当前位置:9136范文网>教育范文>教案>圆的面积教案

圆的面积教案

时间:2023-02-11 08:07:21 教案 我要投稿

圆的面积教案

  作为一名教学工作者,时常需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。来参考自己需要的教案吧!以下是小编精心整理的圆的面积教案,欢迎阅读,希望大家能够喜欢。

圆的面积教案

圆的面积教案1

  教学目标:

  1.让学生结合具体的情境认识环形的特征,掌握计算环形的面积的方法,并能准确计算一些简单组合图形的面积。

  2.通过自主探究与小组合作,进一步应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

  3.使学生进一步体验图形和生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  掌握计算环形面积的方法,并能准确计算一些简单组合图形的面积。

  教学难点:

  应用圆的周长公式和面积公式解决一些和生活相关的实际问题。

  教学准备:

  圆规,环形图片,教学情境图。

  教学过程:

  一、创设情境,引入新知

  1.出示自然界中的一些环形图片。

  (l)观察图片,说说这些图形都是由什么组成的。

  (2)你能举出一些环形的实例吗?

  2.引入:今天这节课我们就一起来研究环形面积的计算方法。

  二、合作交流,探究新知

  1.教学例11。

  (1)出示例11题目,读题。

  (2)提问:这是由两个同心圆组合成的圆环,要计算它的'面积,你有什么好的方法?独立思考。

  (3)小组讨论,理清解题思路。

  (4)集体交流

  ①求出外圆的面积。

  ②求出内圆的面积。

  ③计算圆环的面积。

  (5)学生按步骤独立计算。

  (6)组织交流解题方法,教师板书

  ①求出外圆的面积:3.14102 =314(平方厘米)

  ②求出内圆的面积:3.1462 =113.04(平方厘米)

  ③计算圆环的面积:314-113.04=200.96(平方厘米)

  (7)提问:有更简便的计算方法吗?

  (8)学生回答后,小结:求圆环的面积一般是把外圆的面积减去内圆的面积

  还可以利用乘法分配率进行简便计并。

  简便计算

  3.14102-3.1462

  =3.14(102-62)

  =3.1464

  = 200.96(平方厘米)

  答:这个铁片的面积是200.96平方厘米。

  2.概括归纳:如果用R表示大圆的半径,用r表示小圆的半径,你能根据上面的计算过程推导出环形面积的计算公式吗?

圆的面积教案2

  【教学内容】

  《义务教育课程标准实验教科书·数学》六年级上册第69~71例1、例2。

  【教学目标】

  学生通过观察、操作、分析和讨论,推导出圆的面积公式。

  2.能够利用公式进行简单的面积计算。

  3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  【教、学具准备】

  CAI课件;

  2.把圆8等分、16等分和32等分的硬纸板若干个;

  3.剪刀若干把。

  【教学过程】

  一、尝试转化,推导公式

  1.确定“转化”的策略。

  师:同学们,你们想一想,当我们还不会计算平行四边形的面积的'时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

  预设: 引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。

  师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?

  师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

  2.尝试“转化”。

  师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

  请大家看屏幕(利用课件演示),老师先给大家一点提示。

  师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。

  同学们,你们觉得它像一个什么图形呢?

  师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)

  跟圆形有什么关系呢? 预设: 引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。

  师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!

  预设: 学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。

  一般情况下,学生会拼出如下几种图形(如图五、图六、图七)。

圆的面积教案3

  圆是小学阶段最后学的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。

  教学内容

  教科书第94页圆面积公式的推导,第95页的例3,练习二十四的第1~5题.

  教学目的

  使学生知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确地计算圆的面积.

  教具、学具准备

  教师仿照教科书第94页上的图用木板制作教具,准备长方形、平行四边形、梯形和圆形纸片各一个;学生把教科书第187页上面的图剪下来贴在纸板上,作为操作用的学具.

  教学过程

  一、复习

  1.教师:什么叫做面积?长方形的面积计算公式是什么?

  2.教师:请同学们回忆一下平行四边形、三角形和梯形的面积计算公式的推导过程.想一想这些推导过程有什么共同点?

  二、新课

  1.教学圆面积的含义及计算公式.

  教师依次拿出长方形、平行四边形、三角形和梯形图,边演示(然后贴在黑板上)边说:“我们已经学过这些图形的面积,请同学们说一说这些图形的面积有什么共同的地方?”使学生明确:这些图形的面积都是由边所围成的平面的大小.

  教师再出示圆,提问:这是一个圆,谁能联系前面这些图形的面积说一说圆的面积是什么?让大家讨论.最后教师归纳出:圆所围平面的大小叫做圆的面积.

  教师:我们已经知道了什么是圆的面积,请同学们联系前面一些图形的面积公式的推导过程想一想,怎样能计算圆的面积呢?使学生初步领会到可以把圆转化成一个已学过的图形来推导圆面积的计算公式.

  教师出示把圆平均分成16份的教具,让学生想一想,能不能把这个圆拼成一个近似什么形状的图形.如果学生回答有困难,可提示学生看教科书第10页上面的图,并让学生拿出学具,试着拼一拼,然后让拼得正确的同学到前面演示一下拼的过程,再让不会拼的同学拼一遍.

  然后教师直接拿出把圆平均分成32份的教具拼成一个近似长方形,提问:“我们刚才把这个圆拼成了近似什么形状的'图形?”(长方形.)请同学们观察一下,把这个圆平均分的份数越多,这个图形越怎么样?(引导学生看出平均分的份数越多,这个图形越近似于长方形.)拼成的近似长方形与原来的圆相比,什么变了?什么没变?(使学生看出形状变了,但面积没有变,圆的面积等于近似长方形的面积.)

  教师在拼成的近似长方形的右边画一个长方形,指出:如果平均分的份数越多,拼成的近似长方形就越接近长方形.提问:“请同学们观察一下,这个长方形的长与宽和原来的圆的周长与半径之间有什么关系?”使学生在教师的引导下看出:这个近似长方形的长相当于圆的周长的一半,如果圆的半径是r,即==πr;长方形的宽就是圆的半径.接着提问:这个长方形的面积是多少?这个圆的面积呢?

  学生说,教师板书:圆的面积=πr×r=πr2

  教师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2.

  教师:我们现在已经知道了圆面积的计算公式,我们现在只要知道圆的什么就可以求出圆的面积?然后再让学生说一说圆面积计算公式的推导过程.

  2.教学例3.

  教师出示例3,指名读题,让学生试着做,提醒学生不用写公式,直接列算式就可以.

  然后让学生对照书上的解题过程,看自己做得对不对;如果错了,错在什么地方.教师要强调指出:列出算式后,要先算平方,再与π相乘.最后小结一下解题过程.

