- 八年级上册数学教案 推荐度:
- 相关推荐
八年级数学上册教案
作为一名教师,通常会被要求编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那么问题来了,教案应该怎么写?以下是小编为大家整理的八年级数学上册教案,仅供参考,欢迎大家阅读。
八年级数学上册教案1
教学目标:
(1)通过观察操作,认识轴对称图形的特点,掌握轴对称图形的概念。
(2)能准确判断哪些事物是轴对称图形。
(3)能找出并画出轴对称图形的对称轴。
(4)通过实验,培养学生的抽象思维和空间想象能力。
(5)结合教材和联系生活实际培养学生的学习兴趣和热爱生活的情感。
教学重点:
(1)认识轴对称图形的特点,建立轴对称图形的概念;
(2)准确判断生活中哪些事物是轴对称图形。
教学难点:
根据本班学生学习的实际情况,本节课教学的难点是找轴对称图形的对称轴。
教学过程:
一、认识对称物体
1、出示物体:今天秦老师给大家带来了一些物体,这是我们学校的同学参加数学竞赛获得的奖杯。这时一架轰炸战斗机。这是海狮顶球。
2、请同学们仔细观察这些物体,想一想它们的外形有什么共同的特点。(可能的回答:对称)
(但部分学生这时并不真正理解何为对称)
追问:对称?你是怎样理解对称的呢?
(可能的回答:两边是一样的)
像这样两边形状、大小都完全相同的物体,我们就说它是对称的。(板书:对称)像这样对称的物体,在我们的生活中你看到过吗?谁来说说看?
(可能正确的回答:蝴蝶、蜻蜓……)
(可能错误的回答:剪刀)
若有错误答案则如此处理。追问:剪刀是不是对称的?学生产生分歧,有说是,有说不是。剪刀两边不是完全一样的,所以它不对称。但是沿着轮廓把它画在纸上,是一个对称的。
二、认识对称图形
1、这些对称的物体,我们把它画在纸上,就得到这样一些平面图形。(出示图片)这些图形还是对称的吗?(是对称的)
同学们真聪明,一眼就能看出这些图形都是对称的。那么像这样的图形,我们就把它们叫做——(生齐说:对称图形)
(师在“对称”后接着板书:图形)
2、是不是所有的图形都是对称的?它们又是怎样对称的?我们又怎样证明它们是不是对称图形?这就是我们这节课要研究的问题。为了研究这些问题,老师还带来了一些平面图形,你们看——
(师在黑板上贴出图形)
边贴边说:汽车图形、钥匙图形、桃子图形、蝴蝶图形、青蛙图形、竖琴图形、香港区徽图形。
这些图形都是对称的吗?(不是)
3、你们能给它们分分类吗?(能)谁愿意上来分一分?
你准备怎么分类?(分成两类:一类是对称图形,一类是不对称图形)
问全班同学:你们同意吗?(同意)
你们怎么知道这些图形就是对称图形?有什么办法来证明吗?(对折)
好,我们用这个办法试一下。谁愿意上来折给大家看的?自己上来,选择一个喜欢的图形折给大家看。
4、图形对折后你发现了什么?谁先说?(可能的回答:对折后两边一样或对折后两边重叠)
你们所说的两边一样、两边重叠,也就是说对折后两边重合了。
(师板书:重合)(若有说出完全重合则板书:完全重合)
请将对折后的`对称图形贴到黑板上,谢谢。
师指不对称图形。同学们刚才我们通过把这些对称图形对折,发现对折后两边重合了,现在再请几位同学上来折一折不对称图形,看看这次又有什么发现?还是自己上来。
折后你发现了什么?(可能的回答:没有重合、对折后两边不一样)它们有没有重合?一点点重合都没有吗?
(有一点重合)
拿一个对称图形和同学折过的不对称图形比较。这个图形对折后重合了,这个也重合了,那这两种重合有什么不一样吗?
(可能的回答:这个全部重合了,这个没有)
这些对称的图形对折后全部重合了,也就是完全重合了!
(师在“重合”前板书:完全)而不对称图形只是部分重合。
好,谢谢你们,请将图形放这(不对称图形下黑板)
大家的表现非常出色,奖励一下我们自己,来拍拍手吧!
“一——二——停!”我们的两只手掌现在是——
(生齐说:完全重合)
三、认识对称轴,对称轴的画法
同学们都很聪明,课前你们都准备了彩纸、剪刀,如果请你用这些材料创作一个对称图形,行吗?
1、请将你创作的对称图形,慢慢打开,问:你们发现了什么?
