当前位置:9136范文网>教育范文>教案>解比例教案

解比例教案

时间:2022-09-20 19:33:40 教案 我要投稿
  • 相关推荐

解比例教案

  作为一名为他人授业解惑的教育工作者,时常会需要准备好教案,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?以下是小编整理的解比例教案,欢迎阅读与收藏。

解比例教案

解比例教案1

  教学目标

  1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。

  2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。

  教学重难点

  掌握成反比例量的变化规律及其特征。

  教学过程

  一、在情境中感受两种相关联的量之间的变化规律。

  用x,y表示长方形相邻两边的边长,表1是面积24cm2的长方形相邻两边边长的变化关系,表2是周长为24cm的长方形相邻两边边长的变化关系。

  1.根据两个长方形的边长变化情况把表格填写完整。

  2.填完表以后思考:

  (1)说说从数据中发现了什么?

  (2)表1和表2中,长方形相邻两边边长之间的变化规律相同吗?

  3.小结:长方形的一条边的长随着邻边长的增长而减少,在变化过程中,面积24cm2的长方形的相邻两边长的积都是24。周长为24cm的长方形相邻两边长的积都不相等,但他们的和相等。

  二、自主探究:

  1.王叔叔要去游长城,不同的交通工具所需时间如下表,你从表中发现什么?

  自行车大巴车小轿车速度/(千米/时)106080时间/时1221。先让学生同桌之间交流,再指名学生口答讨论的结果。

  (1)需要的时间随着交通工具的速度的变化而变化。交通工具的速度越慢,需要的时间反而扩大;交通工具的速度越快,需要的时间反而缩小。

  (2)可以看出它们的变化规律是:交通工具的速度和时间的积总是一定的。因为交通工具的速度和时间的积都是120。提问:这里的120是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(路程一定时,交通工具的速度和时间的乘积一定)

  3、总结。

  像这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。我们就说这两种相关联的量成反比例?

  追问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定?)

  4、想一想。

  买苹果的总钱数一定,苹果的单价与数量成反比例吗?你是怎么想的?与同桌说说。

  三、巩固练习

  1.判断下面每题中的两种量是不是成反比例,并说明理由。

  (1)煤的总量一定,每天的烧煤量和能够烧的天数。

  (2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。

  (3)生产电视机的总台数一定,每天生产的`台数和所用的天数。

  (4)长方形的面积一定,它的长和宽。

  (5)铺地面积一定,方砖边长与所需块数。

  2.奇思读一本书,已读的页数与剩下的页数的情况如下。

  已读的页数1234……剩下的页数797877……

  提问:已读页数和剩下页数能不能成反比例?为什么?

  3.有600毫升果汁,可平均分成若干杯。请把下表填完整

  分的杯数/杯65432……每杯的果汁量/ml100……

  (1)表中有哪两种量?

  (2)分的杯数是怎样随着每杯的果汁量变化的?

  (3)这两个量成反比例吗?

  4.请举一个成反比例的例子,同桌相互说说。

  四、课堂小结

  这节课学习的是什么内容?反比例关系的意义是什么?判断两种量是不是成反比例,关键是什么?

  教学目标

  1、利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。

  2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

  3、结合丰富的事例,认识正比例。

  教学重难点

  1、结合丰富的事例,认识正比例。

  2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

  教学过程

  活动一:在情境中感受两种相关联的量之间的变化规律。

  (一)情境一

  1、观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?

  说说从数据中发现了什么?

  3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积与边长的比是是一个不确定的值。

  (二)情境二

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

  2、请把下表填写完整。

  3、从表中你发现了什么规律?

  说说你发现的规律:路程与时间的比值(速度)相同。

  (三)小结

  一种量变化,另一种量也随着变化,并且它们的比值(也就是商)一定,我们就说两个量正比例。

  (四)想一想

  1.正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  师小结:

  (1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

  请你也试着说一说。

  (2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

  请生用自己的语言说一说。

  2、乐乐和爸爸的年龄变化情况如下:

  乐乐的年龄/岁67891011爸爸的年龄/岁3233

  (1)把表填写完整。

  (2)父子的年龄成正比例吗?为什么?

  (3)爸爸的年龄=乐乐的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

  活动二:练一练。

  1、判断下面各题中的两个量,是否成正比例,并说明理由。

  (1)轮船行驶的速度一定,行驶的路程和时间。

  (2)小新跳高的高度和他的身高。

  (3)小麦每公顷的产量一定,小麦的公顷数和总产量。

  (4)矿泉水瓶中喝掉的水和剩下的水。

  2、根据下表中平行四边形的面积与高相对应的数值,判断当底是6厘米的时候,它们是是成正比例,并说明理由。

  平行四边形的面积随高的变化而变化,即平行四边形的面积与高的比值不变,所以平行四边形的面积与高成正比例。(也可以用公式进行说明)

  3、圆的面积与半径成正比例吗?你是怎么想的?与同伴交流。

  4、分别举一个成正比例和一个不成正比例的例子,同桌相互说说。

  活动三:课堂小结

  教学目标

  1、进一步理解解比例的意义。

  2、掌握解比例的方法,会解比例。

  3、强调解比例的书写规范和计算中的灵活性,以提高同学们的审美能力和计算能力。

  教学重难点

  掌握解比例的方法,学会解比例。

  教学过程

  一、复习旧知。

  1、什么叫做比例?什么叫做比例的基本性质?

  2、根据比例的基本性质,将下列各比例改写成乘法等式。

  3∶8=15∶40

  二、探索尝试,解释交流。

  1、师:同学们,进行“物物交换”活动,看图你能找到哪些数学信息?根据这些信息你能提出什么问题?

  这个问题怎么解决?写出你的想法。

  师:假设14个玩具汽车可以换x本小人书,你能写出一个比例吗?这个比例中x是多少呢?请在小组内交流一下。

  (1)自己动脑写出想法。

  (2)小组交流。

  2、师:哪个小组展示本小组的想法。

  板书:4:10=14:x

  解:4x=140

  x=35

  答:14个玩具汽车可以换35本小人书。

  3、总结:

  师:在比例里,如果已知任何三项你能求出比例中的另外一个未知项?

  对,先写成乘法形式,再求出未知数的值。这种求比例中的未知项,叫做解比例。

  三、课堂练习

  1、解比例

  2、根据下面的条件列出比例,并解比例。

  (1)6和8的比等于36和x的比。

  (2)比例的两个内项是0。4和0。3,两个外项是6和x。

  (3)比例的第一项是4,第二项是8,第三项是x,第四项是10。

  四、总结:

  谈谈这节课的收获?