  三、课堂练习

  做练习二十四的第1~5题.

  1.第1题,让学生直接列式计算,指名板演,教师巡视,检查学生有没有把圆的面积公式写成圆的周长公式来计算,书写格式对不对,写没写单位名称.订正时了解学生还存在什么问题,及时纠正.

  2.第2题,让学生独立做,教师巡视,除了注意学生在做第1题时易犯的错误外,还要检查学生有没有把第(2)小题的直径当半径直接计算的,订正时提醒学生做题时要认真审题.

  3.第3题,让学生自己做,集体订正.

  4.第4题,指名读题,让学生说一说这道题与第3题有什么不同的地方,能不能直接计算.使学生明确要先算出半径,再计算.

  5.第5题,让学生读题,看着右面的示意图说一说题意,再让学生做,集体订正.

圆的面积教案4

  教学内容:

  苏教国标版五年级下册103-105页及练一练和练习十九1-3题。

  教材分析:

  本课时内容是在学生已掌握了圆的基本特征和圆的周长公式的基础上,引导学生探索并掌握圆的面积公式。通过3个例题教学,采用两种不同的的策略,推导出圆的面积,让学生充分感受到圆的面积公式推导过程的合理性。

  教学时,一要重点引导学生用数方格的方法计算圆面积及对相关数据进行分析和比较的过程中,发现圆的面积和以它的半径为边长的正方形面积之间的近似关系;二要把握两个关键环节:一是圆可以转化成过去所学过的什么图形;二是转化成的这个图形与原来的圆有什么联系。最后通过应用实践让学生运用知识解决实际问题的成功体验,增强学生学习数学的信心。

  学情分析:

  1、学生已有知识基础

  在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。

  2、对后继学习的作用

  圆面积的计算是今后学习圆柱、圆锥等内容的重要基础。

  教学目标:

  1、知识与技能:

  (1)理解圆的面积的含义。

  (2)经历圆的面积公式的推导过程,理解和掌握圆的面积公式。

  (3)培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力。

  2、过程与方法:

  经历圆的面积公式的推导过程,体验实验操作、逻辑推理的学习方法。

  3、情感与态度:

  感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识,培养学生学习数学的兴趣。

  教学重点:正确掌握圆面积的计算公式。

  教学难点:圆面积计算公式的推导过程。

  教学准备:

  1.CAI课件;

  2.把圆16等分、32等分和64等分的硬纸板若干个;

  教学设计:

  一、创设情境,提出问题。

  投影出示草坪喷水插图

  师:请大家观察这幅插图,说说从图中你能发现数学知识吗?

  学生观察、讨论并交流:

  生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。

  生2:这个圆形的半径就是喷头喷水的距离,也就是5米;周长就是喷水所走过的路线;

  生3:这个圆形的中心就是喷头所在的地方。

  师:请大家说说这个圆形的面积指的是哪部分呢?

  生4:被喷到水的草坪大小就是这个圆形的面积。

  师:今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

  二、自主探究,合作交流:

  1、课件先出示一个正方形,再以正方形的一个顶点为圆心,边长为半径画一个圆,请学生观察:正方形的边长与圆的什么有关系?如果半径是r,正方形的面积是多少?

  板书:正方形的边长=圆的半径r

  正方形的面积=r2

  2、猜想:圆的面积是正方形面积的多少倍?你是怎样想的?

  3、教学例7

  ⑴谈话:刚才我们猜想圆的面积是正方形面积的3倍多,下面我们用数方格的方法来研究。

  ⑵课件出示例7第一幅图表,请同学们按照图表的要求数一数,算一算,把表格填完整,再在小组里交流。

  ⑶小组汇报(实物投影展示学生填写的表格)

  ⑷刚才我们通过一个圆验证了我们的猜想圆的面积大约是正方形面积的3倍多一些,而一个圆还不足以说明问题,我们再找两个圆用同样的方法验证。课件出示例7的第二幅图表,小组合作完成表格。

  ⑸小组汇报交流

  ⑹谈话:通过猜想、验证,我们都认为圆的面积是正方形面积的3倍多一些,我们知道正方形的边长等于圆的半径r,正方形的面积等于r2,那么圆的面积与它的半径有什么关系呢?

  板书:S=r2×3倍多

  [设计意图]

  让学生仔细观察正方形和圆的关系后大胆猜想圆的面积是正方形的多少倍,接着从学生熟悉的“数方格”初步验证猜想,为进一步探索圆的面积公式作准备,获得的结论与例8推导出来的公式互相印证,能使学生充分感受圆面积公式推导过程的合理性,加深对有关圆形转化方法的体会。

  三、动手操作,探索新知

  1.回忆平行四边形、三角形、梯形面积计算公式推导过程。

  (1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的'?

  (2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?

  (3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

  2.推导圆面积的计算公式。

  (1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

  (2)学生小组讨论。

  看拼成的长方形与圆有什么联系?

  学生汇报讨论结果。

  (3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

  (4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?

  生边答师边演示课件。

  生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的一半×半径

  S=πr×r

  S=πr2师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

  (5)读公式并理解记忆。

  (6)要求圆的面积必须知道什么?(半径)

  四、联系实际,解决问题:

  1教学例9

  (1)课件出示例9;

  (2)说出已知条件和问题;

  (3)学生自己试做;

  (4)讲评,注意公式、单位使用是否正确。

  2师:“老师的家中新买了一张圆桌,你们想看吗?(教师用电脑显示图片)为了保护好桌面,我想为桌面配一块和桌面一样大的玻璃,但不知该画一块多大的玻璃?(电脑中标示出桌面直径)。

  五、全课总结,课后延伸:

  1、今天这节课你学到了什么?

  2、圆面积的计算方法,我们是怎样探索出来的?

  3、小结:这节课我们通过猜想、动手操作把圆转化成近似的长方形来验证猜想,这是一种重要的数学思想方法,希望大家在今后的学习中大胆猜想,勇于探索,解决生活中的数学问题。

  六、布置作业

  1.第107页的第1-3题。

  2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物直径(厘米)半径(厘米)面积(平方厘米)

  七、板书设计:

  圆的面积

  S=r2×3倍多

  长方形的面积=长×宽

  圆的面积=周长的一半×半径

  S=πr×r

  S=πr2

  教学反思

  本课时从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己的想象,从估计到公式的推导;从数方格到剪拼成学过的平面图形。在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时遵循学生的认识规律,从学生的生活经验和已有的知识出发,重视学生获取知识的思维过程,。重点引导学生将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,发展学生的空间观念,从而正确掌握圆面积的计算公式。

圆的面积教案5

  一、以旧引新(6分钟)

  1.复习正方形的面积公式和圆的面积公式。

  2.回答下面各圆的面积。

  1.说出S正=a2、S圆=πr2

  2.左圆面积=π×22=4π

  右圆面积=π×(2÷2)2=π

  1.边长是5cm的正方形面积是多少?