(中间有一条折痕)
大家把手中的对称图形举起来,看看是不是每个对称图形中间——都有一条折痕。这些折痕的左右两边——(生齐说:完全重合)。
这条折痕所在的直线,有它独有的名称叫做“对称轴”。
(在“对称图形”前板书:轴)
像这样的图形,我们就把它们叫做“轴对称图形”。
(师手指板书,边说边把“对折——完全重合——轴对称图形”连起来)
现在大家知道了这个图形是——轴对称图形。这个呢?这个呢?他们都是——轴对称图形。接下来请你看着自己创作的图形说说。
谁来说说,怎样的图形是轴对称图形?
可以上来拿一个轴对称图形说。请学生用自己的语言说。
2、师拿一张轴对称图形,随便折两下。
这是一个轴对称图形吗?是的。师随便折两下。
谁来说说这个轴对称图形的对称轴是那条?
(一条都不是。)为什么?
只有对折后两边完全重合的折痕才是对称轴。
请你来折出它的对称轴。通常我们用点划线表示对称轴。
师示范。请你在所创作的轴对称图形上用点划线表示出对称轴。
四、平面图形中的轴对称图形,及它们的对称轴各有几条。
1、对于轴对称图形,其实我们并不陌生,在我们认识的一些平面图形中应该就有一些是轴对称图形。我们先回忆一下学习过的平面图形有哪些?
(可能的回答:正方形、长方形、平行四边形、圆形、梯形、三角形等等)(教师板书,适当布局)
同学们说的是否正确呢?用什么办法来证明?(对折)如果它是轴对称图形,那它有几条对称轴呢?
好,那我们就拿出课前准备的平面图形,用对折的方法来证明,注意如果它有对称轴请你折出来。
结论出来了吗?现在你的判断和刚才还是一样的吗?
3、问:你想汇报什么?学生汇报。教师机动回答,回答语可有:
这位同学既能给出判断结果,又能说出判断的理由,非常好。
看来,仅靠经验、观察得出的结论有时并不准确,还需要动手实验进行验证。
能抓住轴对称图形的特征进行分析,不错!
也许一般的平行四边形不是轴对称图形,但有些特殊的平行四边形却是比如:长方形和正方形。以此类推……
圆有无数条对称轴。所有的圆都是轴对称图形。
讨论平行四边形、梯形、三角形时,我们既要考虑一般的图形,又要考虑特殊的图形。但是关于圆形,我们却无需考虑这么多,正如你所说的,所有的圆都是轴对称图形,不存在什么特殊的情况。看来,数学学习中,具体的问题还得具体对待。
(一般三角形、一般梯形、直角梯形、一般平行四边形不是轴对称图形,等腰三角形、等腰梯形、正三角形、长方形、正方形和圆都是轴对称图形)等腰梯形(1条),正五边形(5条),圆(无数条)
4、用测量的方法找对称轴。
刚才,大家都用对折的方法找出了他们的对称轴,但是如果老师请你在黑板面上找出对称轴呢?
大家都有一张长方形纸,假设它就是不能对折的黑板面,怎么画出它的对称轴?(我们可以用测量的方法,来找出对边的中点,连结中点。用同样的方法,我们可以画出另一条对称轴。
现在请同学们打开书本,画出书上长方形的对称轴。(小组内交流检查)
五、练习
1、学习了什么是轴对称图形,现在请在你身边的物体上找出三个轴对称图形。(瓷砖面、电视机柜、衣服、国旗?、凳面、桌面)
问:国旗是轴对称图形吗?
产生冲突。说明:不但要观察外形,还要观察里面的图案。
2、判断国旗是否是轴对称图形。
3、找阿拉伯数字中的轴对称图形
4、领略窗花的美丽,再从中找到创作的灵感,创作轴对称图形。教师可出示一些指导性图片。
选择一些贴到黑板上,最后出示“美”字。
总结:轴对称图形非常美丽,因此被广泛的运用于服装、家具、交通、商标等方面的设计中,希望大家能够运用今天的知识,把我们的教室、把你的家以后把我们的祖国装扮得更漂亮。
八年级数学上册教案2
教学目标:
理解同底数幂的乘法法则,运用同底数幂的乘法法则解决一些实际问题.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到般再到特殊的认知规律.
教学重点与难点:
正确理解同底数幂的乘法法则以及适用范围.
教学过程:
一、回顾幂的相关知识
an的意义:an表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,n是指数.
二、创设情境,感觉新知
问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?
学生分析,总结结果
1012×103=()×(10×10×10)==1015.
通过观察可以发现1012、103这两个因数是同底数幂的`形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.
学生动手:
计算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整数)
教师引导学生注意观察计算前后底数和指数的关系,并能用自己的语言描述.
得到结论:
(1)特点:这三个式子都是底数相同的幂相乘.相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.
(2)一般性结论:am·an表示同底数幂的乘法.根据幂的意义可得:
am·an=()·()=()=am+n
am·an=am+n(m、n都是正整数),即为:同底数幂相乘,底数不变,指数相加
三、小结:
同底数幂的乘法的运算法则:同底数幂相乘,底数不变,指数相加.