  点击查看更多:小学数学教案

  提醒:

  最新小升初政策、最新奥数试题、最全小学语文知识点

  尽在“”微信公众号

  苏教版六年级下册《空间与图形》数学教案

  苏教版六年级下册《空间与图形》数学教案

  【教学目标】

  1。通过复习使学生进一步掌握对称、平移、旋转、放大与缩小等图形变换的特征;学会运用对称、平移、旋转、放大与缩小的特征进行图形的变换。

  2。在丰富的现实情境中,经历观察、操作、欣赏、分析、想象、创作等数学活动过程,进一步发展学生的空间观念。

  3。通过欣赏图形变换所创造出的美,进一步感受对称、平移、旋转、放大与缩小在现实生活中的广泛应用,体会数学的文化价值,感受数学的美。

  4。在活动中培养学生合作、探讨、交流、反思的意识。

  【教学重点】

  进一步掌握对称、平移、旋转、放大与缩小的特征。

  【教学难点】

  综合运用对称、平移、旋转、放大与缩小的特征进行图形的变换,进一步发展学生空间观念。

  【教学过程】

  一、谈话引入。

  师:上节课我们一起整理复习了图形的认识与测量,这节课继续整理和复习图形与变换的知识。(揭示课题)

  二、回忆整理,再现旧知。

  1。欣赏图案:(出示课件)小精灵:“同学们好,今天我给大家带来了一些漂亮的图案,让我们一起来欣赏吧。!”(显示五个图案,分别为人教版“课标”教材小学数学五年级下册教科书第3页的京剧脸谱、第6页的紫荆花图案、第7页的花边图案,天安门图案、第五个图案是三个模样相同但大小不同的奥运福娃,依次从小到大排成一排。)

  讨论交流:你们能用数学的眼光来分析一下,在这些漂亮的图案中,发现了哪些数学概念?(同桌同学互相交流,教师巡视,适当参与学生活动)

  反馈交流:(教师根据学生回答演示动态课件)

  生1:花边图案是其中一个图案连续向右平移得到的。

  生2:京剧脸谱是经过轴对称变换得到的。

  生3:天安门城楼的图案是一个轴对称图形。

  生4:紫荆花的图案是其中一个花瓣绕中心点向逆时针方向旋转得到的。

  生5:三个大小不同,模样相同的奥运福娃是按比例放大缩小后得到的。

  教师根据学生回答板书:平移、轴对称、旋转、放大与缩小

  提问:誰能说说轴对称图形的特征?

  (设计意图:通过六年的学习,学生已在不同学段学习了图形变换的知识,所存在脑子中的也是一些零散的记忆,教师为学生提供丰富的图案素材,分别出示5幅观赏性强,并藏着不同的变换特征的图案,引导学生观察,让学生在欣赏图案的过程中对所学知识进行回顾再现,避免学生空想,不仅给学生以美的熏陶,激发学生的学习热情,同时体会图形的变换在生活中的广泛应用,对小学阶段所学的平移、轴对称、旋转、放大与缩小的特征系统地进行整理。在此过程中,感受我国的民族文化。)

  三、综合运用,复习旧知

  欣赏课本第104页板报花边图案。

  师:刚才我们欣赏的这些图案大多是设计师们设计的,瞧,这是一位同学利用图形的变换设计的板报花边,仔细观察,你们知道他利用了哪些变换的知识吗?(出示课件)

  学生在小组内讨论交流,教师巡视,适当参与学生活动。

  反馈交流:(教师根据学生回答演示动态课件)

  生1:他利用了平移的知识,把第一个图形连续向右平移5次就得到了这一排花边。

  生2:他利用了旋转的知识,首先在竖直方向,从上至下依次画好三个不同大小的等腰直角三角形,再将这一组三角形按顺时针方向依次旋转45度7次就得到了这个图案。

  生3:旋转的每一组三角形是依次按比例缩小排列的。

  生4:旋转的每一组三角形是轴对称图形。

  生5:其中的每幅图案是大小不同的三个正方形绕中心点旋转得到的。

  小结:这个板报的花边是综合运用了图形变换知识进行设计的。其实人们在生活中利用图形的变换可以设计出许许多多漂亮的图案,让我们至身于这缤纷多彩的世界之中。

  (设计意图:在上个环节中将所学图形变换的知识一一再现,回顾特征,这个环节中充分利用书上提供的板报花边图案,呈现的是图形与变换内容综合性的问题,让学生通过独立观察思考,小组合作交流图形变换的过程,并借助多媒体进行验证,发现这个图案综合运用了平移、轴对称、旋转、放大与缩小的知识,从整体上进一步掌握对称、平移、旋转、放大与缩小等图形变换的特征,再次感受到这些变换的魅力所在。)

  四、巩固提高,拓展思维

  1。做一做。

  要求:仔细观察,先独立思考,再在小组内互相交流想法。

  2。练习二十第1题。

  学生独立在书上完成,教师巡视指导,全班交流汇报。

  小结:有的轴对称图形的对称轴只有一条,有的不只一条。

  3。练习二十第3题。

  要求:先独立想一想,如果还不能解决,在小组内可以利用学具转一转。(教师巡视、指导。)

  反馈:教师利用多媒体课件进行反馈

  (设计意图:针对不同层次的学生提出不同的要求,让空间感较弱的学生通过学具的操作和多媒体课件的演示,知道旋转可使一个平面图形变成立体图形,切身体会到变换的趣味性和数学的好玩,让学生在玩中学,玩中悟。)

  4。练习二十第6题。

  学生独立在书上完成,教师巡视指导,全班交流汇报时请学生演示是怎样画的。

  五、小小设计家。

  师:今天要请你们当一回小小设计家,利用图形的变换来设计一些你喜欢的图案,请同学们分小组选用学具开始设计,完成之后将你的设计方法说给小组的伙伴听听。学生在小组内活动,教师巡视参与学生活动,并及时交流。学生作图后展示作品,并张帖在黑板上全班欣赏交流。

  (设计意图:学以致用是现代素质教育的追求,也是成功学习的内在规律。本堂课最后,设计一个小小设计家的环节,把本课所复习的知识融入到生动有趣、乐此不疲的设计图案当中,不仅调动学生学习的积极性,更让学生经历数学知识的应用过程,在活动中一方面加深了对图形变换知识的认识,另一方面使学生进一步体会到图形的变换在生活中的广泛应用,领会数学的神奇与玄妙。)

  六、评价总结。

  师:通过今天的复习你有什么收获呢?如果有,把你的收获写下来和这节课的作品一起存进成长记录袋中。

  七、布置作业。

  练习二十第2题。

  苏教版六年级下册《求实际距离》数学教案

  苏教版六年级下册《求实际距离》数学教案

  教学目标:

  1、学会利用比例尺的知识求实际距离。

  2、使学生体会数学在实际生活里的应用,提高解决简单实际问题的能力。

  3、从实际生活入手,培养学生的思维能力。

  教学重点:

  进一步认识比例尺。

  教学难点:

  设未知数时对长度单位的正确使用。

  教学准备:

  教师准备多媒体课件。

  教学过程:

  复备

  一、创设情境,初步感知。

  1、谈话

  上一节课我们一起认识了比例尺?谁还记得什么是比例尺?

  2、教师提问

  在生活中你在那些地方看到过“比例尺”?让学生举例,并说一说比例尺前项、后项的倍数关系和比例尺的实际含义。

  【从生活中常见的例子导入新课,能发现比在生活中的应用,从中培养学生在生活中发现数学问题、提出问题的意识。】

  二、体验合作,自主探究

  1、出示信息窗2,学生观看大屏幕。

  提问:从屏幕中你获得哪些数学信息?

  (学生回答)你能提出什么数学问题?

  根据学生提出的问题,教师板书:雏鹰少年足球队需要几小时到达青岛?

  2.师:怎样解决雏鹰少年足球队从济南到达青岛时所用的时间?

