- 相关推荐
《分数与小数的互化》优秀教案
作为一名人民教师,常常需要准备教案,借助教案可以更好地组织教学活动。那么问题来了,教案应该怎么写?以下是小编为大家收集的《分数与小数的互化》优秀教案,仅供参考,大家一起来看看吧。
《分数与小数的互化》优秀教案1
教学目标:
(1)知识目标:使学生理解小数化成分数的方法,能根据分数与除法的关系把分数化成小数
(2)能力目标:在学生探究新知的过程中培养学生观察、归纳、解决问题的能力。
(3)情感目标:在总结规律过程中培养学生对待知识的科学态度和探索精神。
教学重点:
掌握分数化小数的基本方法以及小数化成分数的基本方法。
教学难点:
灵活运用小数与分数互化的方法解决实际问题。
教学过程:
一、创设情境,导入新课
最近,和我们同一学年的明明和欢欢,遇到了一些关于分数和小数的数学问题,你们愿意帮助解决吗?(愿意)同学们非常乐于助人,要想帮助他们解决难题,并不是一件容易的事,必须有一定的知识基础,老师先来考考大家,敢接受挑战吗?
复习旧知,引出新知
1、说出下列各分数的意义。(出示灯片)
2、填空。
(1)根据分数与除法的关系,3÷5=
(2) 0.9 表示( )分之( )。 0.07 表示( )分之( )。
0.013表示( )分之( )。 4.27 表示( )又( )分之( )
(设计意图:巩固旧知,为新课做铺垫 。引发学生的求知欲望,从而激发学生学习新知的兴趣.)
二、自主探究,孕显活力
探索发现,理解题意
1.同学们对分数和小数的这些知识掌握的真不错,下面让我们一起来看看明明和欢欢,遇到了什么难题?
(出示灯片)学校手工课上教同学们编中国结,欢欢编的中国结用了0.6米红绳,明明编的中国结用了3/5米的红绳,谁用得红绳多?为什么?(指名读题)
师:要想知道谁用得红绳多,实际就是求什么?生:比较分数和小数大小
怎样比较分数和小数大小呢?,这节课就让我们共同探讨分数和小数的互化{板书课题)
[设计意图:结合生活中的具体事例引入,让学生体会到数学就在我们身边,同时以问题入手,唤起学生学习数学的好奇心和积极的探究态度。]
师:老师相信同学们一定会用智慧解决问题,有没有信心?让我们一起看合作要求。
探究要求:
怎样比较这两个数的大小呢?先独立思考,把方法记录下来,再和小组同学交流。
2.学生试做,指名板演汇报。
(3)因为3/5=3÷5=0.6,所以欢欢和明明用的红绳一样多
师:同学们你们可真聪明,用三种方法解决同一个问题
下面就请第一名同学汇报
(1)根据小数的意义,在线段图上找到0.6,明确就是6/10
师:他是根据分数与小数的意义,用画图的方法解决问题,实在是太棒了
(2)下面就请第二名同学汇报
生:因为0.6= 6/10= 3/5,所以欢欢和明明用的红绳一样多.你能说说理由吗?生1:利用小数的意义,因为0.6里有6个十分之一,表示十分之六,就是6/10,约分后是3/5。
师:他是根据小数的意义把小数化成分数,再与分数比较大小,他这种方法非常好,不仅解决了问题,而且掌握了小数化分数的方法,
三、合作交流,外显活力
师:那老师再出几道,1,2,3位小数,你能用小数化分数的方法做出来吗?
合作要求:
1、把0.3,0.15,0.543化成分数,你发现了什么?
2、请你用一句话概括小数化分数的方法。
生1:一位小数----十分之几,两位小数---百分之几,三位小数---千分之几……
生2:把小数写成分数,原来有几位小数,就在1后面写几个0作分母,原来的.小数去掉小数点作分子。
3、师:谁来总结一下小数化分数的方法和注意点。(出示灯片)
生:小数化分数,把小数化成分母是10、100、1000……的分数,能约分的要 约分。
师:老师相信大家运用这个规律,在做小数化分数的时候会做得更快,下面就请同学们运用这种方法快速地做下面的题
(3)(出示灯片)练一练:把“0.07,0.24,0.123,1.05化成分数。用作业本试着做一做
师:刚才我们研究了小数化分数的方法,那么分数又该怎样化成小数呢?