  5×5=25(cm2)

  2.如果r=4cm,则圆的面积是多少?

  3.14×42

  =3.14×16

  =50.24(cm2)

  二、动手操作,感知特点。(15分钟)

  1.探究外方内圆图形和外圆内方图形的特点。课件出示两种图形,

  思考:

  (1)外方内圆的图形是怎样组成的?它有什么特点?

  老师明确:外方内圆的图形称为圆外切正方形。

  (2)外圆内方的图形是怎样组成的?它有什么特点?

  老师明确:外圆内方的图形称为圆内接正方形。

  2.引导学生画一个边长为8cm的正方形,然后在这个正方形内画一个最大的圆。

  3.引导学生在圆内画一个最大的正方形。

  4.将图形分解,分解为同一个圆的外切正方形和内接正方形两个组合图形。

  1.

  (1)外方内圆的图形是一个正方形内有一个最大的圆,圆的直径等于正方形的边长。

  (2)外圆内方的图形是一个圆内有一个最大的正方形,正方形的对角线等于圆的直径。

  2.小组合作讨论交流,然后说一说自己是怎么画的——以正方形的边长为直径画一个圆,正方形对角线的.交点是这个圆的圆心。

  3.小组合作讨论交流,说出作图的方法并明确:正方形的对角线等于圆的直径。

  4.小组合作,将一个图形分解为同一个圆的外切正方形和内接正方形两个组合图形。

  3.请画出一个半径是4cm的圆,并画出它的外切正方形和内接正方形,并说明画法。

  三、探究思考,解决问题。(10分钟)

  1.计算圆外切正方形与圆之间部分的面积。

  (1)课件出示半径为1m的圆外接正方形。组织学生讨论计算方法。

  (2)组织学生算出正方形和圆之间部分的面积。

  2.计算出圆内接正方形与圆之间部分的面积。

  课件出示半径为1m的圆的方形组合图形,组织学生讨论计算方法。

  1.

  (1)观察图形的特点,讨论计算方法并尝试汇报交流。

  (2)分别算出这个圆和正方形的面积:

  S圆=3.14×12=3.14m2

  S正=2×2=4m2

  S阴=S正-S圆

  =4-3.14

  =0.86m2

  2.观察图形,发现圆的半径与正方形的关系,讨论计算方法并尝试汇报交流。

  4.王师傅做一个零件,零件的形状是圆内接正方形,已知圆的直径为12cm,你能计算出正方形的面积吗?

  四、拓展应用。(5分钟)

  1.如下图,已知圆的半径是3cm,求这个圆和正方形之间的面积。

  2.下图中正方形铜球的直径是22.5mm,中间正方形的边长是6mm,求这个铜球的面积是多少?

  1.读题,审题,明确题意后,尝试独立完成。

  2.独立完成,然后全班汇报。

  5.计算阴影部分的面积。

  ×102π-102≈57(cm2)

  五、全课总结。(5分钟)

  1.谈谈这节课你有哪些体会。

  2.布置作业。

  学生谈本节课学习的收获。

  教学过程中老师的疑问

圆的面积教案6

  一、教材内容分析

  新人教版上册《圆的面积》这部分内容是平面几何的最后阶段,它既是前面所学直观地认识平面图形及有关计算的延续和发展,又为今后逐步由实验几何阶段转入论证几何阶段作了渗透和准备。因此,在教学时,主要是让学生用转化的思想进行操作、观察和比较,推导圆的面积计算公式。并让他们初步学会用确切、简明的数学语言表述概念的本质特征,引导学生初步接触归纳推导出公式并理解和掌握公式的应用,为以后进一步学习打下基础。

  二、学习者特征分析

  六年级的学生已掌握了长方形、平行四边形、三角形、梯形的面积公式的推导方法,具有一定的转化和类比推理能力,并具对圆和圆的周长知识已经有了初步的掌握,有强烈的好奇心。因此,易于在转化和类比推理方面进行启发和引导,让学生利用已有的知识和经验,实现《圆的面积》公式的推导,但由于圆是由一条曲线围成的图形,学生很难跟以往由几条线段围成的图形之间建立必然的联系。因此,在利用转化和类比推理基础上,结合操作演示,让学生在学习圆面积公式的`推导过程中,提高学习兴趣,掌握学习方法,增加感性的认识,从而真正掌握圆的面积公式的推导过程。并且能应用公式解决一些生活实际问题。

  三、教学目标(知识,技能,情感态度、价值观)

  1、利用学生已有的知识,引导学生通过观察、操作、分析和讨论,推导出圆的面积公式,并能运用公式解答一些简单的实际问题。

  2、使学生经过“感知——动脑——观察——合作探究”等系列活动.逐渐培养学生的抽象思维能力。

  3、通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。使学生感受到生活中数学的魅力,让学生体会图形转化的神奇和美。

  四、教学策略选择与设计

  1、注重情境创设,有意识地激发学生学习知识的兴趣

  数学来源于生活,通过实际情境,既创设了生动的生活情境,激发了学生参与的兴趣,又为后继学习和深入探究埋下了伏笔。而且在直观的动画情境中很好地展示了圆的面积概念。使学生体会到实际生活中计算圆的面积的必要性,同时也激发了学生求知的欲望和学习兴趣。

  2、 注重实践操作,有意识地培养学生获取知识的能力

  学习是学生的内部活动,因此,在课堂教学中既要重视其学习结果,更要重视其学习过程,学生的创造潜能,存在于学习过程、探究过程之中,而不存在于数学结论中,只有实实在在的学习过程、思维过程、探究过程,才能有所创造,培养学生自己探索获取知识的能力。这节课的教学,紧紧抓住“圆面积公式的推导”这一教学重点,敢于放手让学生自己动手操作,归纳整理。通过学生的剪拼,转化,利用等积变形把圆面积转化成了其他的平面图形,进而归纳、概括出圆面积的计算方法。这种多角度的思考,既沟通了新、旧知识的联系,又激发了学生的求知欲,使学生不仅知其然,更知其所以然。

  3、 注重学法指导,有意识地引导学生应用转化的方法

  本节课中,在求圆面积公式时,不是教师灌输式地教会学生S =πr,而是由学生在原有知识经验的基础上,通过“观察——猜测——操作——分析——探究”, 并在老师的引导下,利用“转化”的思想,将圆变成已学的图形:长方形、三角形、梯形。通过学生自主动手剪拼,然后研究两者之间的联系,实现《圆的面积公式》的推导,从而推导出圆面积公式。整节课,始终围绕这个主题,从创设生活情境,到提出研究的方向与方法,最后引导学生推导出公式,教师只作为组织者、指导者和参与者,适当进行点拨,使学生不但“学会”,而且“会学”。从而培养了学生的空间想象力,又发展了学生的逻辑思维推理能力。

  4、 注重媒体应用,有意识地突破学生学习知识的难点

  利用计算机和动画课件,辅助课堂教学,有其直观、形象而又生动的特点,它能使静态的画面动态化,抽象的内容形象化,同时还不受时间和空间的限制。这节课恰当地运用了多媒体课件演示,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其他教学手段无法比拟的。

  五、教学环境及资源准备

  用多媒体课件,圆形卡片辅助教学

  六、教学过程

  1、什么是圆的面积?

