- 相关推荐
质数和合数教案优秀
在教学工作者实际的教学活动中,时常要开展教案准备工作,编写教案有利于我们科学、合理地支配课堂时间。来参考自己需要的教案吧!以下是小编为大家整理的质数和合数教案优秀,供大家参考借鉴,希望可以帮助到有需要的朋友。
质数和合数教案优秀1
一、引入
师:找出1~20各数的因数。
(教师可适当分组安排)
师:你发现了什么?
(学生可能回答:1只有1个因数,其余的数都有2个以上因数;2,3,5,7,11,13,17,19这些数的因数都只有1和它本身;……。)
师:今天我们学习的内容就与一个数因数的个数有关。
[设计意图说明:让学生用自己的话描述1~20各数因数的特点,通过观察学生虽然没有质数与合数的概念,但对这些数已经有了自己的分类与认识,为之后的分类与概念的学习打下基础。]
二、新授
探究一:认识质数和合数
师:请同学们按照因数的个数,将这些数分分类。
(学生可能回答:将1,2,3,5,7,11,13,17,19分为一类,它们的因数都是1和它自己本身,其余的数分为一类;将1,4,9,16分为一类,它们的因数个数都是奇数个,其余的分为一类,它们的因数个数都是偶数个;……)
师:同学们都说得非常好,请打开课本翻到第23页,请你按照它的方法分一分。
师:一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。上面这些数中,哪些数是质数(素数)?为什么?
(学生可能回答:2是质数,它的因数只有1和2;3是质数,它的因数只有1和3;2,3,5,7,11,13,17,19都是质数,它们的因数都只有1和它们本身;……。)
师:1是质数吗?
(学生回答:1是质数,它的因数只有1和它本身;1不是质数,1的因数只有1个,质数有2个因数;……。)
师:一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。上面这些数中,哪些数是合数?为什么?
(学生可能回答:4是合数,除了1和4以外,2也是4的`因数;6是合数,除了1和6以外,6的因数还有2和3;……。)
师:1是合数吗?
(学生可能回答:1不是合数,它只有1个因数1。)
小结:1不是质数,也不是合数。
师:你还能找出其他的质数和合数吗?
(学生举例并说明理由)
[设计意图说明:质数和合数的定义可以教师直接给出,也可以让学生自己看书自学,这里的重点是要让学生理解定义,根据定义判断一个数(除了1)是质数还是合数。学生在一开始可能会将1归为质数,这时要提醒学生仔细理解定义中“两个因数”的含义。在小结和板书中也要强调,1不是质数,也不是合数。]
探究二:找出100以内的质数,做一个质数表。(课本p24∕例1。)
(媒体出示图表)
师:你有什么好方法?
(学生回答:先把偶数去掉,它们除了1和本身外,一定还有因数2(教师提示2是质数,不能去掉);除了5以外,个位是5,0的数先去掉;……。)
师:利用我们之前学习到的知识,可以先将2,3,5的倍数划掉(不包括2,3,5)。一直可以划到几的倍数?
(学生可能回答:50的倍数,51的2倍是102,超过100了。)
(学生制作100以内的质数表。)
[设计意图说明:由于小学用到的质数比较少,所以教材中只要求学生找出100以内的质数。这些质数不必要求学生都背熟,但是熟悉20以内的质数还是有必要的。]
*探究三:分解质因数
(媒体出示课本p24∕“你知道吗?” 。)
师:你看懂了吗?什么叫作分解质因数?如何将30进行分解质因数?
(学生可能回答:将一个合数分解成几个质数相乘,先将30分解成2×15,再将15分解成3×5,30=2×3×5;……。)
(教师按照学生回答再对教材提供两种做法给予解释。)
师:以下做法对吗?错误的请改正。
分解质因数:
(1)12=2×6(2)15=1×3×5
(学生可能回答:(1):6不是质数,12=2×2×3;(2):1不是质数也不是合数,15=3×5。)
[设计意图说明:教师可对短除法作适当介绍,在本册教材中,由于允许学生采用多样的方法求最大公因数和最小公倍数,分解质因数也失去了其不可或缺的作用。分解质因数的内容虽然不作为正式教学内容,但作为一种重要的方法和技能,教材还是把它安排在“你知道吗?”中进行介绍,供学生阅读参考。]
三、练习
(课本p25∕练习四。)
四、小结:
1、一个数,如果只有1和它本身两个因数,这样的数叫作质数(或素数)。
2、一个数,如果除了1和它本身还有别的因数,这样的数叫作合数。
3.1不是质数,也不是合数。
五、作业
同步解析与测评p9∕1、(3)(6)(8),2、(2)(4)(5),3、
质数和合数教案优秀2
内容分析:《质数与合数》它是在学生已经掌握了因数和倍数的意义,了解了2.5、3倍数的特征之后学习的又一重要内容,它是学生学习分解质因数,求最大公因数和最小公倍数的基础,在本章教学内容中起着承前启后的重要作用。
学习目标:
1、理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按约数的个数进行分类。
2、培养学生自主探索、独立思考、合作交流的能力。
3、培养学生敢于探索科学之谜的精神,充分展示数学自身的魅力。
学习重点、难点
重:
1、理解掌握质数、合数的概念。
2、初步学会准确判断一个数是质数还是合数。
难:
1、理解掌握质数、合数的概念。
2、初步学会准确判断一个数是质数还是合数。
教学内容
教师活动预设
学生活动预设
问题及设计意图
反思重构
创设情景
请大家列出1~20各数的因数,小组比一比,看谁列的快?
