七年级数学教案(15篇)
作为一名辛苦耕耘的教育工作者,常常要根据教学需要编写教案,借助教案可以更好地组织教学活动。教案应该怎么写呢?以下是小编收集整理的七年级数学教案,仅供参考,欢迎大家阅读。
七年级数学教案1
一、教学目标
1.了解推理、证明的格式,理解判定定理的证法.
2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.
3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.
4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的.本领,从而对学生进行学习目的的教育.
二、学法引导
1.教师教法:启发式引导发现法.
2.学生学法:积极参与、主动发现、发展思维.
三、重点·难点及解决办法
(一)重点
判定定理的推导和例题的解答.
(二)难点
使用符号语言进行推理.
(三)解决办法
1.通过教师正确引导,学生积极思维,发现定理,解决重点.
2.通过教师指导,学生自行完成推理过程,解决难点及疑点.
四、课时安排
1课时
五、教具学具准备
三角板、投影仪、自制胶片.
六、师生互动活动设计
1.通过设计练习,复习基础,创造情境,引入新课.
2.通过教师指导,学生探索新知,练习巩固,完成新授.
3.通过学生自己总结完成小结.
七、教学步骤
(一)明确目标
掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.
(二)整体感知
以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.
(三)教学过程
创设情境,复习引入
师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).
学生活动:学生口答第1、2题.
师:你能说出有什么条件,就可以判定两条直线平行呢?
学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.
教师将第3题图形画在黑板上.
学生活动:学生口答理由,同角的补角相等.
师:要求学生写出符号推理过程,并板书.
【教法说明】
本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.
师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?
学生活动:同分内角.
师:它们有什么关系.
学生活动:互补.
师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.
七年级数学教案2
教学建议
(一)教材分析
1、知识结构
2、重点、难点分析
重点:找出命题的题设和结论。因为找出一个命题的题设和结论,是对该命题深刻理解的前提,而对命题理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础。
难点:找出一个命题的题设和结论。因为理解和掌握一个命题,一定要分清它的题设和结论,所以找出一个命题的题设和结论是十分重要的问题。但有些命题的题设和结论不明显。例如,“对顶角相等”,“等角的余角相等”等。一些没有写成“如果……那么……”形式的命题,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点。
(二)教学建议
1、教师在教学过程中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解命题的概念、找出一个命题的题设和结论,并能判断一些简单命题的真假。
2、命题是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的A层学生还要理解:
(1)假命题可分为两类情况:
①题设只有一种情形,并且结论是错误的,例如,“1+3=7”就是一个错误的命题。
②题设有多种情形,其中至少有一种情形的结论是错误的。例如,“内错角互补,两直线平行”这个命题的题设可分为两种情形:第一种情形是两个内错角都等于90°,这时两直线平行;第二种情形是两个内错角不都等于90°,这时两直线不平行。整体说来,这是错误的命题。
(2)是否是命题:
命题的定义包括两层涵义:①命题必须是一个完整的句子;②这个句子必须对某件事情做出肯定或者否定的判断。即命题是判断某一件事情的句子。在语法上,这样的句子叫做陈述句,它由“题设+结论”构成。
另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)“过直线AB外一点作该直线的平行线。”疑问句“∠A是否等于∠B?”感叹句“竟然得到5>9的结果!”以上三个句子都不是命题。
(3)命题的组成
每个命题都是由题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如果…,那么…”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
有些命题,没有写成“如果…,那么…”的形式,题设和结论不明显。对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果…那么…”的形式。
另外命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述。
教学设计示例:
教学目标
1、使学生对命题、真命题、假命题等概念有所理解。
2、使学生理解几何命题的组成,能够区分命题的题设和结论两部分,并能将命题改写成“如果……,那么……”的形式。
3、会判断一些命题的.真假。
教学重点和难点
本节的重点和难点是:找出一个命题的题设和结论。
教学过程设计
一、分析语句,理解命题
1、教师让学生随意说一句完整的话,每个小组可以派一名同学说,如:
(1)我是中国人。
(2)我家住在北京。
(3)你吃饭了吗?
(4)两条直线平行,内错角相等。
(5)画一个45°的角。
(6)平角与周角一定不相等。
2、找出哪些是判断某一件事情的句子?
学生答:(1),(2),(4),(6)。
3、教师给出命题的概念,并举例。
命题:判断一件事情中,每句话都判断什么事情。所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。在数学课中,只研究数学命题,请学生举几个数学命题的例子,每组再选一个同学说。(不要让说过的再说)
如:的句子,叫做命题,分析(3),(5)为什么不是命题。
教师分析以上命题
(1)对顶角相等。
(2)等角的余角相等。
(3)一条射线把一个角分成两个相等的角,这条射线一定是这个角的平分线。
(4)如果a>0,b>0,那么a+b>0。
(5)当a>0时,|a|=a。
(6)小于直角的角一定是锐角。
在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题。
(7)a>0,b>0,a+b=0。
(8)2与3的和是4。
有些学生可能给与否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从“判断”的角度来加深对命题这一概念的理解。
4、分析命题的构成,改写命题的形式。
例两条直线平行,同位角相等。
(l)分析此命题的构成,前一部分是后一部分成立的条件,后一部分是在前一部分条件下所得的结论。已知事项为“题设”,由已知推出的事项为“结论”。
(2)改写命题的形式。
由于题设是条件,可以写成“如果……”的形式,结论写成“那么……”的形式,所以上述命题可以改写成“如果两条平行线被第三条直线所截,那么同位角相等。”