  (1)涂出一个圆的面积

  (2)用自己的话说什么是圆的面积?

  2、回忆平行四边形、三角形、梯形的面积计算公式用什么方法推导的?

  3、能不能用剪、拼的方法把圆转换成我们学过的图形?

  4、学生拿附页1进行剪拼,看能转换成我们学过的什么图形?

  5、学生汇报后,课件演示。

  6、得出结论:分的等份数越多,拼出的图形越接近长方形,无限地分下去,最终拼出的图形就是长方形、

  7、转化后的长方形的长和宽与原来的圆有什么关系?

  小组合作学习,讨论以下两个问题:

  1) 转化后长方形的长相当于什么?宽相当于什么?

  2) 你能从计算长方形的面积推导出计算圆面积的公式吗?

  8、汇报讨论结果。

  9、运用新知识,解决问题。

  1)r=5cm,求圆的面积

  2)课始主体图中的问题

  总结

  小结本课知识,提出要求,希望大家能运用我们今天的所学所得解决我们生活中遇到的更多问题。

  总之,这节课,我力图从学生已有的知识背景出发,采取观察操作、合作探究的学习方式,帮助学生再实践活动中理解概念,掌握知识形成技能,让课堂充满活力,让学生真正成为学习的主人。

圆的面积教案7

  教学目标

  1、使学生理解圆的面积的含义.经历体验圆的面积公式的推导过程,理解和掌握圆的面积公式.

  2、使学生能够正确地计算圆的面积,培养学生解决简单的实际问题的能力,渗透类比、极限的思想。

  3、通过圆的面积公式推导过程,培养学生的合作精神和创新意识,培养观察、猜想、验证的实验方法与态度。

  教学重点

  圆面积的公式推导的过程。

  教学难点

  理解圆经过无数等分剪拼后可以拼成一个近似的长方形。并且发现拼成的长方形的长相当于圆周长的一半。

  教具、学具准备

  有关圆面积的课件,彩色圆形纸片(每小组1个),剪刀(每组2把).学生每人准备一个圆形物品。

  教学过程

  一、创设情境,提出问题

  【课件演示】花园里新建了一个圆形花坛,为了让花坛更漂亮,管理员叔叔打算给花坛铺上草坪,需要多少平方米的草坪呢?这实际上是要解决什么数学问题?

  揭示课题:圆的面积

  二、充分感知,理解圆的面积的意义。

  提问:什么叫圆的面积呢?请大家拿出准备好的圆形纸片,用你喜欢的.方式感受一下圆的面积,告诉大家圆的面积指的是什么?

  课件显示:圆所占平面的大小叫做圆的面积。

  你认为圆面积的大小和什么有关?

  三、自主探究,合作交流。

  1、引导转化:

  回忆学过的一些平面图形的面积的推导过程,这些图形面积公式的推导过程有什么共同点?那么能不能把圆也转化成学过的平面图形来推导面积计算公式?

  2、动手尝试探索。

  (1)分小组动手操作,剪一剪,拼一拼,看能拼成什么图形?

  (2)展示交流并介绍:你拼成了什么图形?在拼的过程中你发现了什么?

  如果我们再继续等分下去,拼成的图形会怎么样?

  小结:随着等分的份数无限增加,可以把圆剪拼成一个近似的长方形。

  你能否根据圆与剪拼成的长方形之间的关系想出圆的面积公式?

  3、学生合作探究,推导公式

圆的面积教案8

  教材分析:

  初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。

  学情分析:

  学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。

  教学目标:

  1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。

  2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。

  3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。

  4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的`思想,使学生受到辩证唯物主义观点的启蒙教育。

  教学重点:

  通过观察操作,推导出圆面积公式及其应用。

  教学难点:

  极限思想的渗透与圆面积公式的推导过程。

  教学过程:备注:

  活动一:创设情景,提出问题

  1、课件出示羊吃草的动画:一个放羊娃将一只小山羊用一根绳子把它拴在木桩上。请问小山羊最多能吃到多大范围的草呢?

  2、圆的面积--含义:圆所占平面的大小叫做圆的面积。

  3、如果将绳子加长一点,又会出现什么情况?产生这种变化的原因是什么?这说明了什么?

  活动二:猜想比较:

  出示图

  师:看了这两幅图形,你发现了什么?右图小正方形的面积是多少?左图大正方形的面积是多少?你能猜一猜圆的面积和大正方形面积有什么联系吗?

  活动三:自主探究,验证猜想

  1、引导转化:

  师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?

  以上这些图形都是通过剪拼,转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形呢?

  2、动手操作:

  (1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。

  操作引导:A、剪--怎样剪?剪成几份?B、拼--怎样拼?拼成什么?

  (2)展示交流并介绍,选出最合理的剪法。

  (3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?

  想象一下,平均分成64份、128份、256份......会是什么情形?(课件演示)

  (4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。

  3、自主推导

  (1)小组合作,选择喜欢的1~2个图形,尝试推导公式。

  (2)学生展示、介绍自己的推导过程

  (3)教师板演圆面积的推导过程

  4、情景延续:

  (1)如果绳长为5米,计算圆的面积和周长。

  (2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?

  5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)

  活动四:实践运用,体验生活

  1、量出自己带来的圆形物体的直径,并计算出面积。

  2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。

  活动五:全课小结

  通过本节课的学习你有哪些收获?

  板书设计

圆的面积教案9

  教学内容:课本第94、95页例3 、例4。

  教学目的:

  1、理解圆面积计算公式的推导过程,掌握圆面积的计算公式;

  2、能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

  3、培养学生动手操作能力和逻辑推理能力。

  教学重点:圆面积计算公式。

  教学难点:圆面积计算公式的推导。

  教具、学具:圆的面积演示教具,课件,每人两个大小相等的圆,分别平均分为16等份、32等份。

  教学过程:

  一、复习。

  1.圆的有关概念

  2.什么叫长方形的面积?