注意两点:
一是必须是同底数幂的乘法才能运用这个性质;
二是运用这个性质计算时一定是底数不变,指数相加,即am·an=am+n
八年级数学上册教案3
一、 教学目标
1.了解分式、有理式的概念.
2.理解分式有意义的条件,能熟练地求出分式有意义的条件.
二、重点、难点
1.重点:理解分式有意义的条件.
2.难点:能熟练地求出分式有意义的条件.
三、课堂引入
1.让学生填写P127[思考],学生自己依次填出:,,,.
2.学生看问题:一艘轮船在静水中的最大航速为30 /h,它沿江以最大航速顺流航行90 所用时间,与以最大航速逆流航行60 所用时间相等,江水的流速为多少?
请同学们跟着教师一起设未知数,列方程.
设江水的流速为v /h.
轮船顺流航行90 所用的时间为小时,逆流航行60 所用时间小时,所以=.
3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?
四、例题讲解
P128例1. 当下列分式中的字母为何值时,分式有意义.
[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解
出字母的取值范围.
[补充提问]如果题目为:当字母为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.
(补充)例2. 当为何值时,分式的值为0?
(1) (2) (3)
[分析] 分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的的解集中的公共部分,就是这类题目的解.
[答案] (1)=0 (2)=2 (3)=1
五、随堂练习
1.判断下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 当x取何值时,下列分式有意义?
(1) (2) (3)
3. 当x为何值时,分式的'值为0?
(1) (2) (3)
六、课后练习
1.下列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?
(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.
(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.
(3)x与的差于4的商是 .
2.当x取何值时,分式 无意义?
3. 当x为何值时,分式 的值为0?
八年级数学上册教案4
教学目的:
1、在具体的操作活动中,让学生认、读、写11-20各数,掌握20以内数的顺序,初步建立数位的概念。
2、结合学生的实际情况,让学生填写算式。
3、在教学中渗透数的顺序,并进行社会秩序教育。
4、学会与人合作,体会计算的多样化,发展学生思维。
教学重点:
掌握20以内数的顺序。
教学难点:
初步建立数的概念
教学准备:
每组一个数位计数器及40-50根小棒等。
教学方法:
抓问题,用多种游戏,把抽象的数位具体化。
教学步骤:
一、创设情景,寻找关键问题
1、数学课研究数学问题,一些小棒会有什么数学问题。
(每张桌子发40-50根小棒,玩小棒时间为3-5分钟)
2、你发现了什么数学问题。
(目的:练习20以内数的顺序,也可以在玩小棒中发现十根捆一捆)
3、游戏,看谁的手小巧。
老师报数,学生用棒子表示,讨论:快的同学的诀窍。
出示:十根可以捆一捆。
再进行游戏,让学生习惯中把1捆当作10根用。
4、完成:
()个一()个十
试一试,在计数器拔出10
个位只有几颗珠子,怎么办?(10个一是1个10)
在个位拔上一颗珠子,表示1个十,也表示10个一。
二、自主合作,解决数位顺序。
在解决了10是1个十也是10个一后,还能过度试一试在计数器上表示。接下来就是让学生通过自主合作,数位,组成和算式结合,理解11-20各数。
1、11-20各数在计数器上怎么表示呢?
问题提出后,可以组织学生讨论交流,并加以解决,并结合p68的图示表达自己的`想法,学生之间互相交流,实现生生互动。
(这儿注意11-20的表达多样,只要求至少一样,方法选择,方法应用应由学生通过自主交流来确定。)
2、
1个十,1个一是1110+1=11
10和11,十位上是1,没有变,个位由0变成1,就是11。
3、15、19、20的数位可重点检查。
(20的数位可由10-20,也可19-20来描述。)
4、小结,从右边起,第一位是个位,第二位是十位,数位不一样,数也不一样,十位上1表示1个十,个位上1表示1个一。
5、练习(口算)
10+910+810+710+610+5
10+410+39+108+107+10
6+105+104+103+10
三、实践应用,实现知识延伸
1、寻找粗心丢失的数。
游戏报数。(报数时丢一些中间数)
2、开火车顺数
游戏:数数(顺数和倒数)
3、拔珠游戏(师生――生生)
报数13,拔13并写出13,同时说13的含义,还可画珠。
4、p691-6自己完成。
四、课外实践,拓展知识应用。
1、完成10-20各数数位图及小棒图。
2、和父母互说10-20各数组成。
八年级数学上册教案5
教学目标:
知识与技能目标:
1.掌握矩形的概念、性质和判别条件。
2.提高对矩形的性质和判别在实际生活中的应用能力。
过程与方法目标:
1.经历探索矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法。
2.知道解决矩形问题的基本思想是化为三角形问题来解决,渗透转化归思想。
情感与态度目标:
1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探索精神。
2.通过对矩形的探索学习,体会它的内在美和应用美。
教学重点:
矩形的性质和常用判别方法的理解和掌握。
教学难点:
矩形的性质和常用判别方法的综合应用。
教学方法:
分析启发法
教具准备:
像框,平行四边形框架教具,多媒体课件。
教学过程设计:
一、情境导入:
演示平行四边形活动框架,引入课题。
二、讲授新课:
1.归纳矩形的定义:
问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?(学生思考、回答。)
结论:有一个内角是直角的平行四边形是矩形。
2.探究矩形的`性质:
(1)问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?(学生思考、回答.)