请同学们将下列命题写成“如果……,那么……”的形式,例:
①对顶角相等。
如果两个角是对顶角,那么它们相等。
②两条直线平行,内错角相等。
如果两条直线平行,那么内错角相等。
③等角的补角相等。
如果两个角是等角,那么它们的补角相等。(注意不仅仅限于两个角,如果多个角相等,它们的补角也相等。)
以上三个命题的改写由学生进行,对(2)要更改为“如果两条平行线被第三条直线所截,那么内错角相等。”
提示学生注意:题设的条件要全面、准确。如果条件不止一个时,要一一列出。
如:两条直线相交,有一个角是直角,则这两条直线互相垂直,可改写为:
“如果两条直线相交,而且有一个角是直角,那么这两条直线互相垂直。”
二、分析命题,理解真、假命题
1、让学生分析两个命题的不同之处。
(l)若a>0,b>0,则a+b>0
(2)若a>0,b>0,则a+b<0
相同之处:都是命题。为什么?都是对a>0,b>0时,a+b的和的正负,做出判断,都有题设和结论。
不同之处:(1)中的结论是正确的。,(2)中的结论是错误的。
教师及时指出:同学们发现了命题的两种情况。结论是正确的或结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题。
2、给出真、假命题定义
真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题。
假命题:如果题设成立,结论不成立,这样的命题都是错误的命题,叫做假命题。
注意:
(1)真命题中的“一定成立”不能有一个例外,如命题:“a≥0,b>0,则ab>0”。显然当a=0时,ab>0不成立,所以该题是假命题,不是真命题。
(2)假命题中“结论不成立”是指“不能保证结论总是正确”,如:“a的倒数一定是”,显然当a=0时命题不正确,所以也是假命题。
(3)注意命题与假命题的区别。如:“延长直线AB”。这本身不是命题。也更不是假命题。
(4)命题是一个判断,判断的结果就有对错之分。因此就要引入真假命题,强调真假命题的大前提,首先是命题。
3、运用概念,判断真假命题。
例请判断以下命题的真假。
(1)若ab>0,则a>0,b>0。
(2)两条直线相交,只有一个交点。
(3)如果n是整数,那么2n是偶数。
(4)如果两个角不是对顶角,那么它们不相等。
(5)直角是平角的一半。
解:(1)(4)都是假命题,(2)(3)(5)是真命题。
4、介绍一个不辨真伪的命题。
“每一个大于4的偶数都可以表示成两个质数之和”。(即著名的哥德巴赫猜想)
我们可以举出很多数字,说明这个结论是正确的,而且至今没有人举出一个反例,但也没有一个人能证明它对一切大于4的偶数正确。我国著名的数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”。即已经证明了“1+2”,离“1+1”只差“一步之遥”,所以这个命题的真假还不能做最好的判定。
5、怎样辨别一个命题的真假。
(l)实际生活问题,实践是检验真理的唯一标准。
(2)数学中判定一个命题是真命题,要经过证明。
(3)要判断一个命题是假命题,只需举一个反例即可。
三、总结
师生共同回忆本节的学习内容。
1、什么叫命题?真命题?假命题?
2、命题是由哪两部分构成的?
3、怎样将命题写成“如果……,那么……”的形式。
4、初步会判断真假命题。
教师提示应注意的问题:
1、命题与真、假命题的关系。
2、抓住命题的两部分构成,判断一些语句是否为命题。
3、命题中的题设条件,有两个或两个以上,写“如果”时应写全面。
4、判断假命题,只需举一个反例,而判断真命题,数学问题要经过证明。
四、作业
1、选用课本习题。
2、以下供参选用。
(1)指出下列语句中的命题。
①我爱祖国。
②直线没有端点。
③作∠AOB的平分线OE。
④两条直线平行,一定没有交点。
⑤能被5整除的数,末位一定是0。
⑥奇数不能被2整除。
⑦学习几何不难。
(2)找出下列各句中的真命题。
①若a=b,则a2=b2。
②连结A,B两点,得到线段AB。
③不是正数,就不会大于零。
④90°的角一定是直角。
⑤凡是相等的角都是直角。
(3)将下列命题写成“如果……,那么……”的形式。
①两条直线平行,同旁内角互补。
②若a2=b2,则a=b。
③同号两数相加,符号不变。
④偶数都能被2整除。
⑤两个单项式的和是多项式。
七年级数学教案3
我今天说课的课题是人教版义务教育课程标准实验教科书七年级数学上册第二章第1节《整式》第一课时“单项式”。下面我从:教材的分析、教法与学法及教学手段、教学过程、板书设计四部分来说这一节课,其中,教学过程分为:创设情境导入新课、新课讲解、小结作业三部分;整个过程是先由实际问题引入新课,让学生自然走入文本.合作交流去感受知识获取的过程,并且运用所学的知识解决相关的问题.
教材分析
1、教材地位与作用。
就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的互逆关系。它是继整式乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理。这一思想实质贯穿后继学习的各种因式分解方法。通过本节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备。因此,它起到了承上启下作用。
2、教学目标。
根据单项式这一节课的内容,对于掌握各种单项式的系数和次数方法,乃至整个代数教学中的地位和作用,我制定了以下教学目标:
(一)知识目标:
1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
(二)能力目标:
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。
(三)情感目标:
1.通过参与对单项式概念的探究活动,提高学习数学的兴趣。
2.培养学生积极主动参与的意识,使学生形成自主学习、合作学习的良好的学习习惯。
3、教学重点与难点。
本节课理解单项式的概念及组成是学习本节单项式的关键,而学生由数到式的变形是一个由质到量变化的抽向思维。学生对新概念的形成有一定的障碍。因此我将本课的学习重点、难点确定为:
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
2/教法与学法及教学手段。
教法:为让学生体验单项式概念产生的`过程;以及概念的形成和同化相结合,促进学生对单项式概念的理解;同时让学生主动暴露思维过程,及时得到信息的反馈。我采用先学后导-自主合作-问题评价教学。
学法:针对教法,在教学的过程中引导学生自主的学习:让学生去亲身体验单向式形成的过程,使学生的认识知识、感受知识,学生在活动的过程中积极参与,主动获取知识,体现了以学生为主体的新教学理念,结合教材内容,让学生“自主探索、合作交流”。通过同学之间相互讲解、演示、操作等方法让学生开动脑筋,互相讨论,找出解决问题的方法。使学生逐步地形成技能技巧,从而获得能力。
教学手段:利用多媒体辅助教学,可以加大一堂课的信息容量,极大提高学生的学习兴趣,电脑软件的交互性,可以很好地体现教师在教学过程中的思路和策略。
教学过程
本节课,一共设以下几个环节
第一环节,设置实际问题,激发学习兴趣:
兴趣是最好的老师,可以激发情感,唤起某种动机,从而引导学生成为学习的主人。若能利用短短几分钟时间,在刚开始就激发学生的兴趣,这正是老师追求的一个目标。所以这个环节我设置以下的问题:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答问题:
列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?