  3.说出平行四边形的面积公式是怎样推导出来的?

  我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。(板书课题:圆的面积)

  二、新授。

  1.圆的面积的含义。

  问:面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的'面积。)

  以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

  2.圆的面积公式的推导。

  怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。但我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。怎样分割呢?教师拿出圆的面积教具进行演示:

  先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)

  再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

  向学生说明:如果分的等份越多所拼的图形就越接近长方形。

  教师边提问边完成圆面积公式的推导:

  ①拼成的图形近似于什么图形?

  ②原来圆的面积与这个长方形的面积是否相等?

  ③长方形的长相当于圆的哪部分的长?

  ④长方形的宽是圆的哪部分?

  长方形的面积=长*宽

  圆的面积=c÷2*r

  =2∏r÷*r

  =∏r*r

  =∏r2

  用S表示圆的面积,那么圆的面积可以写成:S=∏r2

  3.圆面积公式的应用。

  出示例1:一个圆的半径是10厘米。它的面积是多少平方厘米?

  学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:

  =3.14*102

  =3.14*100

  =314(平方厘米)

  答:它的面积是314平方厘米。

  例题2:一个圆的直径是40米,它的面积是多少平方米?

  40÷2=20(米)

  3.14*202

  =3.14 *400

  = 1256(平方米)

  答:这个圆的面积是1256平方米。

  三、巩固练习。

  1.半径2分米,求圆的面积。

  2、圆的周长是6.28分米,圆的面积是多少平方分米?(先提问:题目只告诉圆的周长,你能求出圆的面积吗?怎样算?)

  3、绳长10米,问小狗的活动面积有多大?

  四.发散思维:如下图:S正方形=3平方厘米,S圆=?

  总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=∏r2计算。

  五、作业。

  六、课后反思:

圆的面积教案10

  教学内容:

  国标本苏教版五下第十单元P103-105例7、例8和“练一练”、练习十九的第1题

  教学目标:

  1、使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆面积的计算公式,能正确计算圆的面积,并能应用公式解决相关的简单问题。

  2、使学生进一步体会“转化”方法的价值,培养运用已有知识解决新问题的能力,发展空间观念和初步推理的能力。

  3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高数学学习的兴趣。

  教学重点:

  探索圆面积的计算

  教学难点:

  理解面积的意义,推导圆的面积计算公式

  教学过程

  一、导入新课。

  (一)关于圆你已经知道了什么?你还想知道什么?

  (二)你觉得什么是圆的面积?(让学生用手摸一摸圆的周长和面积)

  (三)你觉得圆的面积可能和什么有关?

  (四)出示下图

  (五)问:看了上图你有什么想法?(课件动态显示圆面积与4r2

  和3r2的)关系。

  (六)思考:圆的面积应该怎样计算呢?对于这个问题你有些什么思考?

  小结:将圆转化成已学过的图形,从而推导出它的面积计算公式。是一种不错的想法。

  二、探索圆积的计算公式

  (一)让学生试着将圆剪拼成长方形。

  (二)阅读课本P104页

  (三)让学生再操作

  (四)课件演示

  (五)让学生观察、比较、想象。如果等分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。

  (六)引导观察讨论:这个拼成的长方形和圆有什么关系?

  (七)汇报讨论结果。

  这个用圆分割成的'小块拼成的长方形,宽就是圆的半径r,长就是圆的周长的一半,也就是2πr÷2=πr。

  因为长方形面积=长×宽

  所以圆的面积=πr×r=πr2

  用S表示圆的面积,那么圆的面积计算公式就是:

  S=πr2

  (八)让学生用语言表述圆面积的推导过程(指名说、同桌互说)

  (九)教学例9

  1、出示例9。一个自动旋转喷水器的最远喷水距离大约是5米。它旋转一周后喷灌的面积大约是多少平方米?

  2、让学生尝试解答。

  3、集体评议

  4、思考:在进行圆面积的计算时要注意什么?(平方的计算和单位名称)

  三、知识运用

  (一)求出下列各个图形的面积。(P105页的练一练)

  (二)根据下面所给的条件,求圆的面积。

  1)半径2分米2)直径10厘米3)周长12.56

  (生独立解答,思考3)面积和周长相等吗?做了这些题目你有什么体会?)

  四、本课小结。

  通过本课的学习你有什么收获?有什么体会?

圆的面积教案11

  1、教学目标

  1.理解和掌握圆面积的计算公式,沟通圆与其它图形之间的联系,增强观察、操作、分析、概括的能力以及逻辑推理能力。

  2.学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;感受极限、转化、以直代曲等数学思想方法。

  3.认真观察、深入思考,面对困难勇于克服、弃而不舍。

  2、学情分析

  《圆的面积》一课是小学数学第十一册第五单元第四小节的起始课。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。以往主要教学方法是:教师先带领学生将圆沿半径剪开,将若干个小扇形拼成长方形,借助长方形面积公式来推导圆面积的公式。然后在教师的引导下部分学生再将圆转化成平行四边形,甚至梯形、三角形,借助已知图形的面积公式推导圆面积的公式。一节课至少展现三、四种转化方法,教学容量较大、内容较难。

  看到这样的教学过程我产生了一些困惑:

  1.学生能想到这样的转化的方法吗?——这使我想到了学生学习平面图形的历程。学生第一次学习最基本的图形的面积:长、正方形。可以看出使用面积单位拼摆的方法得到的图形面积其实是最为直接的方式。学生学习的所有直线段图形,可以看出它们之间有着非常直观地联系,易于转化。作为第一个曲边图形“圆”,面对以上学习的转化发过程,学生怎么就能想到把圆等分成小扇形并拼出学过的图形呢?这无疑需要一个思维的飞跃,如果这个飞跃的过程是属于学生自己的,那样才是真正有价值的。

  2.在老师的讲授下又有多少学生能理解多种转化方法呢?

  我先在自己班进行了多种转化方法的试验,发现还真有孩子的思维水平让我刮目相看,可我也发现有80%的孩子这节课没有参与真正的实验研究,只是跟着别人看、听,下课时有一半的孩子还不认可圆面积转化的过程。

  一节课是只为20%的孩子服务,还是应尽可能让每一个孩子都有不同层次的体验与收获呢?

  3、重点难点

  教学重点:运用转化思想探索圆面积的解决办法。

  教学难点:如何将曲线图型转化成直线型图形以及对极限思想的渗透。

  4、教学过程

  活动1【导入】引入课题

  同学们圆是我们在小学阶段接触的第一个曲边图形,它在生活中也有广泛的应用,我们来欣赏一下生活中的圆吧!(ppt到泳池)

  今天我们一起要来研究的是圆的面积。(板书课题:圆的面积)

  活动2【导入】交流困难

  我看到有同学已经有了自己的想法,但是,面对“圆”这么特殊的图形也有了一些问题,我们先暂停手中试验,一起来分享一下!