  生可能会答道:

  (1)要用路程除以速度。

  (2)需要先求从济南到青岛的实际距离。

  (3)要求出实际距离,得先量出图上距离。

  师:同学们的想法很正确,下面请大家以小组为单位合作解决。(小组合作解答,教师巡视)

  3、汇报交流。

  师:哪个小组先说一说你们是怎样解答的?

  生:我们组先量出图上距离是4厘米,再用列方程解比例的方法求出实际距离,然后用“路程÷速度”求出时间。解法如下:

  解:设济南到青岛的实际距离为x厘米。

  根据“图上距离:实际距离=比例尺”,列方程为:

  4/x=1/8000000

  x=8000000×4

  x=32000000

  32000000厘米=320千米

  320÷100=3。2(小时)

  师:还有不同解法吗?

  可能会有学生这样解答

  4×8000000=32000000(厘米)=320(千米)

  320÷100=3。2(小时)

  师:说一说你们是怎样想的?

  教师对学生的精彩发言进行鼓励性评价。结合学生的发言,师生再共同完整的分析这一思考过程。

  教师在巡视时,注意挑选出完成较好学生的作品进行展示,其余学生在教师对同学进行评价的过程中找差距、修改、看齐。

  4、师:想想上面的几种解法,说说你喜欢哪种解法。为什么?

  【通过学生自主探索,探究多种方法,使学生在解题时放开思路,加深对数量关系的理解,灵活解答。】

  三、巩固练习,拓展应用。

  1、完成“自主练习”第1题

  2、完成“自主练习”第2题

  【利用不同的形式,不同的方法组织练习,使学生所学知识不仅得以巩固,而且得以运用。】

  四、全课总结

  请同学们说一说通过本节课的学习,你有哪些收获?

  【让学生相互了解彼此的见解,同时不断的反思自己的思考过程,体会学习的乐趣。】

  板书设计:

  求实际距离

  雏鹰少年足球队大约需要几小时到达青岛?根据“图上距离:实际距离=比例尺”,列方程为:解:设济南到青岛的实际距离为x厘米。

  1/8000000=4/x

  x=4×8000000

  x=32000000

  32000000厘米=320千米

  320÷100=3。2(小时)

  答:大约需要3。2小时到达青岛。

  《苏教版六年级下册《解比例》数学教案》

解比例教案2

  教学内容

  教科书第27页的第4~5题,练习六的第4~6题.

  教学目的

  1.进一步理解用比例知识解答应用题的方法,用比例的方法正确解答有关应用题.

  2.沟通整数、分数、比和比例等知识的联系,会用不同知识,从不同角度,多种方法解答有关应用题.

  3.通过一题多解,培养学生思维的变通性和灵活性.

  教具、学具准备

  自制多媒体课件.

  教学过程

  一、揭示课题

  今天我们复习用比例的知识解答应用题.

  二、回忆

  用比例解应用题,具体步骤有哪些呢?让学生互相说一说,再指名说,最后教师总结如下:

  (1)判断.概括出题中两种有关联的量,找出题中隐蔽的定量,从而确定两种相关联的量成什么比例.

  (2)设未知数x,列方程.如果成正比例关系,列式是:x∶y=x1∶y1;如果成反比例关系,列式是:xy=x1y1.

  (3)解方程.

  (4)验算.

  (5)答题.

  三、分层练习

  1.基本练习.

  (1)判断下面每题中的两种量成什么比例.

  ①速度一定,所行的路程和时间.

  ②一本书的总字数一定,每行的字数与行数.

  ③苹果的单价一定,购买的数量和总价.

  ④工作总量一定,工作效率和魇奔洌?/P>

  (2)实际运用.

  ①晶晶借了一本112页的`《安徒生童话》,她4天看了28页.以这样的速度,预计几天可以看完?

  学生独立练习后,小组内交流思考的过程,教师巡视指导.

  ②用一批纸装订同样大小的练习本,如果每本16张,可以装订300本.如果每本18张,可以装订多少本?

  学生独立练习后,小组内交流思考的过程,教师巡视指导.

  ③蚯蚓能消化许多垃圾,有人将7.5吨垃圾运到一个蚯蚓养殖厂,78天后,这些垃圾全部被消化了.这个养殖厂一年可以消化约多少吨垃圾呢?

  学生独立练习后,小组内交流思考的过程,教师巡视指导,此题有两种答案.

  2.综合练习.

  (1)一篇文章原稿每行30个字,共96行,如果改为每行32个字,一页纸35行的版式,那么这篇文章需打印多少行?共需几页纸?

  提醒学生理解题目的意思后再独立解答,然后全班交流,教师评价.

  解:设需打印x行.

  30×96=32x

  x=90

  90÷35=2(页)……20(行)

  答:这篇文章需打印90行,共需3页纸.

  (2)扬扬骑车从家经过游乐场到少年宫,全程需1.5小时,如果她以同一速度从家骑车直接到少年宫,可以省多少时间?

  学生独立解答后,先在小组内交流思考的过程,再在全班交流,教师评价.

  可能出现的答案有:

  (1)解:设从家直接到少年宫,要x小时. (2)解:设可以省x小时.

  (11+7)∶1.5=15∶x (11+7)∶1.5=15∶(1.5-x)

  18x=1.5×15 或 (11+7)∶1.5=(11+7-15)∶x

  18x=22.5 解答过程略.

  x=1.25

  1.5-1.25=0.25(小时)

  答:可以省0.25小时.

  3.发展练习.

  六(2)中队少先队员订《少年科学》杂志,全中队共交了792元,各小队订阅情况如下表,请用自己喜欢的方法算出各小队应交的钱数.

  第一小队 10本 ( )元

  第二小队 12本 ( )元

  第三小队 11本 ( )元

  学生独立用各种方法算,算完后互相交流各自的方法及思路,再在全班交流.

  可能的方法有:

  方法一:792÷(10+12+11)=24(元) 方法二:792×10/33=240(元)

  24×10=240(元) 792×12/33=288(元)

  24×12=288(元) 792×11/33=264(元)

  24×11=264(元) 答(略).

  答(略).

  方法三:解:设第一小队应交x元.

  792∶(10+12+11)=x∶10

  x=240

  答(略).

解比例教案3

  教学目的:

  1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

  2、通过合作交流、尝试练习,提高学生运用比例的基本性质解比例的能力。

  3、培养学生的知识迁移的能力,增强学生的合作意识。

  教学重点:使学生掌握解比例的方法,学会解比例。

  教学难点:引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

  教学过程:

  一、回顾旧知,复习铺垫

  1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

  2、判断下面每组中的两个比是否能组成比例?为什么?

  6:3和8:4

  3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)

  二、引导探索,学习新知

  1、什么叫解比例?

  我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

  2、教学例2。

  (1)把未知项设为X。解:设这座模型的高是X米。

  (2)根据比例的意义列出比例:X:320=1:10

  (3)让学生指出这个比例的外项、内项,并说明知道哪三项,求哪一项。

  根据比例的基本性质可以把它变成什么形式?3x=8×15。

  这变成了什么?(方程。)

  教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的.值。因为解方程要写“解:”,所以解比例也应写“解:”。

  (4)学生说,教师板书解比例的过程。

  教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

  3、教学例3。

  出示例3:解比例=

  提问:“这个比例与例2有什么不同?”(这个比例是分数形式。)

  这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?