(让学生思考、利用已有的学习经验轻松解答,对整节的学习也创设了良好的情绪状态。)数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。
第二环节,以旧探新,引出课题(分2部分)
单项式的概念,借助于学生已有的能用字母表示是数的基础,给学生提供一些问题背景,同时给学生留有充分思考的空间,。这个环节围绕几个问题展开,在积极的状态下,用观察-猜想-验证-自主学习的方法,找到新知生长点,把数的有关知识正迁移到式,由学生自己给出单项式的名称,引出课题,显得顺理成章。
利用多媒体课件,依次出示,让学生回答。
1.(回顾旧知)计算:
(1).边长为a的正方体的表面积为(),体积为()。
(2).铅笔的单价是x元,圆珠笔的单价是铅笔单价的2.5倍,圆珠笔的单价是()元。
(3).一辆汽车的速度是v千米/时,它t小时行驶的路程为()。
(4).数n的相反数是()。
给学生一定的时间思考,在学生原有的知识结构建成的基础上,得出答案.符合学生的认知规律.
2.(走入文本,自主学习)我们看看列出的式子有什么特点?对此大家都有一定的想法,也许一样,也许不一样.其实在我们的教材中给出了他们的说法,这样大家可以借助教材55页第二自然段-四自然段内容来验证一下.大家先独立阅读学习,然后前后每4人为一组相互交流,体验自己的收获,认识不足的地方大家可以相互弥补.这一设计,主要目的是以教材为中心为学生营造自主合作学习的氛围,形成新的学习方式.符合数学课程标准中指出:主动参与特定的数学活动,通过观察,探索获得数学的知识经验.”实现培养学生积极主动参与的意识,使学生形成自主学习、合作学习的良好的学习习惯。这个情感目标.同时对于学生的收获及时地整理,使获得成就感.
第三环节初步应用,巩固新知:趁此时学生处在一个积极思维的状态,教师给出练习
1.判断下列各代数式哪些是单项式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y+x;
(6)-xy2;(7)-5。
△这安排是为通过尝试教学,引导学生主动探究,造求学生自主学习的积极势态,通过一定的练习,达到知觉水平上的运用,加深学生对单项式概念的理解,从而突出本节课的重点,同时寻求认识单项式的方法,为下一个环节例题的讲解作了个铺垫,降低了本节课的难点。
第四环节范例教学,练习反馈:
范例学习
用单项式填空,并指出它们的系数和次数:
(1)每包书有12册,n包书有()册;
(2)底边长为a,高为h的三角形的面积();
(3)一个长方体的长和宽都是a,高是h,它的体积是();
(4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价为()元;
(5)一个长方形的长是0.9,宽是a,这个长方形的面积是().
(给学生一定的时间思考讨论,教师适当引导.)
1.为了进一步淡化难点,完全放手让学生自主进行,充分暴露学生的思维过程,展现学生生动活泼、主动求知所富有的个性,使学生真正成为学习的主体,我马上让学生模仿解题尝试练习:
例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。
①x+1;②;③πr2;④-a2b。
下面各题的判断是否正确?
①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;
④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是。
3、填空:
(1)单项式-5y的系数是_____,次数是_____
(2)单项式a3b的系数是_____,次数是_____
(3)单项式的系数是_____,次数是____
(4)单项式-5πR2的系数是___,次数是___
学生接受单项式的定义不是很难,但是做到判断无误却很困难,需要通过练习,反复强调单项式判断标准及单项式中的系数和次数的不同和概念中要求,比如只有字母的系数的不是1就是-1,单独一个字母的指数是1等知识出现的思维错觉必须学生通过甄别、理解,逐步提高准确度和熟练度.同时及时总结提升经验.
第五环节知识整理,归纳小结:
让学生形成善于归纳、总结的学习方式。当学生把所获得的数学内容与原有的认知结构建立起密切的多方面的联系时,才能更有效地掌握数学内容。能够提高学生的归纳总结能力和语言表达能力.因此,学生形成归纳总结的学习方式是必须的。
本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习。为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫。
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础。
七年级数学教案4
一、说教材分析
1.教材的地位和作用
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。
2.教学目标
知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。
情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3.重点、难点
重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际生活中二元一次方程组的应用。
二、教法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习旧知,温故知新
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部10场比赛中得到16分,那么这个队胜负场数分别是多少?
设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
这个问题中包含了哪些必须同时满足的条件?设胜的场数是-,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的'场数+负的场数=总场数,
胜场积分+负场积分=总积分。
这两个条件可以用方程
-+y=10
2-+y=16
表示:
上面两个方程中,每个方程都含有两个未知数(-和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.
把两个方程合在一起,写成
-+y=10
2-+y=16
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
(3)发现问题,探求新知
满足方程①,且符合问题的实际意义的-、y的值有哪些?把它们填入表中。
- -y
y
上表中哪对-、y的值还满足方程②。
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。
(4)分析思考,加深理解
通过前面的学习,学生已基本把握了本节所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第五个环节。
(5)强化训练,巩固双基
课堂练习:
设计意图:几道练习题由浅入深、由易到难、各有侧重,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,升华知识。
练习2:已知下列三对数值:
哪一对是下列方程组的解?