  (1)有同学在圆里画出了一个正方形,请这样的同学来介绍一下?教师操作

  ppt提问:我们学过了这么多种平面图形,可你们怎么就想到在圆里画正方形了。

  生1:因为他和圆最接近,

  师:你能想一想,为什么说正方形和圆最接近吗?

  生2:正方形正正方方的,四边都一样长,

  生3:在圆中画正方形会让剩下的部分最少,而且剩下的部分都是一样的。

  生4:正方形和圆最像了,正方形的对称轴最多,圆有无数条对称轴。

  师:看看同学们多么善于思考呀,通过你们的发言让我感受到,和其他学过的图形相比正方形和圆真的非常接近,你们的数学直觉真敏锐,太了不起了。

  (2)在圆里画出了很多的小方格,请这样的同学来介绍一下?。

  提问:看看同学们的想法多有创意呀,但是你们是怎样想到用小方格来解决问题的呢?

  生1:我们最开始学习长方形、正方形的面积时就是用面积单位拼摆的方法研究。

  生2:我们以前学习的很多图形的面积,比如平行四边形、三角形、梯形其实都可以用方格来计算,可以数有多少1平方厘米的小方格,就可知道图形的面积了。

  师:你们真是了不起,我们最初学习的面积单位,它是一个最基本的研究图形面积的方法,后来我们又学习了不同的研究图形面积的方法,比如像拼摆、割补等方法,运用面积单位寻找图形面积就不太常用了,今天同学们面对圆面积的时候又想到了它,你们的好方法让我想起了我的一位老师说过的话:退回到原始,不失其本质!

  (3)还有一种想法也来和大家分享。

  他发现原来学习的图形之间都是有关系的,可以相互转化。想到了我们在研究图形面积时最常用的方法“转化”,你们认为转化不精确是吗?

  活动3【讲授】小结

  同学们你们开动脑筋,用你们的智慧已经能够解决圆面积中绝大部分的问题,同时也遇到了想要更精确地得到圆的面积,需要解决剩余面积的问题。对于这些不可知的地方,我们是否可以继续去研究它,让这些不可知的地方越来越小,是否就越来越接近圆的面积了呢?困难就摆在这里,但研究的智慧与方法在你们的头脑中。选择你感兴趣的研究方案,赶快动手试试吧!回到Iteach,可以继续研究,也可以删除重画。完成之后拍照提交到讨论二!学生操作

  活动4【活动】全班交流

  师:我想同学们一定像数学家一样非常投入地在研究圆的面积,老师从心里钦佩你们。有句话说:倾听是分享成功的最好方法,那么我们就一起来看看同学们是如何来解决圆面积的问题。教师操作

  (1)刚才在圆中画正方形的同学先让我们看看他们后续的研究吧!

  生1:我在空余部分补了补了三角形。

  还有同学发现空余的部分还可以继续在上面补三角形会更接近圆。

  师:看来他真的有了属于自己的研究成果。对于这位同学的研究过程,同学们有什么疑问或是感想吗?

  生1:总是这样补三角形真的可以越来越接近圆的面积,就是有点麻烦。

  生2:如果只看图形最外面一圈,我发现是一个正多边形。

  师:同学们仔细观察一下,最外面一圈是一个什么样的图形?这个图形有什么特点吗?你还有其他的发现吗?

  生:的确是正多边形,如果正多边形的边数更多一些,几乎就是一个圆了。

  师:这位同学用了“几乎”,你们能想象到了吗?请看投影,看到这样的变化过程能谈谈谈你们有什么感受吗?

  同学们一定发现了多边形边数越多越接近圆。

  ppt有这样一句名言:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。这句话是什么意思呢?这里“割”就是分割的意思;“失”指误差。这就是说,圆内接正多边形的边数无限增加的时候,它的周长会越来越接近直到等于圆周长,它的面积也会越来越接近直到等于圆面积。这句话出自我国魏晋时期的数学家刘徽,曾用圆内接正多边形计算出π的近似值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。短暂的时间你们都和大数学家有了相同的发现,多了不起呀!(贴)

  (2)我们再来看看刚才画小方格的同学们后面的研究吧!

  生:可以把剩下的.地方画更小的方格就可以算出准确的面积了。

  师:这位同学也有了自己的研究成果,可以非常准确的解决圆面积的问题了。对于这位同学的研究过程,你有什么疑问或是感想吗?

  生:有同学会问:这样就真准确了吗?是不是永远都会有曲边存在呢?

  小结:同学们想一想,既然可以画更小的格,曲边小了方格可以画的更小,是不是可以这样无限的画下去呢?

  生:这样画下去倒是可以,但是算起来太麻烦了。

  师:的确会让我们感觉计算起来比较麻烦,但其实只是我们缺少一些更好的计算方法而已,等你们以后学了更多的知识,计算就不再是问题了。同学们用了最为普遍的方法,虽然看似简单,却能解决这个很难的曲边图形的面积,如果以后再遇到更特殊的图形面积,你们有没有信心解决呢?我想一定是没问题的。

  (3)我们再来看看第三位同学又有了什么新的发现吧!

  生1:将圆等分成16分,拼成一个近似的平行四边形,平行四边形的底边长度其实就是圆周长的一半,而平行四边形的高就是圆的半径,所以,平行四边形的面积是底乘高,那么圆的面积就可以用圆周长的一半乘半径得到。

  师:对于他们的方法你有什么疑问或是受到什么启发吗?

  生:圆看似很特殊,其实和其他图形也是有联系的,

  生:这是真正的平行四边形吗?他的上下两条底边都是弯弯曲曲的。教师操作

  的确现在看来还是有点曲边的,但要是细分下去,16份,32份、64份,你觉得会怎样?

  Ppt:那样就会越来越行四边形,曲边越来越直。但是无论分多少份其实道理是一样的,平行四边形的底是圆周长的一半,平行四边形的高是圆的半径。

  师:让我们再来看一看圆面积的转化过程,将圆沿半径剪开,拼成平行四边形,圆的面积等于平行四边形的面积。平行四边形的底是圆周长的一半,平行四边形的高是圆的半径,圆周长的一半可以表示为c/2=2

  活动5【讲授】总结

  看看你们是多么的了不起呀,对于圆这么特殊的图形,同样能够找到它与学过图形之间的联系,从而寻找到圆面积的计算公式,可以帮助我们方便快捷的得到圆的面积。面对这样的方法对你有什么启发吗?你还有其他的想法吗?