  学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6

  让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。

  4、解比例的过程。

  刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

  变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

  从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

  5、p35“做一做”。学生独立解答,订正时,让学生说说是怎么做的。

  三、巩固深化,拓展思维

  p37第7题。

  四、全课,提高认识

  什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?

  五、课堂练习,辅助消化

  p37~38第8~11题。

  六、课外补充,拓展延伸

  1、p38第12、13题。

  2、4:8=12:24,如果将第二项减少1,要使比例成立,则第四项减少多少?

  3、把两个比值都是的比组成比例,已知比例的两个内项都是15,请分别求出这个比例的两个外项,并写出比例。

解比例教案4

  教学重点:

  比例尺的意义。

  教学难点:

  将线段比例尺改写成数值比例尺。

  教学过程:

  一、引入

  教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?

  请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。

  二、教学比例尺的意义。

  1.什么是比例尺(自学书上内容,学生交流汇报)

  出示图例1

  在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

  2.介绍数值比例尺

  让学生看图。

  “我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000,表示图上距离1厘米相当于实际距离100000000厘米。

  3.介绍线段比例尺

  还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。”

  4.介绍放大比例尺

  出示图例2

  “在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。“

  学生看图,“你知道比例‘2:1’表示什么意思吗?这也是一个比例尺,图上距离与实际距离的比是2:1

  比较这个比例尺与上面的比例尺有什么相同点,什么不同点。

  相同点:都表示图上距离与实际距离的比。

  不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。

  5、总结

  比例尺书写特征。

  (1)观察:比例尺1:100000000

  比例尺1/5000000

  比例尺2:1

  (2)看一看,比例尺书写形式有什么特征。

  为了计算方便,通常把比例尺写成前项或后项是1的比。

  6、比例尺的化简和转化

  “我们再看一下北京地图上的这个线段比例尺,这里图上距离:实际距离=1厘米:50千米,你会把这个线段比例尺转化成数值比例尺吗?”

  说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。

  “是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作

  “50千米等于多少厘米?”学生回答后,教师把50千米改写成5000000厘米。

  “现在单位统一了,是多少比多少,怎样化简?”

  图上距离:实际距离=1:5000000

  教师出示比例尺不同的地图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。

  最后教师指出

  ①比例尺与一般的尺不同,这是一个比,不应带计量单位。

  ②求比例尺时,前、后项的长度单位一定要化成同级单位。如10厘米:10米,要把后项的米化成

  ③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。

  三、巩固练习

  1、做一做。

  过程要求

  (1)学生独立完成。(要求写出数值比例尺)

  (2)同学之间互相交流。

  (3)汇报交流结果。

  2、完成课文练习八第1~3题。让学生完成第48页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“1”。

  四、课堂小结

  (本课要点:1、比例尺的意义;2、线段比例尺和数值比例尺的互化;3、注意单位名称的改写,如把千米和厘米的换算就是扩大或缩小100000倍的关系。)

  教学目标:

  1、理解比例的意义,会根据比例的意义组成比例。

  2、经历引导学生参与知识的形成过程,发现过程和运用过程,体验数学与日常生活的紧密联系。

  3、感受生活中处处有数学,激发学习数学的兴趣。

  教学重、难点:理解比例的意义。

  教学方法:自主合作,讨论交流。

  教学过程:

  一、复习旧知,目标展示。

  1、上学期,我们学习了有关比的知识,你能说说什么是比吗?举例说明比各部分的名称。

  2、今天,我们要在比的基础上学习一个新知识(板书:比例)。

  3、看到这个数学新名词——比例,你的脑子里产生出哪些问题?

  【老师有选择地板书如:什么是比例(或比例的意义),比例的组成及名称,比和比例的`区别等。】

  4、同学们提的这些问题都很有价值。这节课,我们就来研究这些问题。

  二、合作交流,探究新知。

  〈一〉教学比例的意义。

  1、我们从学习数学开始,几乎天天都用到等号,你能说出几个含有等号的式子吗?说说等号在式子中的作用是什么?(连接左右两边相等的两部分)

  2、自主探究,初步形成印象。

  (1)两个比相等可以用等号连接吗?

  (2)你能在练习本上写出两个可以有用等号连接的比吗?

  (3)和你小组内同学交流你写出的式子,并说明理由。

  (4)学生汇报。

  3、形成概念。

  (1)像黑板上我们所列出的这些式子叫做比例。

  (2)你能用自己的话说说什么是比例吗?

  (3)老师小结:表示两个比相等的式子叫做比例。

  4、深化概念,巩固练习。

  (1)你认为组成比例的关键是什么吗?(两个比的比值相等)

  (2)你能抓住这个关键写几个比例式吗?(2分钟的时间看谁写得多,并且和别人的不一样。)

  〈二〉教学比例各部分的名称。

  1、比例各部分有自己的名称?你知道吗?

  (预设:学生如果不清楚的话,教师说明比例各部分的名称)

  2、找出黑板上这几个比例的内、外项。

  3、比可以写成分数的形式,比例也可以写成分数形式。

  (1)把黑板上的这几个比例式写成分数形式。(先小组讨论,再全班交流)

  (2)找出它们的内、外项。

  (3)你发现什么规律了吗?

  〈三〉比和比例的区别。

  1、小组讨论、交流。

  2、全班交流。

  3、小结:比例是由两个相等的比组成的式子。比例有4项,比有2项。

  三、巩固练习。

  1、填空。

  (1)、表示()的式子叫做比例。

  (2)、判断两个比能否组成比例,要看它们的()是不是相等。

  (3)、写出比值是的两个比():()和():(),写成比例是()。

  (4)、选取48的4个因数组成一个比例是()。

  2、课本32页国旗尺寸成比例吗?

  3、课本33页“做一做”第2题。(用右图中的4个数据可以组成多少个比例?)

  (1)学生独立思考后,小组交流。

  (2)全班交流。

  (3)教师引导:比例的变化有规律可循吗?若有能用已学的知识解释吗?如不能解释,课后请预习课本34页。下节课我们就来研究这个问题。

解比例教案5

  教学内容:教材第32页例2、例3,练一练和试一试练习六第6-11题,练习六后的思考题。

  教学要求:

  1、使学生认识解比例的意义,学会应用比例的基本性质解比例。

  2、使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。

  教学过程:

  一、复习引新

  1、做第32页复习题。

  让学生先思考可以怎样想。根据思考的方法在括号里填上数。

  2、根据比例的基本性质把下面的比改写成积相等的式子。(日答)

  4:3=2:1.5X:4=1:2

  3、引入新课

  在上面两题里,第1题是求比例里的未知项。从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例里另外一个未知数,这种求比例里的未知项,就叫做解比例。

  现在,我们就应用比例的.基本性质来解比例。

  二、教学新课。

  1、教学例2

  提问:你能用比例的基本性质来解比例,求出未知项X吗?自己先想一想,有没有办法做,再试着做做看。

  指名一人板演,其余学生做在练习本上。

  2、教学例3

  出示例题,让学生用比例形式读一读。

  让学生解答在自己的练习本上。

  指名口答解比例过程,老师板书。

  3、教学试一试

  出示例3,提问已知数都是怎样的数。

  让学生自己解答。

  4、小结方法。

  三、巩固练习。

  1、做练一练

  指名四人板演。

  2、做练习六第8题。

  让学生做在课本上,指名口答。

  3、做练习六第10题。

  学生做在练习本上。

  4、做练习六第11题。

  学生口答,老师板书,看能写出多少个比例。

  四、讲解思考题。

  提问:根据题意,两个外项正好互为倒数,你想到什么?