(设计意图:数学教学论指出,数学知识要明确其内涵和外延(条件、结论、应用范围等),通过对二元一次方程组的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。
(6)小结归纳,拓展深化
我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体作用,从学习的指示、方法、体验是那个方面进行归纳,我设计了这个问题:
①通过本节课的学习,你学会了哪些知识;
(7)布置作业,提高升华
教科书第89页1、第90页第1题。
以作业的巩固性和发展性为出发点,我设计了两个题,不仅是对本节课内容的一个反馈,也是对本节课知识的一个巩固。总的设计意图是反馈教学,巩固提高。
以上几个环节环环相扣,层层深入,并充分体现教师与学生的交流互动,在教师的整体调控下,学生通过动脑思考、层层递进,对知识的理解逐步深入,使课堂效益达到状态。
五、评价与反思
本节课是在学生学习了一元一次方程基础上进行的,主要是引导学生运用类比思想,依次经过比较、归纳等活动,最终探索出二元一次方程组。下面是关于本节课的几点说明:
1、本节课对教材的内容进行了优化处理,为跳跃较大的知识点作充分的铺垫,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以教师为主导、学生为主体,以思想为导向、知识为载体,以方法为中介、训练为主干,以培养学生的思维能力为中心、操作为动力的教学理念。
2、在课堂教学中为学生提供充分的探索空间,注重引导学生分工合作,独立思考,形成主见并进行交流,创设民主、宽松和谐的课堂气氛,让学生畅所欲言,同时进行实验操作,使课堂教学灵活直观,新鲜有趣,从而使课堂教学实现教学思想的先进性、教学目标的整体性、教学过程的有序性、教学方法的灵活性、教学手段的多样性、教学效果的可靠性。
3、注重量化评价与质怀评价相结合,充分利用课堂观察评价、问题讨论评价、学生自我评价等多元化评价,通过几组习题,将学生水平层次记录在案,为学生的学习评价提供充分的科学依据,从而综合检验学生对数学知识、技能的理解,以及学生在学习数学的过程在情感和态度的形成和发展。
七年级数学教案5
1.1 生活中的立体图形
〖教学过程:〗
一、看一看:(情境创设)
教师(导语):在我们的生活中,充满着各种各样的图形,其优美的结构值得我们鉴赏,其奇妙的性质等着我们去探究。请听来自世界图形的对话吧。
设计:(1)卡通A(代表平面图形):“我是平面图形,是大家的老朋友,我家的家庭成员一定比你家多。”
(2)卡通B(代表立体图形):“我是立体图形,是大家的新朋友,大家知道的并不一定比你少。”
教师(问):卡通A、B身体各部分是什么图形?
通过卡通A、B 的对话,组织学生讨论,派代表指着屏幕上图形说明自己的观念,让学生主动参与,激起他们的兴趣。培养集体意识,增强团队精神。
教师(导语):看来同学们非常善于观察图形,不知你们能否用数学的眼光观察生活中的图形?请看来自生活中的立体图形。
(出示课题):生活中的立体图形
音乐响起,屏幕播放录象。
二、议一议(课堂讨论)
问题1:你发现录象中的这些物体与哪些立体图形相类似,你能找出与这些立体图形相类似的物体吗?
组织学生围绕以上问题四人一小组讨论,说明自己的`观念,其他小组积极点评,补充,得出常见的立体图形:圆柱、圆锥、正方体、球、棱锥。
问题2:比较这些立体图形,看看相互之间有什么相同点和不同点?
电脑演示:(1)球体 (2)圆柱 (3)圆锥
并通过实物展示,引导学生观察、讨论、归纳,得出常见的立体图形的分类:球体、柱体、椎体。
电脑演示:由圆柱变成棱柱(三棱柱、四棱柱、五棱柱┉┉),
问题3 以三棱柱为例,说出一个棱柱的棱数与底面的边数,侧面的平面的个数之间的关系?
诱导学生思考:当棱柱的棱柱的棱数越来越多时,棱柱就越来越趋向于什么立体图形?
(用类似的方法),电脑演示:将圆锥演变成棱椎(三棱锥、四棱锥、五棱椎┉),再由棱锥演变成圆锥。
通过一连串的活动,让学生掌握从特殊到一般,再有一般到特殊的的认知思想,了解图形之间的相互联系。通过对比,确立分类思想。并用类比的方法,自主的讨论、归纳,突出重点、化解难点,在轻松的氛围中学习。
三、练一练(评价)
遵循“由浅入深,循序渐进,由感性到理性”的认知规律,依据“主体参与,分层优化,及时反馈,激励评价”的原则,我设计了以下训练题:
1、发给学生一些图片或实物,说说手中的图形,是什么立体图形?没有发到的学生,举出立体图形的实例。
尽量让每个学生都发言,注意培养学生的语言表达能力。
七年级数学教案6
教学目标
1.了解公式的意义,使学生能用公式解决简单的实际问题;
2.初步培养学生观察、分析及概括的能力;
3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过具体例子了解公式、应用公式.
难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的'字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。
三、知识结构
本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。
四、教法建议
1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。
2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。
3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。
教学设计示例
公式
五、教具学具准备
投影仪,自制胶片。
六、师生互动活动设计
教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.
七年级数学教案7
【知识讲解】
一、本讲主要学习内容
1、代数式的意义
2、列代数式的注意点
3、代数式值的意义
其中列代数式是重点,也是难点。
下面讲述一下这三点知识的主要内容。
1、代数式的意义
用基本的运算符号(包括加、减、乘、除以及后面所要学的乘方、开方)将数及 表示数的字母连接而成的式子叫代数式。单个的数字或字母也叫代数式。如:5,a, 4x, ab, x+2y, , a2等
2.列代数式的注意点
⑴在代数式中出现的乘号“×”,通常写作“· ”或者省略不写。如3×a可写作3· a或3a, 2×(x+y)可以写作2·(x+y)或2(x+y)。
⑵数字与数字相乘时乘号,仍然用“×”,不宜用“· ”,更不能省略不写。
⑶数字写在字母的前面。
⑷在代数式中出现除法运算时,一般按照分数的写法来写, 如s÷t写作 。
⑸代数式中带分数与字母相乘时,应写成假分数与字母相乘的形式,如 应写作 。
(6)两个代数式相乘,应该用分数形式表示。
3.代数式值的意义
用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,就叫做代数式的值。
二、典型例题
例1 填空
①棱长是acm 的正方体的体积是___cm3。
②温度由t°c下降2°c后是___°c。
③产量由m千克增长10%,就达到___千克。
④a和b 的倒数和是___。
⑤a和b的和的倒数是___。