结论:矩形的四个角都是直角。
(2)探索矩形对角线的性质:
让学生进行如下操作后,思考以下问题:(幻灯片展示)
在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.
①随着∠α的变化,两条对角线的长度分别是怎样变化的?
②当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?
③当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?
(学生操作,思考、交流、归纳。)
结论:矩形的两条对角线相等.
(3)议一议:(展示问题,引导学生讨论解决)
①矩形是轴对称图形吗?如果是,它有几条对称轴?如果不是,简述你的理由.
②直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?
(4)归纳矩形的性质:(引导学生归纳,并体会矩形的“对称美”)
矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.
例解:(性质的运用,渗透矩形对角线的“化归”功能)
如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4
厘米,求BD与AD的长。
(引导学生分析、解答)
探索矩形的判别条件:(由修理桌子引出)
(5)想一想:
对角线相等的平行四边形是怎样的四边形?为什么?
结论:对角线相等的平行四边形是矩形.
(理由可由师生共同分析,然后用幻灯片展示完整过程.)
(6)归纳矩形的判别方法:(引导学生归纳)
有一个内角是直角的平行四边形是矩形.
对角线相等的平行四边形是矩形.
三、课堂练习:
四、新课小结:
通过本节课的学习,你有什么收获?
(师生共同从知识与思想方法两方面小结。)
五、作业设计:P99习题4.6第1、2、3题。
板书设计:
1.矩形
矩形的定义:
矩形的性质:
前面知识的小系统图示:
2.矩形的判别条件:
例1
课后反思:
在平行四边形及菱形的教学后。学生已经学会自主探索的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的能力要慢慢的熟练。不可能一下就掌握熟练。
八年级数学上册教案6
教学目标
一、教学知识点:
1.旋转的定义.2.旋转的基本性质.
二、能力训练要求:
1.通过具体实例认识旋转,理解旋转的基本涵义.
2.探索旋转的基本性质,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.
三、情感与价值观要求
1.经历对生活中与旋转现象有关的图形进行观察、分析、欣赏以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.
2.通过学习使学生能用数学的眼光看待生活中的有关问题,进一步发展学生的数学观.
教学重点:旋转的基本性质.
教学难点:探索旋转的基本性质.
教学方法:
1、遵循学生是学习的主人的原则,在为学生创造大量实例的基础上,引导学生自主思考、交流、讨论、归纳、学习。
2、采用多媒体课件辅助教学。
教学过程:
一.巧设情景问题,引入课题
日常生活中,我们经常见到以下情景(出示图示:钟表、汽车方向盘、辘轳或电脑演示:钟表指针的转动、汽车方向盘的转动、辘轳打水的情景). (1)上面情景中的转动现象,有什么共同特征?(2)钟表的指针、钟摆在转动过程中,其形状、大小、位置是否发生改变?汽车方向盘的转动呢?
1.在这些转动的现象中,它们都是绕着一个点转动的.
2.每个物体的转动都是向同一个方向转动.
3.钟表的指针、钟摆在转动过程中,它的形状、大小没有变化,只是它的位置有所改变.
4.汽车的方向盘在转动过程中,同样它的形状、大小没有改变,方向盘上的每点的位置所变化.同学们观察得很仔细,我们把这样的转动叫旋转(circumrotate),这节课我们就来探讨生活中的旋转.
二.讲授新课
在数学中,如何定义旋转呢?在平面内,将一个图形绕着一个定点沿某个方向转动一个角度,这样的图形运动称为旋转(circumrotate).这个定点称为旋转中心,转动的角称为旋转角.注意:“将一个图形绕一个定点沿某个方向转动一个角度”意味着图形上的每个点同时都按相同的方式转动相同的角度.在物体绕着一个定点转动时,它的形状和大小不变.因此,旋转具有不改变图形的大小和形状的特征.
议一议:(课本67页)答:(1)旋转中心是O点,旋转角是∠AOD.旋转角还可以是∠BOE.
(2)四边形AOBC绕O点旋转到四边形DOEF的位置.这时点A旋转到点D的位置,点B旋转到点E的位置.
(3)可以把OA看作钟表的指针,它OA的位置旋转到OD的位置,指针的长短、形状没有变化,所以OA与OD是相等的.同样,线段OB与OE是相等的.