下面就请第三名同学汇报
(4)因为3/5=3÷5=0.6,所以欢欢和明明用的红绳一样多
师:他是用分数化小数(板书)的方法来解决问题的,同学们你们听明白了吗?谁能说说分数化小数的方法?(分子除以分母),如遇到除不尽的,怎么办:
4.利用分数化小数的算法,探究分数化小数的方法。
(1)出示灯片分数化小数的方法,可以用分子除以分母。除不尽的,可以根据需要按四舍五入法保留几位小数
(2)师:下面请同学们用刚才分数化小数的方法做下面一组题,看谁做得又对又快(出示灯片)练习题:把3/4,1/2,4/7化成小数。汇报
[设计意图:结合小数的意义,逐步把学生引入到知识的最近发展区,让学生在观察、讨论、交流中自己找到解决问题的办法,实现合作学习]
四、突破难点,外显活力
师:刚才我们总结了分数化小数,小数化分数的一般方法,但有些分数的分母比较特殊,用什么巧妙的方法把分数化成小数呢?
(灯片)交流讨论:请观察下面几个分数分母的特点,你能找到更巧妙的方法把他们化成小数吗?想好后组内交流。
把9/10,43/100,7/25化成小数。
生1:象9/10,43/100,这样,分母是10、100、1000……的分数,可以直接化成小数。
生2:象7/25,这样,分母是10、100、1000 ……的因数的,可以通分化成分母是10、100、1000 ……的分数,再直接化成小数。
师:刚才同学们总结了分数化小数的两种特殊的方法,再加上之前我们总结的分数化小数一般方法,一共有三种方法,谁来说说分数化小数的三种方法?
出示灯片:方法(齐读)
希望大家在做分数化小数的实际做题的过程中要根据题目的特点灵活的选择恰当的方法,提高做题的速度和准确率。
[设计意图:由于学生已经掌握了分母是10、100、1000、……的分数化成小数的方法,对于分母不是10、100、1000……的分数化成小数,不能直接化成小数,于是产生了认知上的冲突,从而激发起学生解决问题的欲望,此时让学生分组讨论、研究,学生在合作交流中自己找到了解决问题的办法。}
五、拓展延伸,丰富活力
师:同学们真了不起,不但帮助小朋友们解决了问题,而且还学到了这么多的数学知识。接下来老师就要考考大家,看看你们是否会运用这些知识解决实际问题。
1.基本题型
(1)数学书99页1题
学生观察图,结合分数和小数的意义思考并独立完成。完成后,分别请学生说一说每个图中分数和小数的意义。
(2)数学书99页3题
学生先独立连线,然后集体交流方法。可以将小数化成分数,然后与下面的分数比较;也可以将分数化成小数,再与上面的小数比较。
2.灵活题型,
有三位同学进行登山比赛,从山下到山顶,甲用了3/4时,乙用了0.8时,丙用了3/25时,你能比较出哪位同学登得快吗?先试着做,然后汇报
师:看来同学们做这道题都是用分数化小数的方法来比较大小的?为什么不用小数化分数的方法呢?
生:小数化分数的方法麻烦,分母不同得先通分化成同分母分数才能比较大小
小结:当分数和小数比较大小时,一般都把分数转化为小数来比较大小简便。
3.知识拓展,100页,你知道吗?
师:同学们,其实有些分数能化成有限小数,有些分数不能化成有限小数,这其中有什么奥秘,同学们想知道吗?请你自学教材第100 页的“你知道吗”,并回答下面两个问题:
(灯片)思考:(1)通过阅读,你了解了什么?
(2)7/8,7/25,7/40,7/9.7/30,7/44,这些分数哪些能化成有限小数?哪些不能化成有限小数?为什么?