解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤
说明: ⑴列代数式的关键在于仔细审题,弄清题意,正确找出题中的数量关系和运算顺序,对一些容易混淆的说法,要仔细进行对比,对一些比较复杂的数量关系,可先分段考虑,要正确地使用括号。
⑵像a3 ,(1+10%)m 这样的式子后在可直接写单位,像t-2这样的式子,需写单位时,要将整个式子用括号括起来。
例2、用代数式表示
⑴被4整除得 m的数
⑵被2除商为 a余1的数
⑶两数的平均数
⑷a和b两数的平方差与这两数平方和的商
⑸一项工程,甲独做需x天,乙独做需y天完成,甲乙两人合做完成的天数。 ⑹某人先用v1千米/时速度行完全路程的一半,又用v2千米/时的速度行完另一半, 若全路程长为a千米,用代数式表示此人行完全路程的平均速度。
⑺个位数字是8,十位数字是 b 的两位数。
解: ⑴4m ⑵2a+1 ⑶设这两个数分别为a、b、则平均数为 。
⑷ ⑸ ⑹ ⑺10b+8
分析说明:
⑴数a除以数b,除得的商正好是整数,而没有余数,我们称a能被b整除。
⑵能被2整除的数叫偶数,不能被2整除的数叫奇数。两个连续奇数,若较小的是n,则较大的是n +2 。
⑶对于题⑶中两数没有给出,为说明其一般性。可先设这两个数为a, b;用字母表示数时,在同一个问题中,不同的数要用不同的字母表示。
⑷题⑷中的a,b两数的平方是a2-b2,不能颠倒,也不能写成(a-b)2。
⑸题⑸中甲乙两人的工作效率分别是 和 ,所以甲乙两人合作完成的时间是 即 。
⑹平均速度=
所以平均速度为 解答本题容易错写成 ,这主要是概念不清造成的。
题⑺中主要应清楚自然数的十进制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一个自然数总可以用它各个数位上的.数字来表示。
例3说出下列代数式的意义。
⑴ 3a+2 ⑵ 3(a+2) (3)
(4) a- (5)(a-b)2 (6)a2-b2
分析:说出代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点。
①不含括号的代数式习惯从左到右按运算顺序读,如(1)小题3a+2读作“a的3倍与2的和”;
②含括号的代数应该把括号里的代数式看作一个整体,按运算结果来读,如(2)小题3(a+2)读作“a与2的和的3倍”;
③由于分数线具有除法和括号的双重作用,应该把分子与分母看成一个整体来读。
解:(1)a的3倍与2的和;
(2)a与2的和的3倍;
(3)a与b的差除以c的商;
(4)a与b除以c的差;
(5)a与b的差的平方;
(6)a、b的平方差。
例4、当x=7,y=4, z=0时,求代数式x ( 2x-y+3z)的值。
解:x (2x-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70
说明:⑴由比例题可以看出,求代数式值的一般步骤是:①代入 ②计算⑵在代数式中,数字与字母之间,字母与字母之间的乘号是省略不写的。而当代入数据求值时,都变成了数字相乘,原来省略的乘号“×”应补上。
【一周一练】
1、选择题
(1)下列各式中,属于代数式的有( )个。
, s= ah, 5× , -y, x-2=y, a-b, 3x>y
a、2 b、3 c、4 d、5
(2)下列代数式,书写正确的是( )
a、2 b、m· n c、 mn d、(m+n)÷2
(3)用代数式表示“a的 乘以b减去c的积”是( )
a、 ab-c b、 a(b-c) c、 a( b-c) d、
(4)用语言叙述代数式 ,表述不正确的是( )
a、比a的倒数小2的数; b、a与2的差的倒数
c、1除以a减去2的商 d、比a小2的数的倒数
2、判断题
⑴n除m用代数式可表示成 ( )
⑵三个连续的奇数,中间一个是n,其余两个分别是n-2和n+2( )
⑶如果n是偶数,则紧跟在n后面的两个连续奇数分别是n+1,n+3( )
3、填空题
⑴每本练习本是0.3元,买a本练习本需__元。
⑵小明有5元钱,买了a支铅笔,每支铅笔是0.2元,则小明还剩__元。
⑶被3整除得n 的数是__。
⑷个位上的数是a,十位上的数是个位上的数的2倍少3的两位数是_。
⑸加工一批零件共m个,乙先加工n个零件后,甲单独再做3天才完成任务,则甲平均每天加工零件__个。
⑹一种小麦磨成面粉后,重量减少数15%, b千克小麦磨成面粉后,面粉的重量是__千克。
⑺一个长方形的长是a,宽是长的 还多1,这个长方形的周长是__
⑻a、b两个码头相距s千米,一轮船从a码头到b码头的速度是a千米/时,返回的速度比从a码头到b码头快2千米/时,这艘船在a,b两码头间往返一次,共需__小时。
4.求下列代数式的值。
⑴ 其中a=2
⑵当 时,求代数式 的值。
5、填表
x
y
x+y
x-y
xy
5
15
6、某班级里男生人数比女生人数的 多16人,男生人数是a,问a的代数式表示:⑴女生人数。 ⑵该班学生总数;当a=25时,求该班学生总数。
七年级数学教案8
一、课题
2.1数怎么不够用了(2)
二、教学目标
1.使学生理解有理数的意义,并能将给出的有理数进行分类;
2.培养学生树立分类讨论的思想。
三、教学重点和难点
重点
难点
有理数包括哪些数.
有理数的分类及其分类的标准.
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有的认知结构提出问题
1.什么是正、负数?
2.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明.
3.任何一个正数都比0大吗?任何一个负数都比0小吗?
4.什么是整数?什么是分数?
根据学生的回答引出新课.
(二)、讲授新课
1.给出新的整数、分数概念
引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数,即
2.给出有理数概念
整数和分数统称为有理数,即
有理数是英语“Rational number”的译名,更确切的译名应译作“比
3.有理数的分类
为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?
待学生思考后,请学生回答、评议、补充.
教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,即
并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的'分类标准,但必须对讨论对象不重不漏地分类.
(三)、运用举例 变式练习
例1
将下列数按上述两种标准分类:
例2
下列各数是正数还是负数,是整数还是分数:
课堂练习
25、-100按两种标准分类.
2、下列各数是正数还是负数,是整数还是分数?
(四)、小结
教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?
七、练习设计
1.把下列各数填在相应的括号里(将各数用逗号分开):
正整数集合:{ …};
负整数集合:{ …};
正分数集合:{ …};
负分数集合:{ …}.
2.填空题:
的数是______,在分数集合里的数是______;
(2)整数和分数合起来叫做______,正分数和负分数合起来叫做______.