(4)因为四边形AOBC绕O点旋转到四边形DOEF的位置,在旋转的过程中,图形上的每个点同时都按相同的方向旋转相同的角度,所以∠AOD与∠BOE是相等的.
(4)也可以这样理解:因为四边形AOBC绕O点旋转到四边形DOEF的位置,所以∠AOB与∠DOE是相等的,又因为∠BOD是公共角,所以,∠AOD与∠BOE是相等的.
看上图,四边形DOEF是由四边形AOBC绕O点旋转得到的,经过旋转,点A移动到点D的位置,点B移动到点E的位置,点C移动到点F的位置,则点A与点D、点B与点E、点C与点F就是对应点.从刚才大家得出的结论中,能否总结出旋转的性质呢?
答:因为O是旋转中心,点A与点D是对应点,点B与点E是对应点,且OA=OD,OB=OE,所以可以知道:对应点与旋转中心所连的线段的长度是相等的.
因为点A与点D、点B与点E是对应点,且∠AOD=∠BOE,所以由此可以知道:对应点与旋转中心的连线所成的角是互相相等的.
由此我们得到了旋转的基本性质:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的`角度.任意一对对应点与旋转中心的连线所成的角都是旋转角,旋转角彼此相等.对应点到旋转中心的距离相等.
[例1](课本68页例1)
[师生共析]经演示(钟表实物或教具)可以知道,分针是绕着表面盘的中心位置,即钟表的轴心旋转的,它旋转一周时的度数是360°,一周需要60分,因此每分钟分针所转过的度数是6°,这样20分时,分针逆转的角度即可求出.
解:(见课本68页)
书上68页做一做
三.课堂练习
课本P69随堂练习.
1.解:旋转5次得到,旋转的角度分别等于60°、120°、180°、240°、300°.
四.课时小结
五.课后作业:课本P69习题3.4 1、2、3.
六.活动与探究
1.分析图中的旋转现象.过程:让学生画图、找规律,也可让他们通过剪切,找到旋转规律.
结果:旋转现象为:
整个图形可以看做是图形的八分之一(一组大小不等的三个“角”)绕中心位置,按照同一方向连续旋转45°、90°、135°、180°、225°、270°、315°前后的图形共同组成的.
整个图形也可以看做是图形的四分之一(两组相邻的“角”)绕中心位置连续旋转90°、180°、270°前后的图形共同组成的.
整个图形还可以看做是图形的二分之一(四组相邻的“角”)绕中心位置旋转180°前后的图形共同组成的.
2.图中是否存在这样的两个三角形,其中一个是另一个通过旋转得到的?
过程:同样让学生在画图过程中体会图形中每个三角形之间的关系;或让学生仔细观察图形,分析图形,找出关系.
结果:图中存在这样的三角形,其中一个是另一个通过旋转得到的.
整个图形可以看做图形的四分之一(一组“楼梯”)绕中心连续旋转90°、180°、 270°.前后的图形共同组成的.
整个图形也可以看做图形的二分之一(两组“楼梯”)绕中心位置旋转180°前后的图形共同组成的.
板书设计:略
教学反思:本节课仍然是图形的基本变换。借助多媒体教学直观生动形象。学生一般都能在教师的指导下掌握。也在培养学生的空间想象能力。
八年级数学上册教案7
知识目标:理解变量与函数的概念以及相互之间的关系
能力目标:增强对变量的理解
情感目标:渗透事物是运动的,运动是有规律的辨证思想
重点:变量与常量
难点:对变量的判断
教学媒体:多媒体电脑,绳圈
教学说明:本节渗透找变量之间的简单关系,试列简单关系式
教学设计:
引入:
信息1:当你坐在摩天轮上时,想一想,随着时间的变化,你离开地面的高度是如何变化的?
信息2:汽车以60km/h的速度匀速前进,行驶里程为skm,行驶的时间为th,先填写下面的表格,在试用含t的式子表示s.
t/m 1 2 3 4 5
s/km
新课:
问题:(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y?
(2)在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量 m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)?
(3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积s的式子表示圆的半径r?
(4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的长为xm,面积为sm2,怎样用含x的式子表示s?
在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。
指出上述问题中的变量和常量。
范例:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?
(1)用总长为60m的篱笆围成矩形场地,求矩形的面积s(m2)与一边长x(m)之间的关系式;
(2)购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的`关系;
(3)运动员在4000m一圈的跑道上训练,他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;
(4)银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。
活动:
1.分别指出下列各式中的常量与变量.
(1)圆的面积公式s=πr2;
(2)正方形的l=4a;
(3)大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=2.5x.
2.写出下列问题的关系式,并指出不、常量和变量.
(1)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.
(2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是s,求s与n之间的关系式.
思考:怎样列变量之间的关系式?