  前几节课我们已经认识了圆并学习圆的周长,那么对于圆你能说说你的感受吗?

  我们曾经感受到了圆的圆润和完美,在今天这个探究的过程中,我们不仅再一次体会到圆的完美和神奇,而且还发现了圆和正方形、正多边形,以及学过的很多图形之间有着千丝万缕的联系。其实在圆中还有许多的美妙与神奇,有待我们今后继续探索。

圆的面积教案12

  一、教学目标

  【知识与技能】

  掌握圆的面积计算公式,并能利用公式正确解决简单问题。

  【过程与方法】

  通过操作、观察、比较等活动,自主探索圆的面积计算公式,渗透转化的数学思想方法。

  【情感、态度与价值观】

  感受数学与生活的联系,激发学习兴趣。

  二、教学重难点

  【教学重点】

  圆的面积计算公式。

  【教学难点】

  圆的面积计算公式的推导过程。

  三、教学过程

  (一)导入新课

  创设情境:呈现校园中的圆形草坪,提问学生如何求解圆形草坪的占地面积。引导学生通过已有认知,认识到解决这个问题实际就是求这个圆的面积,从而引出课题。

  (二)讲解新知

  提出问题:之前的.图形面积公式是如何推导的?

  学生通过回忆,讨论,得到是通过转换成学过的图形来推导得到的。

  追问:能否将圆的图形转换成之前的图形?

  组织学生动手操作、合作探究,四人为一小组,讨论分享自己的思路与剪拼过程,然后请各组的代表进行全班交流。

  预设1:将圆平均分成4份,剪切拼接之后,没有得到之前图形;

  预设2:将圆平均分成8份,剪切拼接之后,得到一个近似平行四边形;

  预设3:将圆平均分成16份,剪切拼接之后,得到一个近似长方形。

  老师在此基础上进行展示:大屏幕展示将圆平均分为32份,64份,128份,256份……的动图,让学生观察其特点。

  学生能够发现圆平均分的份数越多,拼成的图形越接近于长方形。

  进一步追问:观察原来的圆和转化后的这个近似长方形,发现他们之前有哪些等量关系?

  预设1:长方形的面积等于圆的面积;

  预设2:长方形的长近似等于圆周长的一半;

  预设3:长方形的宽近似等于圆的半径。

圆的面积教案13

  学习内容:

  圆的面积(教材16、17、18、页)

  学习目标:

  1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。

  3、在估一估和探究圆面积计算公式的活动中,体会“化曲为直”的思想,初步感受极限的思想。

  学习重点:

  经历圆面积计算公式的推导过程,掌握圆面积的'计算公式。

  学习难点:

  了解圆的面积的含义,并能运用圆面积的知识解决一些简单的实际问题。

  教学准备:

  等分好的圆形纸片

  学习过程:

  一、自主复习

  写出正方形、长方形、平行四边形、三角形、梯形的面积公式并回忆面积公式的推导过程。

  二、自主预习

  (一)感知圆的面积。

  任意画一个圆,用彩笔涂出它的面积。

  我知道:圆所占平面的( )叫做圆的面积。

  (二)、观察P16中草坪喷水插图,思考:喷水头转动一周,所走过的地方刚好是一个什么图形?说说这个圆形的面积指的是哪部分呢?圆的半径是多少?

  (三)估一估

  请你估计半径为5米的圆面积大约是多大?

  先独立思考后观察分析书16页的估算方法。你还有其他的方法吗?可以记录下来。

  三、小组交流自主预习部分

  四、自主探索圆面积公式

  1、思考:怎样计算圆的面积呢?我们能不能从平行四边形、三角形、梯形的面积公式推导过程得到启发呢?能不能也将圆通过剪拼成一个我们学过的图形呢?(提示:可以把圆转化成长方形来想一想)

  2、动手操作:在硬纸上画一个圆,把圆平均分成若干(偶数)等份,沿半径剪开拉直,再用这些近似等腰三角形的小纸片拼一拼。

  拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?

  第一步:把圆平均分成8份,拼一拼,拼成了一个近似的( )

  第二步:把圆平均分成16份,拼一拼,拼成了一个近似的( )

  第三步:把圆平均分成32份,拼一拼,拼成了一个近似的( )

  如果分的分数越(),拼成的图形就越接近于( )。)比较剪拼前后的图形,发现()变了,()没变。

  3、我来推导:把圆转化成平行四边形后,平行四边形的底相当于圆的( ),高相当于圆的()。因为平行四边形的面积等于(),所以圆的面积等于( )。如果用S表示圆的面积,圆的面积公式表示为:()

  4、公式的推导:

  平行四边形面积=底×高

  圆面积=

  1、还可以怎样拼接成长方形动手试一试并完成下面的填空

  把圆转化成长方形后,长方形的长相当于圆的( ),宽相当于圆的()。因为长方形的面积等于(),所以圆的面积等于()。如果用S表示圆的面积,圆的面积公式表示为:()

  长方形的面积=长×宽

  圆面积=用字母表示圆面积公式:

  五、小组交流

  1、圆面积公式的推导过程

  2、如何计算圆的面积

  六、全班交流教师总结

  七、学习检测

  1、填空。

  求圆的面积必须知道()利用公式S =()来计算。

  2、解决书16页上面喷水池转一周浇灌草坪面积?

  3、计算,求圆的面积: (1)r=2cm(2)d=10cm

  4、一个圆形花坛的周长是6.28分米,它的面积是多少平方分米?

  八、交流展示

  九、回顾反思

  通过今天的学习,你学会了什么?还有那些疑惑?

圆的面积教案14

  教学内容分析:

  圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。

  学生情况分析:

  小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,五年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以在教学应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。

  教学目标:

  1、让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。

  2、让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。

  3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。

  教学重难点

  重点:圆的面积计算公式的推导和应用。

  难点:圆的面积推导过程中,极限思想(化曲为直)的理解。

  教学准备:

  教具:多媒体课件、面积转化教具。

  学具:书、计算器、16等份教具、作业纸。

  教学过程:

  一、创设情境、揭示课题

  1、师:大家看,一匹马被拴在木桩上,它吃草的时候绷紧绳子绕了一圈。从图中,你知道了哪些信息?

  (复习圆的相关特征)

  师:那马最多能吃多大面积的草呢?

  师:圆所围成的平面的大小就叫做圆的面积。

  师:今天我们继续来研究圆的面积。(揭示课题)

  2、师:你想研究它的哪些问题呢?(引导学生提出疑问)

  【设计意图:在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面圆面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】

  二、猜想验证、初步感知

  1、实验验证

  (1)师:猜一猜,圆的面积可能会和它的什么有关系?

  师:你觉得圆的面积大约是正方形的几倍?