  两个外项的积已知是1,你能求另一个内项吗?

  五、课堂小结

  这堂课学习的什么内容?应用比例的基本性质怎样解比例?

  六、课堂作业。

  练习六第6题(1)-(4)题,第7题。

  家庭作业:练习六第6题(5)、(6)题,第9题和思考题。

解比例教案6

  本资料为WORD文档,请点击下载地址下载全文下载地址 用比例知识解应用题

  一、教学内容:

  P113例5,练习二十三。

  二、教学目标:

  使学生进一步认识正反比例应用题的特点,理解并掌握解答正反比例应用题的解题思路和解题方法。

  三、教学重点:

  使学生学会正确的解答正反比例应用题。

  四、教学难点:

  进一步培养学生应用知识进行分析、推理的能力,发展学生的思维。

  五、教具准备:

  小黑板。

  六、教学过程:

  教学过程自我增减

  一、复习:

  1、判断比例关系练习

  出示一块小黑板,指名学生回答下列数量关系是否成比例,成什么比例?并说明理由。

  (1)、汽车行驶的速度一定,行驶的路程与行驶的时间。( )

  (2)、把一袋大米平均分装成小袋,每小袋装的数量与装的袋数。( )

  (3)、一段公路的长度—定,已经修完的长度与还没有修的长度。( )

  (4)、总产量一定.每天的产量与生产的天数。( )

  (5)、一本书的单价一定,售出的本数与总价。( )

  (6)、长方形的面积一定,它的长与它的宽。( )

  2、说出这两种量成什么比例,并列出相应的等式。

  (1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

  (2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行X小时。

  二、复习用正比例知识解答应用题

  1、教师出示

  例5:“修一条公路,总长12千米。开工3天修了1.5千米。照这样计算,修完这条公路还要多少天?”

  问:这道题可以怎样解答?题中的数量关系能否成比例?如果成比例,成什么比例?

  生:分析、讨论、交流并汇报。

  师:巡视并提醒学生,题里问的是修完这条公路还要多少天?而不是求一共用多少天。在设未知数时要怎样设?列方程时应当怎样列?”

  (1)、学生动脑想、动手试做。

  (2)、学生相互交流并说解题思路。

  (3)、教师分析并讲解解题思路。

  ①设修完这条公路还要X天: ②设修完这条公路一共要X天。

  = (直接设未知数) = (间接设未知数)

  (4)、分析比较两种不同的'解法。

  —是在列方程时,要使等式的每一边都是对应的量相比。如,在第(1)种解法中,等式右边的分母是修完这条公路还要用的天数x。上面的分子就要用还要修的长度来对应是l2-1.5而不是12。

  二是在第(2)种解法中,列方程求出的是一共要用多少天,还要减去已经修的3天,才是还要多少天。

  2、引导学生用算术解解答。能用几种方法?讲出每种方法的解题思路。

  3、与算术方法解答联系对比。

  教师概括:“用正比例关系解答的应用题,就是以前我们学过的‘归一问题’。如果题目中没有限定解法。用哪种方法解答都可以。

  三、复习用反比例知识解答应用题

  例:一艘轮船从甲港驶往乙港,每小时航行25千米,12小时到达。如果每小时多航行5千米,多少小时可以到达乙港?

  教师引导学生分析题意,学生尝试做题。

  四、课堂练习。

  1、做练习二十三的第1、2、3题。

  做题时先让学生判断题中的数量关系成不成比例?如果成比例,成什么比例?”

  教师巡视,个别指导。如果有时间,还可以指名学生说一说解题思路和方法。

  五、总结。

  谈谈这节课你的收获?

  六、布置作业:

  练习二十三的第4、5、6、7题。

  自我加减

解比例教案7

  教学目标

  1、通过自主尝试学会解比例的方法,进一步理解和掌握比例的基本性质。 2、能运用解比例的方法解决实际问题。教学重点掌握解比例的方法,学会解比例。教学难点引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

  教学重难点

  教学重点掌握解比例的方法,学会解比例。

  教学难点引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

  教学过程

  一、创设情境

  上节课我们学习了一些比例的意义,谁能说一说

  1、什么叫比例?

  表示两个比相等的式子叫比例。

  2、比例的基本性质是什么?

  在比例里,两个外项的积等于两个内项的积。

  3、应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

  6︰10和9︰15 ( )

  20︰5和4︰1 ( )

  5︰1和6︰2 ( )

  4、根据比例的基本性质,将下列各比例改写成其他等式。

  3 : 8 = 15 : 40 3×40=8×15

  9/1.6=4.5/0.8 9×0.8=1.6×4.5

  5、这节课我们学习有关比例的应用的知识,即学习解比例。(板书课题,)

  二、引导探索,学习新知

  1、自学:什么是解比例?请看书第35页

  比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

  课件出示:法国巴黎的埃菲尔铁搭高320米。它不仅是一座吸引游人观光的纪念塔,还是巴黎这座具有悠久历史的美丽城市的象征

  2、自主学习例2。

  法国巴黎的埃菲尔铁搭高320米。北京的“世界公园”里有一座埃菲尔铁搭的模型,模型的高度与原塔高度的比是1:10.这座模型的高度是多少米?

  出示思考题:

  思考:

  (1)、埃菲尔铁搭模型的高与埃菲尔铁搭的高度的比是1:10。

  也就是( )的高度:( )的高度=1:10

  (2)、题中还告诉了我们什么条件?3、把这个条件换到这个关系式中就是:( ):320=1:10这样在组成比例的四个项中我们知道其中的几个项?

  还有几个项不知道?不知道的这个项我们把它叫做( )项。

  小组内讨论解决问题,汇报:

  (1)把未知项设为X。

  (2)根据比例的意义列出比例:(X:320=1:10 )

  (3)指出这个比例的外项、内项,弄清知道哪三项,求哪一项。

  (4)根据比例的.基本性质可以把它变成什么形式?

  (5)这变成了原来学过的什么?(方程。)

  (6)让学生自己在练习本上计算完整。课件出示计算过程。

  小结:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x,所以解比例也要写“解”字。

  解比例的步骤是:

  (1)、用比例的基本性质把比例改写成方程。

  (2)、应用解方程的知识算出未知数。

  3、教学例3。

  出示例3:

  思考:

  (1)“这个比例与例2有什么不同?”(这个比例是分数形式。)

  (2)这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?

  讨论:

  (1)解这种分数形式的比例时,要注意什么呢?

  (2)在这个比例里,哪些是外项?哪些是内项?