小结:变量与常量
作业:阅读教材5页,11.1.2函数
八年级数学上册教案8
教学目标
1.等腰三角形的概念。
2.等腰三角形的性质。
3.等腰三角形的概念及性质的应用。
教学重点:
等腰三角形的概念及性质。 2.等腰三角形性质的应用。
教学难点:
等腰三角形三线合一的性质的理解及其应用。
教学过程
Ⅰ.提出问题,创设情境
在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案。这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形。来研究:
①三角形是轴对称图形吗?
②什么样的三角形是轴对称图形?
有的三角形是轴对称图形,有的三角形不是。
问题:那什么样的三角形是轴对称图形?
满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形。
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形。
Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形。
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的`对称点C,连结AB、BC、CA,则可得到一个等腰三角形。
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形。相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角。同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角。
思考:
1.等腰三角形是轴对称图形吗?请找出它的对称轴。
2.等腰三角形的两底角有什么关系?
3.顶角的平分线所在的直线是等腰三角形的对称轴吗?
4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
结论:等腰三角形是轴对称图形。它的对称轴是顶角的平分线所在的直线。因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线。
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系。
沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高。
由此可以得到等腰三角形的性质:
1.等腰三角形的两个底角相等(简写成“等边对等角”).
2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质。同学们现在就动手来写出这些证明过程).
如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.
[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,
求:△ABC各角的度数。
分析:根据等边对等角的性质,我们可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形内角和为180°,就可求出△ABC的三个内角。
把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷。
解:因为AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等边对等角).
设∠A=x,则∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.
[师]下面我们通过练习来巩固这节课所学的知识。
Ⅲ.随堂练习:1.课本P51练习1、2、3. 2.阅读课本P49~P51,然后小结。
Ⅳ.课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用。等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高。
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们。
Ⅴ.作业:课本P56习题12.3第1、2、3、4题。
板书设计
12.3.1.1等腰三角形
一、设计方案作出一个等腰三角形
二、等腰三角形性质:1.等边对等角2.三线合一
八年级数学上册教案9
教学目标:
1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。
2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。
教学重点:本节课重点是掌握已知对称轴L和一个点,要画出点A关于L的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。
教学方法:动手实践、讨论。
教学工具:课件
教学过程:
一、 先复习轴对称图形的定义,以及轴对称的'相关的性质:
1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________
2.轴对称的三个重要性质______________________________________________
_____________________________________________________________________
二、提出问题:
二、探索练习:
1. 提出问题:
如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。
你能画出这个图案的另一半吗?
吸引学生让学生有一种解决难点的想法。
2.分析问题:
分析图案:这个图案是由重要六个点构成的,要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可
问题转化成:已知对称轴和一个点A,要画出点A关于L的对应点 ,可采用如下方法:`
在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。
三、对所学内容进行巩固练习:
1. 如图,直线L是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。
2. 试画出与线段AB关于直线L的线段
3.如图,已知 直线MN,画出以MN为对称轴 的轴对称图形
小 结: 本节课学习了已知对称轴L和一个点如何画出它的对应点,以及如何补全图形,并利用轴对称的性质知道如何设计轴对称图形。
教学后记:学生对这节课的内容掌握比较好,但对于利用轴对称的性质来设计图形觉得难度比较大。因本节课内容较有趣,许多学生上课积极性较高
八年级数学上册教案10
教学目标
知识与能力:
1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.
2.理解平行四边形的另一种判定方法,并学会简单运用.
过程与方法:
1.经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识.
2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.
情感、态度与价值观:
通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.
教学方法 启发诱导式 教具 三角尺
教学重点 平行四边形判定方法的探究、运用.
教学难点 对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用
教学过程:
第一环节 复习引入:
问题1:
1.平行四边形的定义是什么?它有什么作用?
2.判定四边形是平行四边形的方法有哪些?
(1)两组对边分别平行的四边形是平行四边形.
(2)一组对边平行且相等的四边形是平行四边形.
(3)两条对角线互相平分的四边形是平行四边形.
第二环节 探索活动
活动:
工具:两对长度分别相等的木条。
动手:能否在平面内用这四根笔摆成一个平行四边形?
思考1.1:你能说明你所摆出的四边形是平行四边形吗?
已知:四边形ABCD中,AD=BC,AB=CD. 试说明四边形ABCD是平行四边形.
思考1.2:以上活动事实,能用文字语言表达吗?
学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究活动1,共同得到:
(1)只有将两两相等的木条分别作为四边形的两组对边才能得到平行四边形.
(2)通过观察、实验、猜想到:
两组对边分别相等的四边形是平行四边形.
在此活动中,教师应重点关注:
(1)学生在拼四边形时,能否将相等两木条作为四边形的对边;
(2)转动四边形,改变它的形状的过程中,能否观察得到在此过程中它始终是一个平行四边形;
(3)学生能否通过独立思考、小组合作得出正确的证明思路.