3.选择题
(1)-100不是
A.有理数 B.自然数 C.整数 D.负有理数
(2)在以下说法中,正确的是[ ]
A.非负有理数就是正有理数
B.零表示没有,不是有理数
C.正整数和负整数统称为整数
D.整数和分数统称为有理数
八、板书设计
2.1数怎么不够用了(2)
(一)知识回顾 (三)例题解析 (五)课堂小结
(二)观察发现 例1、例2
(四)课堂练习 练习设计
九、教学后记
在传授知识的同时,一定要重视数学基本思想方法的教学.关于这一点,布鲁纳有过精彩的论述.他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力.不但使数学学习变得容易,而且会使得别的学科容易学习.显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力.
为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授.本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:
1.分类的标准不同,分类的结果也不相同;
2.分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类.
七年级数学教案9
一、素质教育目标
(一)知识教学点
1.理解有理数乘方的意义.
2.掌握有理数乘方的运算.
(二)能力训练点
1.培养学生观察、分析、比较、归纳、概括的能力.
2.渗透转化思想.
(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.
(四)美育渗透点
把记成,显示了乘方符号的简洁美.
二、学法引导
1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.
2.学生学法:探索的性质→练习巩固
三、重点、难点、疑点及解决办法
1.重点:运算.
2.难点:运算的符号法则.
3.疑点:①乘方和幂的区别.
②与的区别.
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片.
六、师生互动活动设计
教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.
七、教学步骤
(一)创设情境,导入 新课
师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?
生:可以记作,读作的`四次方.
师:呢?
生:可以记作,读作的五次方.
师:(为正整数)呢?
生:可以记作,读作的次方.
师:很好!把个相乘,记作,既简单又明确.
【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.
师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.
生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.
非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).
【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.
(二)探索新知,讲授新课
1.求个相同因数的积的运算,叫做乘方.
乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.
注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.
巩固练习(出示投影1)
(1)在中,底数是__________,指数是___________,读作__________或读作___________;
(2)在中,-2是__________,4是__________,读作__________或读作__________;
(3)在中,底数是_________,指数是__________,读作__________;
(4)5,底数是___________,指数是_____________.
【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.
师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?
学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.
生:到目前为止,已经学习过五种运算,它们是:
运算:加、减、乘、除、乘方;
运算结果:和、差、积、商、幂;
教师对学生的回答给予评价并鼓励.
【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.
师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.
学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.
【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.
2.练习:(出示投影2)
计算:1.(1)2, (2), (3), (4).
2.(1),,,.
(2)-2,,.
3.(1)0, (2), (3), (4).
学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.
师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?
先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.
生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.
师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?
学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.
生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.
师:请同学思考一个问题,任何一个数的偶次幂是什么数?
生:任何一个数的偶次幂是非负数.
师:你能把上述结论用数学符号表示吗?
生:(1)当时,(为正整数);
(2)当
(3)当时,(为正整数);
(4)(为正整数);
(为正整数);
(为正整数,为有理数).
【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.
七年级数学教案10
教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。
非常高兴,能有机会和同学们共同学习
昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)
我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。
同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。
希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!
我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)
以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的有理数的加法(板书课题)。
刚才老师说要给七年级三班的优胜组发奖品,老师手里有12本作业本,优胜组共6人,老师将送出的作业本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业本,占总数的.几分之几?(十二分之七)如果,老师得到的作业本记为正数,送出的作业本记为负数,则老师手里的作业本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)
对于有理数的加法,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。
前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)
同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。
(1) 同号两数相加,其和有何规律可循呢?大家观察这两个式子,回答两个问题。(师引导观察,得出答案),那位同学能填好这个空?
(2) 异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)
(3) 一个数同0相加,其和有什么规律呢?(易得出结论)
同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为有理数的加法法则。
同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的机会,看哪一组能[出题制胜]!(出示)
(活动过程1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程2后:让每组第三排同学评价加分)
同学们已经基本掌握了有理数的加法法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样药到病 除!(师生共同治病)
看来同学们对有理数的加法已经掌握得很好了,大家还记得前面那个难倒我们的有理数的加法题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。
通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!
同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。
七年级数学教案11
教学内容:
课本第160 163页。主要内容为通过一个直线相交的课件的分析得到相交直线垂直的概念,并进一步探索垂足的概念和垂直的性质,同时探索了两条直线之间被第三条直线所截形成的角。
第一课时
4.7.1 垂线
教学目标
▲ 知识与能力
1、分析和探索垂直的概念,体会垂直的性质。
2、理解过平面中一点有且只有一条垂线的性质。
▲ 过程与方法
1、复习相关内容并引入新课。
2、通过对相关课件的分析,引出两条直线垂直以及相关的概念。
3、通过对例题图形的操作得到垂直的性质。
▲ 情感、态度与价值观
通过对课件的分析,引导学生得出生垂直的`定义,从而进一步培养学生探索精神和探索能力。
教学重、难点及突破
▲ 重点
两条直线的垂直概念以及垂直的性质。
▲ 难点
能充分理解垂直的定义,并能应用于解决实际问题。
▲ 教学突破
本节内容较为形象化,涉及到的图形较多,所以建议教师在教学的过程中能够充分的利用多媒体课件等教学的资源,能给喾学生较为形象的描述以帮助学生认识个中关系,从而使学生较深刻地理解本节内容。另外在本世中节建议教师对学生进行一些数学语言的训练,使学生能用数学语言描述图形的位置关系,从机时进一步培养学生用数学说话的习惯。
教学准备
▲教师准备
有关相交直线移动的课件
▲学生准备
预习相交线的概念
教学流程设计
教师指导
学生活动
1.设问,引导学生回顾两直线相交的内容,并引入新课
2.通过对两相交直线的旋转的动画分析,从直观上得到两直线垂直的概念.
3.引导学生动手画得到垂 直的唯一性.
4.布置适当练习,巩固所学
1.认真地回顾两直线相交的知识,并随着教师的思路进入新课的学习.
2.通过对动画效果的分析,能总结出两直线垂直的概念.
3.通过亲手画图得到垂 直的唯一性.
4.完成练习,对所学内容有进一步的理解.