  学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.5×6

  让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。课件出示计算过程。

  课件出示:做一做,独立完成后订正。

  4、总结解比例的过程。

  刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

  变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

  从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

  三、巩固应用:

  (一)、填空。

  1、解比例x:12=2 : 24第一步24X=12×2是根据( )。

  2、把0、3 : 1、2=0、2 : 0、8可改写成

  ( )×( )=( )×( )

  3、把4×5=10×2改写成比例是( ) :( )=( ) : ( )

  4、若甲:乙=3 : 5,甲=30,则乙=( )

  5、在比例中,如果两个内项的积上36,其中一个外项是9,

  另一个外项是( )

  (二)、判断下列的说法是否正确。

  1、含有未知数的比例也是方程。 ( )

  2、求比例中的未知项叫解比例。 ( )

  3、解比例的理论依据是比例的基本性质。 ( )

  4、比就是比例,比例也是比。 ( )

  (三)、根据题意,先写出比例,再解比例。

  1、8与X的比等于4与32的比。

  2、14与最小的质数的比等于21与X的比。

  四、课堂总结:

  今天你有什么收获?指生说收获。老师小结。

解比例教案8

  教学目标:

  使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

  教学重点:

  学会解比例。

  教学难点:

  掌握解比例的书写格式。

  教学过程:

  一、铺垫孕伏

  1.解下列简易方程,并口述过程。

  2.什么叫做比例?比例的基本性质是什么?

  3.应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?

  6∶10和9∶15 20∶5和4∶1 5∶1和6∶2

  4.根据比例的基本性质,将下列各比例改写成其它等式。

  二、教学新课

  1.出示例5

  (1)审题,帮助学生理解题意。提问:怎样理解“把照片按比例放大”这句话?

  (放大前后的相关线段的长度是可以组成比例的)。

  (2)如果把放大后照片的宽设为X厘米,那么,你能写出哪些比例?

  引导学生写出含有未知数的'比例式。

  告诉学生:“像上面这样求比例中的未知项,叫做解比例。

  (3)讨论:怎样解比例?根据是什么?

  (4)思考:“根据比例的基本性质可以把比例变成什么形式?”

  教师板书:6x=13.5×4。 “这变成了什么?”(方程。)

  教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。(在6x前加上“解:“)

  (5)让学生把解比例的过程完整地写出来。指名板书。

  2.总结解比例的过程。

  提问:“刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?再怎么做?” (先根据比例的基本性质把比例变成方程。再根据以前学过的解方程的方法求解。)

  “从上面的过程可以看出,在解比例的过程中哪一步是新知识?”

  (根据比例的基本性质把比例变成方程。)

  3.补充练习:

  利用比例的基本性质,把下列比例改写成含有未知数的等式。(投影出示,由学生独立完成后汇报。

  )

  三、全课小结:

  1.通过本课的学习,你有哪些收获?

  2.这节课我们学习了解比例。想一想,解比例的关键是什么?

  (根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可。

解比例教案9

  教学内容:P35~37 解比例

  教学目的:

  1、使同学学会解比例的方法,进一步理解和掌握比例的基本性质。

  2、通过合作交流、尝试练习,提高同学运用比例的基本性质解比例的能力。

  3、培养同学的知识迁移的能力,增强同学的合作意识。

  教学重点:使同学掌握解比例的方法,学会解比例。

  教学难点:引导同学根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。

  教学过程:

  一、回顾旧知,复习铺垫

  1、上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

  2、判断下面每组中的两个比是否能组成比例?为什么?

  6:3和8:4 : 和 :

  3、这节课我们继续学习有关比例的知识,学习解比例。(板书课题)

  二、引导探索,学习新知

  1、什么叫解比例?

  我们知道比例共有四项,假如知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

  2、教学例2。

  (1)把未知项设为X。解:设这座模型的`高是X米。

  (2)根据比例的意义列出比例:X:320=1:10

  (3)让同学指出这个比例的外项、内项,并说明知道哪三项,求哪一项。

  根据比例的基本性质可以把它变成什么形式?3x=815。

  这变成了什么?(方程。)

  教师说明:这样解比例就变成解方程了,利用以前学过的解方程的方法就可以求出未知数X的值。因为解方程要写“解:”,所以解比例也应写“解:”。

  (4)同学说,教师板书解比例的过程。

  教师:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

  3、教学例3。

  出示例3:解比例 =

  提问:“这个比例与例 2有什么不同?”(这个比例是分数形式。)

  这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?

  同学回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边,然后板书:1.5X=2.56

  让同学在课本上填出求解过程。解答后,让他们说一说是怎样解的。

  4、总结解比例的过程。

  刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

  变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

  从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

  5、P35“做一做”。同学独立解答,订正时,让同学说说是怎么做的。

  三、巩固深化,拓展思维

  P37第7题。

  四、全课小结,提高认识

  什么叫解比例?解比例的根据是什么?解比例的书写格式应注意什么?

  五、课堂练习,辅助消化

  P37~38第8~11题。

  六、课外补充,拓展延伸

  1、P38第12、13题。

  2、4:8=12:24,假如将第二项减少1,要使比例成立,则第四项减少多少?

  3、把两个比值都是 的比组成比例,已知比例的两个内项都是15,请分别求出这个比例的两个外项,并写出比例。

  4、一个比例的四个项都是大于0的整数,它的两个比的比值都是 ,且第一项比第二项少3,第三项是第一项的3倍。请写出这个比例。

解比例教案10

  教学过程:

  一、导人新课

  教师:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识。这节课我们要学习解比例。(板书课题)

  二、新课

  1、自学解比例。

  (1)学生自学教材35页的解比例。

  (2)学生交流解比例的意义。

  (3)教师归纳:(出示课件)

  我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。

  2、教学例2。

  出示例2。

  (1) 学生读题,理解题目里的条件和问题。

  (2) 学生试着解答此题,一名学生演板。

  (3) 师生共评。

  (4) 归纳用比例解应用题的方法:

  A. 设出题目中要求的未知量为x;

  B. 根据比例的意义列出比例;

  C. 运用比例的基本性质解比例;

  D. 检查、写答语。

  (5)试一试:完成练习六第8题。

  3、自学例3。

  (1)学生独立把例3补充完整。

  (2)学生口述解答过程和解答依据。(根据比例的基本性质,把等号两端的分子和分母分别交叉相乘,就得出方程,再解方程。)

  教师说明:这样解比例就变成解方程了。利用以前学过的解方程的方法就可以求出求知数x的值。因为解方程要写解:,所以解比例也应写解。

  从刚才解比例的过程。可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x。

  4、总结解比例的过程。

  提问:

  (1)刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)

  (2)变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)

  (3)从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的'基本性质把比例变成方程。)

  5、完成第35页的做一做。

  学生独立解答,订正时,让学生说说是怎么做的。

  三、巩固练习

  做练习六的第7、9、10题。

  四、学有余力的学生做第12*、13*题。

  傲第12*题的第(1)题。教师可以这样引导学生:这道题需要逆用比例的基本性质。比例的基本性质是:在一个比例里。两个内项的积等于两个外项的积:现在这道题是知道两个积相等,如果我们把左边的两个数当作比例的外项,那么右边的两个数就应作为比例的内项。这样就能推出比例式了:如果把左边的两个数当作比例的内项。那么右边的两个数就应作为比例的外项。世可以推出比例式。然后让学生自己写出比例式。写完后,教师板书出来。如果把3、40作为外项,有下面这些比例式:

  3:8=15:40 40:15=8:3

  3:15=8:40 40:8=15:3

  如果把3、40作为内项,有下面这些比例式:

  15:3=40:8 8:40=3:15

  15:40=3:8 8:3=40:15

  可能有的学生写比例式时是按照数的排列规律来写的,有些可能没什么规律性。 学生做完后,可以通过讨论,使学生明确要按一定的顺序来写才能写全所有的比例式。

解比例教案11

  教学目标

  1.使学生理解解比例的意义.

