手指数-1.

  教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)

  二、引入新知,经历过程,感受方法

  教师:请看,请大家默读一下:(课件出示问题)。

  引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?

  教师:告诉我们 哪些条件?(提问)要求什么问题?(提问)

  教师:同学们先用尝试用线段图来表示他们之间的'关系。(学生动手并提问完成)

  教师:这里的有几个间隔?

  预设:4个

  教师:那你们能不能用一个数学式子来表示?

  预设:20÷5=4

  教师:20表示什么?5表示什么?4表示什么?(分别提问)

  预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。

  教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)

  教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?

  预设:5棵。

  教师:怎么列数学关系式?(提问)

  预设:4+1=5(棵)

  教师:为什么这样列呢?

  预设:因为两端都栽。

  教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)

  教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。

  例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

  (请同学上台展示)

  三、利用新知,解决问题

  教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。

  教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)

  练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?

  教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)

  练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?

  练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?

  四、回顾思考,全课总结

  教师:通过这一节的学习,你有什么收获?

  思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!

  五、逆向思考,拓展新知

  教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:

  练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?

  六、布置作业

植树问题教案15

  教材分析

  植树问题一共分三种情况,教材在编排时将它们分成三个例题进行教学,分别是两端都种、两端都不种、只栽一端。本节课我对教材进行了整合,在第一课时就将三种情况全部呈现,并且将重心放在探究只种一端时,棵树和间隔数之间的关系。其实只要是只种一端,不管路是几米,间隔数和棵数始终相等,因为树和间隔始终一一对应。处理好了这层关系,理解了一一对应,那么两端都种和两端都不种就可以根据对应思想,通过迁移发现间隔数和棵数之间的关系。

  教学目标

  1、通过探究,发现在一条线段上植树的问题的规律,理解并掌握不同种法中间隔数和棵数之间的关系。

  2、经历探究规律的过程,培养学生观察、分析、合作等能力,初步渗透“一一对应”思想。

  3、感受数学来源于生活更应用于生活,培养学生应用意识和解决问题能力。

  教学重点:

  理解间隔数和棵数之间的关系,建构数学模型。

  教学难点:

  建立模型及“一一对应思想”的应用。

  教学过程

  1、恰好3月份,植树节即将到来,因此在第一环节通过询问植树的好处,渗透环保意识,并让学生感受数学问题来源与生活。

  2、第二环节我主要分三个层次进行教学,第一层通过小小设计师,将枯燥的解决问题转变成灵动的设计方案。先引导学生理解“每个5米种一棵”什么意思,有些学生可能认为只有两棵树之间的5米才是间隔,一边不种树的话那个5米就不是间隔,因此我将示意图这样设计,帮助学生更好地理解什么是间隔。再引导学生猜测并画图,让学生经历一个“猜想——验证”的过程。

  第二层是本堂课最关键的部分,首先请学生展示作品,说说自己是怎么想的,

  在说的过程中询问学生分了几个间隔,为什么分4个间隔,它是怎么来的。接着引导学生观察三种画法,它们有什么共同点和不同点,沟通三者之间的联系,并揭示每种种法的名称。然后将探究的重心放在只种一端的情况上,通过列算式,解释算式意义,并通过质疑,引导学生猜测棵数和间隔数之间有什么联系,为探究埋下伏笔。有些学生虽然对树和间隔的对应关系有点了解,但难以用语言概括,因此我在课件中用不同颜色描出树和它对应的间隔,闪烁树和间隔,并用圈一圈的方法,便于学生区分和发现,之后安排学生对照着左手,将自己的发现告诉同桌,深化对对应关系的理解。因为本节课的规律属于不完全归纳法,单靠一个例子是不科学,没有说服力的,所以我增加了300米的小路种树,想象着种树的过程,理解为什么只一端种时,棵数始终等于间隔数。最后运用迁移,理解为什么一个加1,一个减1。

  第三层引导学生观察三个算式,有什么相同点,它们第一步都是先算什么?数学广角这类题目建模是关键,但没有解决问题的策略,就会使课显得空洞,这一层主要让学生形成一个策略:要知道一共有几棵树,必须先求出间隔数。接着通过例题,使知识得到一个巩固,最后展示生活中的植树问题,感受数学不仅来源于生活,更要运用于生活。

  第三环节中设计了两道习题,第二题是生活中常见的'例子,主要为了培养学生从字里行间寻找隐藏信息的能力,接着通过变式,隐去一座房子又会怎样种。其实在画图时会有这样一个疑惑,为什么那一端空在那不种树,而这道题目可以给出很好的说明,有时候在解决问题时还要注意联系生活实际。

  教学反思:

  作为新教师,对于这类课我是比较难把握,数学思维如此缜密,我在教学的过程中难免有所疏忽。

  1、语言不够精炼,会不自觉地重复学生的话。在讲解只种一端的时候,学生对一一对应还是明了。

  2、评价语有些生硬,对于学生的回答有时不能及时得做出点评。

  3、探究得太少,自己说得太多。使课堂不够开放。

  4、本节课虽然渗透了解决的方法,先求间隔数,但没有明确间隔数的求法。应该在板书上指明。

【植树问题教案】相关文章:

植树问题的教案09-05

植树问题教学反思01-13

《植树问题》教学反思04-20

植树问题教学设计08-31

植树问题教学反思02-21

三年级植树问题教案03-09

数学植树问题教学反思08-25

“植树问题”数学教学反思02-13

植树问题教学反思15篇08-03