一、导入新课
教师活动
学生活动
1、导入:我们在以前学习了相交直线的知识,让我们一起回忆一下。
2、总结学生的回答,并做出适当补充,引入新课:今天我们进一步讨论相交线问题。
1、认真地回忆有关相交直线的内容,进一步提升认识,并在此基础上积极回答问题。
2、在教师作总结的过程中积极思考,并随着教师的思路进入新课。
二、对相交线的探索
教师活动
学生活动
1、 用电脑展示两直交线中的一条沿着交点旋转形成垂直的动画效果,引导学生观察并讨论得到垂直的概念,向学生渗透从几何直观到抽象概念的思维过程。
2、 引导学生完成课本第161页“试一试”的内容,鼓励讨论在直线外或直线上一点能引该直线的几条生垂线?在此过程中培养学生动手操作解决问题的能力。
3、 让学生观察课本第161页图4.7.6,提问:点A与直线BC上各点连线中哪条最短
4、 总结学生的回答,讲述点到直线距离概念,提醒学生注意垂线段与线的区别.
5、 组织学生观察讨论课本第162页”做一做”的内容,在此过程中通过小海龟的运动渗透旋转思想.
6、 练习:课本第162页练习1-3题.
7、 教师小结本内容
8、 布置作业:课本第166页习题4.7第1题
1)认真积极讨论,基础上发现图形中两条相交直线形成的四个角是直角,从而认识两条直线垂直的概念,能初步理解从几何直观到抽象概念的过程。
2)认真完成“试一试|”的内容并积极讨论,在此过程中发现在同一平面内,经过直线外或直线上一点有且只有一条垂线。
3)认真观察,动手测量,积极讨论可发现点A与直线BC各点连线中AB最短。
4)结合图形,认识点到直线距离的概念,掌握垂线与垂线段的区别。
5)通过做出图形和讨论能发现两条相交直线垂直可以看作一条直线是另一条直线绕点旋转90度得到的,从而理解旋转思想。
6)认真完成练习,巩固所学的知识。
7)学生完成作业
七年级数学教案12
学习目标:
1.会用正.负数表示具有相反意义的量.
2.通过正.负数学习,培养学生应用数学知识的意识.
3.通过探究,渗透对立统一的辨证思想
学习重点:
用正.负数表示具有相反意义的量
学习难点:
实际问题中的数量关系
教学方法:
讲练相结合
教学过程
一.学前准备
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
问题1:“零”为什么即不是正数也不是负数呢?
引导学生思考讨论,借助举例说明.
参考例子:温度表示中的零上,零下和零度.
二.探究理解解决问题
问题2:(教科书第4页例题)
先引导学生分析,再让学生独立完成
例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
(2)20xx年下列国家的'商品进出口总额比上一年的变化情况是:
美国减少6.4%,德国增长1.3%,
法国减少2.4%,英国减少3.5%,
意大利增长0.2%,中国增长7.5%.
写出这些国家20xx年商品进出口总额的增长率.
解:(1)这个月小明体重增长2kg,小华体重增长—1kg,小强体重增长0kg.
(2)六个国家20xx年商品进出口总额的增长率:
美国—6.4%,德国1.3%,
法国—2.4%,英国—3.5%,
意大利0.2%,中国7.5%.
三.巩固练习
从0表示一个也没有,是正数和负数的分界的角度引导学生理解.
在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.
在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.
通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
四.阅读思考1页
(教科书第8页)用正负数表示加工允许误差.
问题:1.直径为30.032mm和直径为29.97的零件是否合格?
2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.
五.小结
1.本节课你有那些收获?
2.还有没解决的问题吗?
六.应用与拓展
1.必做题:
教科书5页习题4.5.:6.7.8题
2.选做题
1).甲冷库的温度是—12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是.
2.)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?
七年级数学教案13
教学目标
知识与能力
从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。
教学思考
能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题
在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。
情感态度与价值观
在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。
教学重点难点:
在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。
教学过程
创设情境,切入标题
同学们,商场经常利用转盘游戏进行抽奖,你认为顾客们的中奖可能性有多大呢?这节课我们就来探究一下有关转盘游戏的问题。 新课探究
请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?
请各小组分别派一名代表,看哪组能转出红色。
结果,8小组有6组转出了红色。
为什么会出现这样的结果呢?
因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。
大家同意这种看法吗?下面我们亲自动手感受一下。
学生按照题目要求进行实验。
请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。
请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。
根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的`比例是50∶96,结果接近百分之五十。
在小组内实验结果不明显,实验次数越多越能说明问题。
通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。
游戏与交流
下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。
每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。
请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。
如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。
同学们说出很多种方法,不一一列举。
“平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。
如果将这个实验继续做下去,卡片上所有数的平均数会增大。
同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。
以下过程同教学设计,略去。
随堂练习
指导学生完成教材第206页习题。
课时小结
学生可从各个方面加以小结。 布置作业
仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。
七年级数学教案14
教学建议
一、知识结构
二、重点难点分析
本节教学的重点是掌握解一元一次不等式的步骤.难点是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.掌握一元一次不等式的解法是进一步学习一元一次方程组的解法以及一元二次不等式的解法的重要基础.
1、一元一次不等式和一元一次方程概念的异同点
相同点:二者都是只含有一个未知数,未知数的次数都是1,左、右两边都是整式.
不同点:一元一次不等式表示不等关系,一元一次方程表示相等关系.
(3)同方程类似,我们把或叫做一元一次不等式的标准形式.
2、一元一次不等式和一元一次方程解法的异同点
相同点:步骤相同,二者都是经过变形,把左边变成,右边变为一个常数.
不同点:在进行第(1)步去分母和第(5)步将项的系数化为1的变形时,要根据同乘(或同除)的数的正负,决定是否要改变不等号的方向.当然,如果不能确定同乘(或同除)的数的符号时,就要进行讨论.这正是解不等式时最容易发生错误的地方.
注意:(1)解方程的移项法则对解不等式同样适用.
(2)解不等式时,上述的五个步骤不一定都能用到,并且也不一定按照自上而百的顺序,要根据不等式形式灵活安排求解步骤.熟练后,步骤及检验还可以合并简化.
三、教法建议
在讲一元一次不等式的解法时,应突出抓住与方程解法不同的地方,加强“去分母”和“系数化成l”这两个步骤的'训练,因为这两个步骤会出现“在不等式两边都乘以(或除以)同一个负数,不等号的方向改变”的情况,为此可以同一元一次方程对照着讲.