  2.使学生掌握解比例的方法,会解比例.

  教学重点

  使学生掌握解比例的方法,学会解比例.

  教学难点

  引导学生根据比例的基本性质,将比例改写成两个内项积等于两个外项积的形式,即已学过的含有未知数的等式.

  教学过程

  一、复习准备

  (一)解下列简易方程,并口述过程.

  2=8×9

  (二)什么叫做比例?什么叫做比例的基本性质?

  (三)应用比例的基本性质,判断下面哪一组中的两个比可以组成比例?

  6∶10和9∶15 20∶5和4∶1 5∶1和6∶2

  (四)根据比例的基本性质,将下列各比例改写成其他等式.

  3∶8=15∶40

  二、新授教学

  (一)揭示解比例的意义.

  1.将上述两题中的任意一项用来代替(可任意改换一项),讨论:如果已知任何三项,可不可以求出这个比例中的另外一个未知项?说明理由.

  2.学生交流

  根据比例的.基本性质,如果已知比例中的任何三项,就可以把它改写成内项积等于外项积的形式,通过解已学过的方程,就可以求出这个比例中的另外一个未知项.

  3.教师明确:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另一个未知项.求比例中的未知项,叫做解比例.

  (二)教学例2.

  例2.解比例3∶8=15∶

  1.讨论:如何把这个比例式变为已学过的含有未知数的等式,并求出未知数的解.

  2.组织学生交流并明确.

  (1)根据比例的基本性质,可以把比例改写为:3=8×15.

  (2)改写时,含有未知项的积一般要写在等号的左边,再根据以前学过的解简易方程的方法求解.

  (3)规范并板书解比例的过程.

  解:3=8×15

  =40

  (三)教学例3

  例3.解比例

  1.组织学生独立解答.

  2.学生汇报

  三、全课小结

  这节课我们

  学习

  了解比例.想一想,解比例的关键是什么?(根据比例的基本性质将比例式转化成已学过的简易方程),然后再解简易方程即可.

解比例教案12

  教学目标

  1.复习正反比例的意义,练习判断两种相关联的量成正比例还是成反比例。

  2.复习用正比例方法解答应用题。

  3.复习用反比例方法解答应用题。

  教学重点和难点

  判断两种相关联的量成什么比例;确定解答应用题的方法。

  教学过程设计

  (一)复习数量关系

  判断两种相关联的量成不成比例,确定解答应用题的方法。

  1.被除数一定,除数和商。

  2.一条路,已修的和未修的。

  3.梯形的上、下底长度一定,梯形的面积和它的高度。

  4.每块砖的面积一定,砖的块数和铺地面积。

  5.挖一条水渠,参加的人数和所需要的时间。

  6.从甲地到乙地所需的时间和所行走的速度。

  7.单位面积一定,播种面积和总产量。

  8.时间一定,速度和距离。

  9.订阅《北京儿童》的份数和所需钱数。

  (二)复习应用题

  1.某工厂八月份计划造一批机床,开工8天就造了56台,照这样速度到月底可生产多少台?

  第一步,先找对应关系:

  8天56台

  31天?台

  第二步,判断成什么比例?(每天生产的台数一定,成正比例。)

  请你在对应关系的旁边写上正字,决定用正比例方法做。

  解 设到月底可生产x台。

  x=217

  答:照这样速度月底可生产217台。

  2.一批纸张,钉成20页一本的练习本,能钉600本。如果钉成24页一本的练习本,能钉多少本?

  第一步,先找对应关系:

  20页600本

  24页?本

  第二步,判断成什么比例?(纸张总页数一定,成反比例。)

  请你在对应关系的旁边写上反字,决定用反比例方法做。

  解 钉成24页一本的练习本,可钉x本。

  24x=20600

  x=500

  答:如果钉成24页一本的练习本可钉500本。

  学生独立地用老师教的分析应用题的思路和方法在本上做两道题。

  (1)火车3小时行135千米,用同样的速度5小时可以行多少千米?

  (2)有一批砖,25人去搬,6小时搬完,如果30人去搬,需要多少小时搬完?

  (三)练习解答两步的比例应用题

  1.李涛读一本书,每天读6页,30天可以读完。如果每天多读4页,多少天可以读完?

  黑板上的对应关系变成:

  解 设x天读完。

  (6+4)x=630

  10x=630

  x=18

  答:18天可以读完。

  2.在第1题的基础上,改变问题。

  李涛读一本书,每天读6页,30天可以读完,如果每天多读4页,提前几天读完?

  对应关系:

  解 设如果每天多读4页,x天读完。

  (6+4)x=630

  10x=630

  x=18

  30-18=12(天)

  答:提前12天读完。

  (指导学生分析、比较。)

  以上两道题,什么发生了变化?什么没有变?(条件和问题发生了变化,使原来的题复杂了一步,但用反比例解的方法没有变。)

  练习(学生独立分析,做题。)

  1.一辆汽车从甲城开往乙城,3小时行驶105km。用同样的速度又行驶了1.2h到达乙城,甲城到乙城有多少千米?

  解 设甲城到乙城有x千米。

  3x=105(3+1.2)

  x=147

  答:甲城到乙城有147km。

  2.光明乡有144公顷水稻,5天收割了90公顷,照这样计算,剩下的几天可以收割完?

  解 设剩下的x天可以收割完。

  90x=554

  x=3

  答:剩下的3天可以收割完。

  (再用间接设的方法做两道题。)

  1.纺织厂的织布车间过去每人看16台织布机,每班需要42人,现在改进操作方法,每人看24台。每班可以节约几人?

  1642=24x

  42-x

  2.某机器厂原计划每天生产机器48台,15天可以完成任务,现在要12天完成任务,每天应增产多少台?

  12x=4815

  x-48

  (四)总结

  这节课我们主要复习了解正、反比例应用题的分析、思考方法。拿到应用题不要急于先做,要先读题,找出对应关系,判断是正比例还是反比例,就可以正确解答了。

  课堂教学设计说明

  解答正、反比例应用题是有其独特的思考方法的',所以在教案的设计上重点放在指导、解答正反比例应用题的思考方法上。

  第一层次,先做判断练习,判断两个相关联的量是否成比例,成什么比例,因为这是正确解答正反比例应用题的基础。

  第二层次,进行最基本的正反比例应用题的训练,着重训练学生怎样找对应关系,如何正确判断,然后再动笔做题,目的是培养学生良好的学习习惯和学习方法。

  第三层次,进行间接设的正、反比例应用题的训练,目的是在原来分析问题的基础上,使学生的思维更高一步。

解比例教案13

  一,教学目标

  1、理解解比例的意义,掌握解比例的方法,会正确的解比例,能根据比例的意义列比例解决实际问题。

  2、学会应用比例的意义和基本性质解决实际问题。

  二,教学重点:

  掌握解比例的方法,会解比例。

  三,教学难点:

  应用比例的意义和基本性质解决生活中的实际问题。

  四,教学预设:

  (一)、自学反馈

  1、什么叫做解比例

  2、我国国旗的长与宽的比是3:2,如果我们学校的国旗长是240厘米,求我们学校国旗的宽是多少厘米?