生:一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2 和5 以外的质因数,这个分数就不能化成有限小数。(灯片)
师:同学们你们可真棒,分数蕴含着许多奥秘,只要你们仔细研究,就会有更多的收获。
(设计意图:习题的设计力争在突出重点、突破难点、遵循学生认知规律的基础上,体现趣味性、基础性、层次性、灵活性、生活性。本节课既关注了全体学生,又照顾了学有余力的学生。让学生合理运用互化的方法灵活解决生活中的实际问题,在获得知识、运用知识解决问题过程中,体验成功的乐趣,充分让学生感知数学与生活的密切联系,进一步加强对知识的巩固和延伸)
六、总结升华,创造活力
今天我们学习了分数与小数的互化,通过本节课的学习,我们深深地体会到,数学来源于生活,应用于生活,希望同学们能够运用今天所学的知识去解决生活中更多的的实际问题。
(设计意图::本环节的设计让学生感受到知识从生活中来,又回归于生活,它和我们的生活息息相关,我们不是为了学数学而学数学,而是让数学知识更好地为生活服务。
分数与小数的互化
小数化分数
《分数与小数的互化》优秀教案2
目标
使学生掌握最简分数能或者不能化成有限小数的规律,培养学生的判断和推理能力。
教学及训练
重点
掌握最简分数能或者不能化成有限小数的规律。
仪器
教具
教学内容和过程
教学札记
一、复习
1.让学生说一说怎样把下面的小数化成分数。
1.250.20413.480.109
2.把下面的分数化成小数
16
二、新课
1、教学例3
教师出示例3,提问:例3中各分数的分母与例2的有什么不同?怎样把这些分母不是10、100、1000......的分数化成小数?
教师把例题中的分数按照书上的顺序从上到下写出来。
教师:我们先看怎样把化成小数,根据分数与除法的关系,分数的分子相当于除法中的什么?分母相当于除法中的什么?那么以写成什么?
教师在3/4的右面板书:=3÷4,并提问:3除以4你们会做了吗?
然而让学生依次把这些题做完,当做到最后两题时,教师可提醒学生按照题目的要求,用约等号和近似数分别表示出它们的近似值,再引导学生出分数化成小数的一般方法,并让学生把教科书第109页上面的法则读一遍,同时指出例题中把分数改写成除法算式,目的是强调分数与除法的关系,计算熟练以后这一步可以省略不写。
2.教学最简分数能或者不能化成有限小数的规律。
我们把每个分数的分母分解质因数(如下)。
4=2×225=5×540=2×2×2×5
9=3×314=2×7
引导学生想出:能化成有限小数的分母中只含有质因数2和5,如果分母中含有2和5以外的质因数,就不能化成有限小数。
然后教师归纳成书上的.结语,还要向学生指出:看一个分数能不能化成有限小数,首先要看这个分数是不是最简分数,不是最简分数的,要把它约成最简分数后再运用这一规律来判断。
2.做书上第109页下面”练一练“中的题目
让学生先直接运用规律判断,并说一说判断的依据,再把分数化成小数来验证。
三、课堂练习
做练习二十一的第5-10题
1、第5题,让学生自己做,教师巡视,发现问题,及时辅导。
2、第6题,让学生独立做,订正时让学生说一说这些分数化成的小数之间有什么联系,使学生发现只要记住等于0.5就容易想出等于0.25(0.5的一半),也容易想出等于0.75(3个0.25),等于0.125(0.25的一半)等等。
3.第7、题,让学生先直接判断,再抽出两个分数化成小数来检验判断的是否正确。
4.第8、9、题,让学生独立做,教师巡视,检查学生化成的小数对不对,订正时指名说一说哪些分数能化成有限小数,哪些分数不能化成有限小数。
6.第10题,提示学生如果能直接看出谁大、谁小可以直接判断,如果看不出来,就要把分数化成小数或者把小数化成分数再进行判断,哪种简便就用哪种方法,订正时指名说一说自己是怎样判断的,对运用简便方法进行判断的同学,要给予鼓励。
四、
教师:能化成有限小数的最简分数有什么特点?怎样判断一个最简分数能不能化成有限小数?
【《分数与小数的互化》优秀教案】相关文章:
分数、小数互化教学反思03-14
《分数和小数的互化》教学反思08-22
《分数和小数的互化》教学反思11-09
《小数、分数、百分数的互化》的教学反思03-31
百分数与小数的互化教学反思03-23
《百分数与小数互化》教学反思07-03
分数的意义优秀教案02-25
小数的意义教案09-22
《小数的意义》教案03-12