解不等式的过程就是将不等式进行同解变形的过程,这也是一种运算.新大纲规定:“运算能力包括会根据法则公式等正确地进行运算,理解运算的算理,能根据题目条件寻求合理,简捷的运算途径.”要培养解不等式的能力首先要使学生理解和掌握算理,即掌握不等式的基本性质,正确理解不等式、不等式的解集等有关概念.
这节课是在复习一元一次方程的基本思想和步骤中学习解一元一次不等式的.要突出不等式基本性质3,这是解不等式容易出错的地方.同时还要反复提醒同学注意克服解方程变形中常犯的错误,在解不等式中也要重现.
七年级数学教案15
一、素质教育目标
(一)知识教学点
1.了解有理数除法的定义.
2.理解倒数的意义.
3.掌握有理数除法法则,会进行运算.
(二)能力训练点
1.通过有理数除法法则的导出及运算,让学生体会转化思想.
2.培养学生运用数学思想指导思维活动的能力.
(三)德育渗透点
通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.
(四)美育渗透点
把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.
二、学法引导
1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语 并及时点拨,使学生主动发展思维和能力.
2.学生学法:通过练习探索新知→归纳除法法则→巩固练习
三、重点、难点、疑点及解决办法
1.重点:除法法则的灵活运用和倒数的概念.
2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.
3.疑点:对零不能作除数与零没有倒数的理解.
四、课时安排
1课时
五、教具学具准备
投影仪、自制胶片、彩粉笔.
六、师生互动活动设计
教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.
七、教学步骤
(一)创设情境,复习导入
师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题.
【教法说明】
同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习.
(二)探索新知,讲授新课
1.倒数.
(出示投影1)
4×( )=1; ×( )=1; 0.5×( )=1;
0×( )=1; -4×( )=1; ×( )=1.
学生活动:口答以上题目.
【教法说明】
在有理数乘法的基础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.
师问:两个数乘积是1,这两个数有什么关系?
学生活动:乘积是1的两个数互为倒数.(板书)
师问:0有倒数吗?为什么?
学生活动:通过题目0×( )=1得出0乘以任何数都不得1,0没有倒数.
师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.
提出问题:根据以上题目,怎样求整数、分数、小数的倒数?
【教法说明】
教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习.
(出示投影2)
求下列各数的倒数:
(1); (2); (3);
(4); (5)-5; (6)1.
学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.
2.计算:8÷(-4).
计算:8×()=? (-2)
8÷(-4)=8×().
再尝试:-16÷(-2)=? -16×()=?
师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?
学生活动:同桌互相讨论.(一个学生回答)
师强调后板书:
[板书]
【教法说明】
通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.
(三)尝试反馈,巩固练习
师在黑板上出示例题.
计算(1)(-36)÷9, (2)()÷().
学生尝试做此题目.
(出示投影3)
1.计算:
(1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;
(4)1÷(-9); (5)0÷(-8); (6)16÷(-3).
2.计算:
(1)()÷(); (2)(-6.5)÷0.13;
(3)()÷(); (4)÷(-1).
学生活动:
1题让学生抢答,教师用复合胶片显示结果.
2题在练习本上演示,两个同学板演(教师订正).
【教法说明】
此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.
提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?
学生活动:分组讨论,1—2个同学回答.
[板书]
2.两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何不等于0的数,都得0.
【教法说明】
通过上组练习的结果,不难看出与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活运用这两种方法.
(四)变式训练,培养能力
回顾例1 计算:
(1)(-36)÷9; (2)()÷().
提出问题:每个题目你想采用哪种法则计算更简单?
学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单.
(2)题仍用除以一个数等于乘以这个数的倒数较简单.
提出问题:-36:9=?;:()=?它们都属于除法运算吗?
学生活动:口答出答案.
(出示投影4)
例2 化简下列分数
例3 计算
(1)()÷(-6);
(2)-3.5÷×();
(3)(-6)÷(-4)×().
学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演.
【教法说明】
例2是检查学生对有理数除法法则的灵活运用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算.例3培养学生分析问题的能力,优化学生思维品质:
如在(1)()÷(-6)中.
根据方法①()÷(-6)=×()=.
根据方法②()÷(-6)=(24+)×=4+=.
让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算.(2)(3)小题也是如此.
(五)归纳小结
师:今天我们学习了及倒数的概念,回答问题:
1.的倒数是__________________();
学生活动:分组讨论。
【教法说明】
对这节课全部知识点的.回顾不是教师单纯地总结,而是让学生在思考回答的过程中自己把整节内容进行了梳理,并且上升到了用字母表示的数学式子,逐步培养学生用数学语言表达数学规律的能力.
八、随堂练习
1.填空题
(1)的倒数为__________,相反数为____________,绝对值为___________
(2)(-18)÷(-9)=_____________;
(3)÷(-2.5)=_____________;
(4);
(5)若,是;
(6)若、互为倒数,则;
(7)或、互为相反数且,则,;
(8)当时,有意义;
(9)当时,;
(10)若,,则,和符号是_________,___________.
2.计算
(1)-4.5÷()×;
(2)(-12)÷〔(-3)+(-15)〕÷(+5).
九、布置作业
(一)必做题:1.仿照例1、例2自编2道题,同桌交换解答.
2.计算:(1)()×()÷();
(2)-6÷(-0.25)×.
3.当,,时求的值.
(二)选做题:1.填空:用“>”“<”“=”号填空
(1)如果,则,;
(2)如果,则,;
(3)如果,则,;
(4)如果,则,;
2.判断:正确的打“√”错的打“×”
(1)( );
(2)( ).
3.(1)倒数等于它本身的数是______________.
(2)互为相反数的数(0除外)商是________________.
【教法说明】
必做题为本节的重点内容,首先在这节课学习的基础上让同学仿照例题编题,学生也有这方面的能力,极大调动了学生积极性,提高了学生运用知识的能力.
选作题是对这节课重点内容的进一步理解和运用,为学有余力的学生提供了展示自己的机会.
十、板书设计
【七年级数学教案】相关文章:
七年级数学教案07-22
七年级下册数学教案07-20
七年级上册数学教案07-20
七年级数学教案15篇02-20
小学数学教案02-25
初中数学教案12-26
《分草莓》数学教案01-20
托班数学教案11-07
《轴对称》数学教案08-26