  (2)师:对我们的估计需要进行?

  生:验证。

  师:用什么方法验证呢?

  师:下面请大家先数数圆的面积是多少。

  师:数起来感觉怎么样?有没有更简洁一点的方法?

  (引导学生发现可以先数出 个圆的方格数,再乘4就是圆的面积)

  (让学生在图1中数一数,用计算器算一算,填写表格里的第1行。)

  圆的半径

  (cm)

  圆的面积

  (cm2)

  圆的面积

  (cm2)

  正方形的面积

  (cm2)

  圆的面积大约是正方形面积的几倍

  (精确到十分位)

  (3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。(课件出示图2和图3)

  (学生完成后交流汇报。)

  师:仔细观察表中的数据,你有什么发现?

  生:这三个圆的半径虽然不同,但是圆的面积都是它对应正方形面积的3倍多一些。

  3、师:正方形面积可以用r2表示,那圆的面积和它半径平方之间有什么关系呢?

  生:圆的面积是它半径平方的3倍多一些。

  小结:我们经过猜测——数方格——验证,最终发现圆的面积是正方形面积也就是它半径平方的3倍多一些。

  【设计意图:从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。】

  三、实验操作、推导公式

  1、感受转化,渗透方法

  (课件再次出示马吃草图)

  师:知道了3倍多一些,就能准确算出这匹马最多可以吃多大面积的草了吗?

  (引导学生发现,3倍多一些到底多多少还不清楚,需要继续研究能准确计算圆面积的方法。)

  2、师:大家还记得平行四边形、三角形、梯形的面积计算公式分别是如何推导出来的吗?

  (学生回忆后汇报,教师演示,激活转化思路)

  3、第一轮探究——明确思路,体会转化

  师:想想看,圆能不能转化成学过的图形?是否可以化曲为直呢?

  生:剪圆。

  师:怎么剪呢?沿着什么剪?

  生:沿着直径或半径剪开。

  (分别演示2等份、4等份、8等份,引导学生发现边越来越直,剪拼的图形越来越平行四边形)

  4、第二轮探究——明确方法,体验极限

  师:刚才我们将圆分别剪成4等份、8等份再拼成新的图形是想干什么呀?

  生:想把圆形转化成平行四边形。

  师:那还能更像吗?

  生:可以将圆片平均分成16份。

  (引导学生把16、32等份的圆拼成近似的长方形,上台展示)

  师:从哪儿可以看出这两幅图更接平行四边形了?

  生:边更直了。

  师:是什么方法使得边越来越直了?

  生:平均分的份数越来越多。

  (引导学生体验把圆平均分成64份、128份……剪拼后的图形越来越接近长方形)

  师:如果我们平均分的份数足够多,就化曲为直,最后拼成的图形——就成长方形了。

  【设计意图:通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的'份数愈多,拼成的图形就越接平行四边形。在想象的过程中蕴含了另一个重要数学思想的渗透——极限思想。】

  (2)师:我们把圆转化成了长方形,什么变了,什么没变?

  生:形状变了,面积大小没有变。

  师:这样就把圆的面积转化成了?

  生:长方形的面积。

  师:要求圆的面积,只要求出?

  生:长方形的面积。

  5、第3轮探究——深化思维,推导公式

  师:仔细观察剪拼成的长方形,看看它与原来的圆之间有什么联系?将发现填写在作业纸第2题中,然后小组内交流一下。

  (小组讨论,发现:长方形的宽等于圆的半径,长方形的长等于圆周长的一半。)

  师:长方形的宽和圆的半径相等,这里的宽也可以用r表示。那么,长方形的长又可以怎么表示呢?(重点引导学生理解长:C÷2=2πr÷2=πr)

  (通过长方形面积计算方法,引出圆的面积计算方法)

  师:圆的面积是它半径平方的3倍多一些,准确地说是它半径平方的多少倍?

  生:π倍。

  师:有了这样的一个公式,知道圆的什么,就可以计算圆的面积了。

  生:半径。

  5、做“练一练”

  完成作业纸第3题,交流反馈。

  6、(课件再次出示牛吃草图)

  师:这匹马最多能吃多大面积的草,现在会求了吗?

  【设计意图:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。】

  四、解决问题、拓展应用

  1、师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。

  (课件出示例9)

  分析题意后学生独立完成书本第105页例9。

  (组织交流,评价反馈)

  2、完成作业纸第4题

  师:接着看,默读题目,完成作业纸第3题。

  (学生独立完成,交流反馈)

  五、全课小结、回顾反思

  师:你们对于圆面积的疑问现在解开了吗?又有了哪些新的收获?

  师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!

  【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】

  板书设计:

  圆的面积

  转化

  新的图形学过的图形

  演示图

  长方形的面积=长×宽

  圆的面积=圆周长的一半 × 半径

  Sπr×r

  πr2

  (1)3.14×22(2)8÷2=4(cm)

  =3.14×43.14×42

  =12.56(cm2)=3.14×16

  =50.24(cm2)

圆的面积教案15

  教学内容:教科书第107页练习十九第2-5题

  教学目标:

  1、通过练习,使学生进一步掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2、进一步培养学生运用已有知识解决新问题的能力,体验圆形与生活的联系,感受平面图形的学习价值,提高数学学习兴趣和学好数学的自信心。

  教学重点:进一步掌握圆的面积公式,能正确计算圆的面积

  教学难点:能正确计算圆的.面积,并能应用公式解决相关的简单实际问题

  教学流程:

  一、基本练习:

  1.计算下面各圆的面积。r=4分米d=10厘米r=6米d=14米

  2、引入谈话。师:今天我们继续学习圆的面积计算。

  二、综合练习

  1、完成练习十九第2题。要求:“铁饼投掷圈的面积比铅球投掷圈的面积大多少平方米?”首先要知道什么?根据直径怎样求出圆的面积?

  2.完成练习十九第3题。根据圆的周长怎样求出圆的半径呢?

  3、完成练习十九第4题。要求圆桌面面积必须知道什么?根据哪个求圆桌面的半径?

  4、完成练习十九的第5题。师追问:圆的面积和周长是怎样算的?分别指的是什么:

  意义上有什么不同?

  三、课堂总结

  师:生活中有很多东西的形状是圆形的,有时需要计算它的面积或周长,谁能说说在实际运用中需要注意什么?

【圆的面积教案】相关文章:

《圆的面积》教案03-06

人教版圆的面积教案02-19

小学数学圆的面积的教案11-24

圆的面积教案15篇02-24

圆的面积教案(15篇)03-12

【推荐】圆的面积教案3篇03-14

圆的面积教案通用15篇03-31

圆的面积教案集合9篇07-13

关于圆的面积教案汇编7篇07-17