第三环节 巩固练习
例1 如图:在四边形ABCD中,∠1=∠2,∠3=∠4.四边形ABCD是平行四边形吗?为什么?
八年级数学上册教案例2 如图所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,图中有哪些互相平行的线段?
随堂练习
1.判断下列说法是否正确
(1)一组对边平行且另一组对边相等的四边形是平行四边形 ( )
(2)两组对角都相等的`四边形是平行四边形 ( )
(3)一组对边平行且一组对角相等的四边形是平行四边形 ( )
(4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )
2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?为什么?
3.如图所示,四个全等的三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由.
4.如图:AD是ΔABC的边BC边上的中线.
(1)画图:延长AD到点E,使DE=AD,连接BE,CE;
(2)判断四边形ABEC的形状,并说明理由.
第四环节 小结:
师生共同小结,主要围绕下列几个问题:
(1)判定一个四边形是平行四边形的方法有哪几种?
(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?
(3)平行四边形判定的应用 集备意见 个案补充
八年级数学上册教案11
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
3、难点的突破方法:
首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析
1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
四、课堂引入
采用教材原有的.引入问题,设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的?
(3)、第二组数据的频数5指什么呢?
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
所用时间t(分钟)人数
0 0<≤ 6 20 30 40 50 (1)、第二组数据的组中值是多少? (2)、求该班学生平均每天做数学作业所用时间 2、某班40名学生身高情况如下图, 请计算该班学生平均身高 答案1.(1).15. (2)28. 2. 165 六、课后练习: 1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表 部门A B C D E F G 人数1 1 2 4 2 2 5 每人创得利润20 5 2.5 2 1.5 1.5 1.2 该公司每人所创年利润的平均数是多少万元? 2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄? 年龄频数 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。 答案:1.约2.95万元2.约29岁3.60.54分贝 一、内容和内容解析 1、内容 正比例函数的概念。 2、内容解析 一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。 对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征。 本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。 基于以上分析,确定本节课的教学重点:正比例函数的概念。 二、目标和目标解析 1、目标 (1)经历正比例函数概念的形成过程,理解正比例函数的概念; (2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。 2、目标解析 达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念。 达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。 三、教学问题诊断分析 正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的.两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度。 因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程。 学习目标: 1.了解方差的定义和计算公式。 2.理解方差概念的产生和形成的过程。 3.会用方差计算公式来比较两组数据的波动大小。 重点、难点: 1.重点:方差产生的必要性和应用方差公式解决实际问题。 2.难点:理解方差公式 一.学前准备: 问题农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量(单位:t)如表所示。 甲7.65 7.50 7.62 7.59 7.65 7.64 7.50 7.40 7.41 7.41 乙7.55 7.56 7.53 7.44 7.49 7.52 7.58 7.46 7.53 7.49 根据这些数据估计,农科院应该选择哪种甜玉米种子呢? 来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance),记作。 意义:用来衡量一批数据的波动大小。 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。 二、归纳: (1)研究离散程度可用 (2)方差应用更广泛衡量一组数据的波动大小 (3)方差主要应用在平均数相等或接近时 (4)方差大波动大,方差小波动小,一般选波动小的 例题:在一次芭蕾舞比赛中,甲乙两个芭蕾舞团都表演了舞剧《天鹅湖》,参加表演的女演员的'身高(单位:cm)分别是: 甲163 164 164 165 165 166 166 167 乙163 165 165 166 166 167 168 168 哪个芭蕾舞团的女演员的身高比较整齐? 三.自我检查: 1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为。 2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下: 甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7 经过计算,两人射击环数的平均数相同,但S,所以确定去参加比赛。 3.甲、乙两台机床生产同种零件,10天出的次品分别是( ) 甲:0、1、0、2、2、0、3、1、2、4 乙:2、3、1、2、0、2、1、1、2、1 分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好? 一、教学目标 1、认识中位数和众数,并会求出一组数据中的众数和中位数。 2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。 3、会利用中位数、众数分析数据信息做出决策。 二、重点、难点和难点的突破方法: 1、重点:认识中位数、众数这两种数据代表 2、难点:利用中位数、众数分析数据信息做出决策。 3、难点的突破方法: 首先应交待清楚中位数和众数意义和作用: 中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。 教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。 在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。 三、例习题的意图分析 1、教材P143的例4的意图 (1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。 (2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述) (3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。 (4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。 2、教材P145例5的意图 (1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。 (2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述) (3)、例5也反映了众数是数据代表的一种。 四、课堂引入 严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。 五、例习题的分析 教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。 教材P145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的`众数可以得到,所提的建议应围绕利于商家获得较大利润提出。 六、随堂练习 1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件) 1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150 求这15个销售员该月销量的中位数和众数。 假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。 2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示: 1匹1.2匹1.5匹2匹 3月12台20台8台4台 4月16台30台14台8台 根据表格回答问题: 商店出售的各种规格空调中,众数是多少? 假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定? 答案:1. (1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。 2、 (1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。 七、课后练习 1、数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是 2、一组数据23、27、20、18、X、12,它的中位数是21,则X的值是。 