  (1)你会解答吗?独立解答后,同桌间相互说说想法。

  (2)反馈交流

  ①240÷3×2=160(厘米)

  ②解:设我们学校国旗的宽是 厘米。

  240:=3:2

  3 =240×2

  =240×2÷3

  =160

  答:我们学校国旗的宽是160厘米。

  (3)你是怎么想的?

  (二)、关键点拨

  1、用比例解决实际问题

  (1)你明白第二种解法的意思吗?

  (2)国旗长和宽的最简整数比和实际长度比可以组成比例,所以可以把国旗的宽设为 厘米,建立比例240:=3:2,再通过解比例求出 的值。

  (3)小结:这种方法叫做用比例解决实际问题。

  2、解比例的`方法

  (1)你是怎样解比例240:=3:2的?

  (2)根据比例的意义,先求出3:2的比值,把比例转化为方程,再求 的值。

  (3)根据比例的基本性质“两个外项的积等于两个內项的积”把比例转化为方程,再求出 的值。

  (4)怎样才可以确定 的值是正确的?(检验)

  (5)你更喜欢哪种解法?为什么?

  (三)、巩固练习

  1、解下面的比例

  :10= : 0.4:=1.2:2 =

  2、把左边的三角形按比例缩小后得到右边的三角形,求未知数X。(单位:厘米)

  学生独立完成,汇报交流。

  3、小丽调制了两杯蜂蜜水,第一杯用了25毫升蜂蜜和200毫升水;第二杯用了30毫升蜂蜜和250毫升水。

  (1)分别写出每杯蜂蜜水中蜂蜜和水体积的比,看它们能否成比例。

  (2)照第一杯蜂蜜水中蜂蜜和水的比计算,300毫升水中应加入蜂蜜多少毫升?

  学生回答第一个问题,板书。再让学生观察是否能成比例。

  分析:第一个问题应该说比较简单,比分别是25:200和30:250。

  (四)、分享收获畅谈感想

  这节课,你有什么收获? 听课随想

解比例教案14

  教学要求:

  1、使学生认识解比例的意义,学会应用比例的基本性质解比例。

  2、使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。

  教学重点:认识解比例的意义。

  教学难点:应用比例的基本性质解比例。

  教学过程:

  一、复习引新

  1.做第32页复习题。

  出示复习题。让学生先思考可以怎样想。[可以用求已知比比值的方法来确定里的数;也可以用比的基本性质,把已知的一个比的前项、后项同时扩大。]让学生根据思考的方法在括号里填上数。指名口答结果,老师板书括号里的数。

  2.根据比例的基本性质把下面的比例改写成积相等的式子。(口答)

  4:3=2:1.5=x:4=1:2

  提问;根据积相等的式子,你能求出最后一题里的x吗?

  3.引入新课。

  在上面两题里,第1题是求比例里的未知项。(板书:求比例里的未知项)从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例里的未知项,就叫做解比例。(板书课题)现在,我们就应用比例的基本性质来解比例。

  二、教学新课

  1、教学例2。

  出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。

  2、教学例3。

  出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。

  3、教学“试一试”。

  提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。

  4、小结方法。

  提问:你认为根据比例的`基本性质要怎样解比例?

  三、巩固练习

  1、做“练一练”。

  指名四人板演。其余学生分两组,每组两道题,做在练习本上。

  2、做练习六第8题。

  让学生做在课本上,指名口答。

  3、做练习六第l0题。

  学生分两组,每组一题,做在练习奉上。要求写出检验过程。指名口答x的值和检验过程,老师板书检验过程。并说明检验时把x代入原来的比例,看两边比的比值是否相等。

  4、做练习六第11题。

  学生口答、老师板书,看能写出多少个比例。

  四、讲解思考题

  提问:根据题意,两个外项正好互为倒数,你想到什么?(积是1)两个外项的积已知是1,你能求另一个内项吗?

  五、课堂小结

  这堂课学习的什么内容?应用比例的基本性质怎样解比例,

  六、布置作业

  课堂作业:练习六第6题第(1)~(4)题,第7题。

  家庭作业:练习六第6题第(5)、(6)题,第9题和思考题。

  教学目标:

  1、使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,

  2、使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。

  3、培养学生的判断分析推理能力。

解比例教案15

  教学目的:

  学会解比例的方法,进一步理解和掌握比例的基本性质。教学重点:解比例的方法。教学难点:解比例的方法。

  教学过程:

  (一)、复习铺垫:上节课我们学习了一些比例的知识,谁能说一说什么叫做比例?比例的基本性质是什么?应用比例的基本性质可以做什么?这节课我们还要继续学习有关比例的知识。让我们一起来学习解比例。板书课题:解比例什么叫做解比例呢?我们知道比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。

  (二)、学习探索:你会用什么方法呢?(要根据比例的基本性质来解。)

  1、教学例2。出示例2:解比例 3:8=15:X。根据比例的基本性质可以把它变成什么形式?教师板书:3X=815。问:这变成了什么?(方程。)这样解比例就变成解方程了。利用以前学过的解方程的方法就可以求出求知数x的值。因为解方程要写解:,所以解比例也应写解:(在3X前加上:解:)问:怎样解这个方程?教师适当补充(根据乘法各部分间的关系,把X看作一个因数,因为一个因数=积另一个因数,可以求出X。)和解题的技巧:板书;X= X=40从刚才解比例的过程。可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的.方法来求未知数x。

  2、教学例3。出示例3:解比例 = 提问:这个比例与例2有什么不同?(这个比例是分数形式:)这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?(能,根据比例的基本性质,把等号两端的分子和分母分别交叉相乘,就得出方程。)学生回答后,教师说明在写方程时,含有未知数的积通常写在等号的左边。然后板书:4.5X=90.8问:这个方程你们会解吗?

  3、总结解比例的过程。提问:刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)

  (三)系列训练:

  1、做第3页做一做的第2题。

  2、做练习一的第4、5题。

  (1)做第4题的第(6)题时,要提醒学生先把带分数化成假分数再做。做完后,选二题让学生说说是怎样求解的。

  (2)第5题。

  3、学有余力的学生做第8*、9*题和思考题 傲第8*题的第(1)题。教师可以这样引导学生:比例的基本性质是:在一个比例里。两个内项的积等于两个外项的积:现在这道题是知道两个积相等,如果我们把左边的两个数当作比例的外项,那么右边的两个数就应作为比例的内项。这样就能推出比例式了:如果把左边的两个数当作比例的内项。那么右边的两个数就应作为比例的外项。世可以推出比例式。写完后,教师板书出来。如果把3、40作为外项,有下面这些比例式:3:8=15:40 40:15=8:33:15=8:40 40:8=15:3如果把3、40作为内项,有下面这些比例式:15:3=40:8 8:40=3:1515:40=3:8 8:3=40:15

  (四)布置作业:完成P5第6、7题。 板书设计:解 比 例例2:解比例3:8=15:X。 例3:解比例 = 解: 3X=815 解:4.5X=90.8X= X=1.6X=40

【解比例教案】相关文章:

解比例教学反思02-07

解比例的教学反思03-05

《解比例》教学反思03-14

解比例数学教学反思10-20

《比例的意义》教案09-30

《庖丁解牛》教案04-02

庖丁解牛教案08-27

《比例的意义》教案15篇01-04

《正比例的意义》教案12-09