3、数据92、96、98、100、X的众数是96,则其中位数和平均数分别是( ) A.97、96 B.96、96.4 C.96、97 D.98、97 4、如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( ) A.24、25 B.23、24 C.25、25 D.23、25 5、随机抽取我市一年(按365天计)中的30天平均气温状况如下表: 温度(℃) -8 -1 7 15 21 24 30 天数3 5 5 7 6 2 2 请你根据上述数据回答问题: (1)。该组数据的中位数是什么? (2)。若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天? 答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)约97天 《正方形》教学设计 教学内容分析: ⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。 ⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。 ⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。 学生分析: ⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。 ⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。 教学目标: ⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。 ⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。 ⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。 重点:掌握正方形的性质与判定,并进行简单的推理。 难点:探索正方形的判定,发展学生的推理能 教学方法:类比与探究 教具准备:可以活动的四边形模型。 一、教学分析 (一)教学内容分析 1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社) 2.本课教学内容的地位、作用,知识的前后联系 《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。 3.本课教学内容的特点,重点分析体现新课程理念的特点 本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的`活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。 (二)教学对象分析 1.学生所在地区、学校及班级的特色 我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。 2.学生的年龄特点和认知特点 班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。 教学过程: 一:复习巩固,建立联系。 【教师活动】 问题设置:①平行四边形、矩形,菱形各有哪些性质? ②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。 【学生活动】 学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。 【教师活动】 评析学生的结果,给予表扬。 总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。 演示平行四边形变为矩形菱形的过程。 二:动手操作,探索发现。 活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形? 【学生活动】 学生拿出自备矩形纸片,动手操作,不难发现它是正方形。 设置问题:①什么是正方形? 观察发现,从活动中体会。 【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。 【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。 设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么? 【学生活动】 小组讨论,分组回答。 【教师活动】 总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。 设置问题③正方形有那些性质? 【学生活动】 小组讨论,举手抢答。 【教师活动】 表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角 活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴? 学生活动 折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。 教师活动 演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空? ()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。 学生活动 小组充分交流,表达不同的意见。 教师活动 评析活动,总结发现: 一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形; 有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,; 有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形; 四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。 以上是正方形的判定方法。 正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子? 学生交流,感受正方形 三,应用体验,推理证明。 出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO长,及的度数。 方法一解:∵四边形ABCD是正方形 ∴∠ABC=90°(正方形的四个角是直角) BC=AB=4cm(正方形的四条边相等) ∴=45°(等腰直角三角形的底角是45°) ∴利用勾股定理可知,AC===4cm ∵AO=AC(正方形的对角线互相平分) ∴AO=×4=2cm 方法二:证明△AOB是等腰直角三角形,即可得证。 学生活动 独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。 教师活动 总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。 出示例二:在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的? 学生活动 小组交流,分析题意,整理思路,指名口答。 教师活动 说明思路,从已知出发或者从已有的判定加以选择。 四,归纳新知,梳理知识。 这一节课你有什么收获? 学生举手谈论自己的收获。 请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。 发表评论 教学目标: 情意目标:培养学生团结协作的精神,体验探究成功的乐趣。 能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。 认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。 教学重点、难点 重点:等腰梯形性质的探索; 难点:梯形中辅助线的添加。 教学课件:PowerPoint演示文稿 教学方法:启发法、 学习方法:讨论法、合作法、练习法 教学过程: (一)导入 1、出示图片,说出每辆汽车车窗形状(投影) 2、板书课题:5梯形 3、练习:下列图形中哪些图形是梯形?(投影) 结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。 5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影) 6、特殊梯形的分类:(投影) (二)等腰梯形性质的探究 【探究性质一】 思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影) 猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答) 如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C 想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么? 等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。 【操练】 (1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影) (2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影) 【探究性质二】 如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答) 如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影) 等腰梯形性质:等腰梯形的两条对角线相等。 【探究性质三】 问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答) 问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论) 等腰梯形性质:同以底上的两个内角相等,对角线相等 (三)质疑反思、小结 让学生回顾本课教学内容,并提出尚存问题; 学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。 【八年级数学上册教案】相关文章: 八年级上册人教版数学教案02-27 八年级语文上册教案11-22 生物八年级上册教案02-22 八年级上册数学教学总结05-19 八年级上册的数学教学计划02-10 初一数学上册教案12-12 人教版八年级上册数学教学反思02-05 八年级上册数学教学计划11-10 八年级数学上册教学总结01-03八年级数学上册教案12
八年级数学上册教案13
八年级数学上册教案14
八年级数学上册教案15