看看他们的因数有什么特点?
请大家按照因数的个数分分类
引出质数和合数的概念
小组内的同学列出20以内各数的因数
讨论,汇报
1)1的因数只有1
2)有的数只有两个因数如,3,5,7,等
3)有的数有多个因数如,4,6,8,9等
分类
汇报
直接引出质数和合数的概念
学习质数和合数
知识拓展
在刚才的分类中,1被分到了哪一类?他是质数还是合数?
现在,我们来判断一下,10以内的数中,哪些是质数,哪些是合数?
做“我说你判断”的游戏,同桌之间互相说出一个数,请对方判断是质数还是合数。
我们已经找出了10以内的质数,那么,大家能找出100以内的`质数吗?
阅读24页“分解质因数”
汇报
独立思考并汇报2,3,5,7是质数,4,6,8,9,10是合数
做游戏
小组讨论方法并按照小组讨论出的方法找出100以内的质数。
阅读
强调:2是质数,也是唯一的一个是偶数的质数
在游戏中渗透对质数和合数的理解
让学生了解如何对一个数进行分解质因数
课堂练习
全课总结你有什么收获?
独立完成
1、判断题。(对的划“√”,错的划“×”并且说明理由)
(1)所有的奇数都是质数。()
(2)所有的偶数都是合数。()
(3)在1.2、3.4、5……中,除了质数以外都是合数。()
(4)1既不是质数也不是合数。()
2、选择题。(把正确答案的序号填在括号内)
(1)自然数中,唯一的偶质数是()。
①1 ②2 ③3 ④4
(2)下列数中,既是奇数又是合数的是()。
①8 ②9 ③5 ④53
3、根据所给提示写电话号码
师:你们想知道我们学校某位老师的电话号码吗?
既不是质数也不是合数
它的因数只有1和3
10以内最大的奇数
10以内3的倍数同时又是偶数
最小的质数
既是偶数又是质数
它只能被1和5整除
最小的既是奇数又是质数的数
10以内最大的质数
它的因数只有1和5
它表示一个物体也没有
2、练习四的1,2,3题。
质数和合数教案优秀3
教学内容:人教版九年义务教育六年制小学数学第十册P58~59页
教学目标:
1、使学生理解质数、合数的意义,会判断一个数是质数还是合数。
2、培养学生观察、比较、概括和判断的能力。
3、通过质数与合数两个概念的教学,向学生渗透“对立统一”的辩证唯物主义的观点。
教学重点:理解质数和合数的意义。
教学难点:判断一个数是质数还是合数的方法。
教具:多媒体课件。
教学过程:
一、准备复习,创设情境。
1、求7和10的约数。
2.25有几个约数?
二、探究发现,理解新知。
(一)教学例1
1、出示例1,写出下面每个数所有的约数(1~12)。
(1)先小组合作完成例一,分别填出每个数的所有的约数,并指出各有几个约数。
(2)例1反馈。
(3)同学们观察一下这些数约数的特点:
思考:在自然数范围内,按照每个数的约数个数的特点进行分类,可以分为哪几类?
先独立分类,再小组交流。
(4)学生汇报分类情况。
2、比较每类数约数的特点,教学质数与合数的定义。
(1)先观察有2个约数的数。
谁能发现,它们的约数有什么特点呢?
归纳特点,给出质数的定义。
(2)第三种类型的数与质数的约数比较,又有什么不同?
概括合数的定义。
(3)1既不是质数,也不是合数。
(4)举出质数的例子?
(5)举出合数的'例子。
3、自然数按照每个数的约数的多少,又可以怎样分类?
(二)教学例2
1、出示例2。判断下面各数,哪些是质数,哪些是合数?
17.22.29.35.37.87。
(1)同桌先交流一下,再汇报。
(2)37为什么是质数?87为什么是合数?
(3)小结。
(三)看书质疑
(四)游戏。
(五)出示100以内质数表。学生练习记质数。
三、巩固练习,发展提高。
1、在自然数1~20中:
(1)奇数有————,偶数有————;
(2)质数有————,合数有————。
2、下面的判断对吗?
(1)所有的奇数都是质数。()
(2)所有的偶数都是合数。()
(3)在自然数中,除了质数都是合数。()
(4)一个合数,至少有3个约数。()
3、猜一猜,老师的电话号码是多少。
四、总结。(略)
五、作业:62页1~2.1
质数和合数教案优秀4
教学过程:
一、创设情景,生成问题
1、同学们,老师在屏幕上打出了1——20各自然数,如果要把这些数分成两类,可以怎么分?奇数有哪些?偶数有哪些?这里奇数和偶数各占一半,如果再写下去,奇数和偶数还是各占多少?
自然数根据能不能被2整除,可以分成奇数和偶数,这是一种很价值的分法,在今后的学习中很有用,请你猜猜看,像这样有价值的分类方法还有吗?那么这种新得分类方法把自然数分成几类?各叫什么名字?
(设计意图:从学生感兴趣的猜自然数还有没有其他分法入手,用一个“猜”拉近了学生与老师的距离,,让学生产生急切想得到自然数还有没有其他分类法,调动学生的学习积极性。)
二、探索交流,解决问题。
(一)引导学生归纳。
1、 1――20各自然数,每个自然数的约数有哪些?有几个约数?
2、按照每个约数个数的多少,可以分成哪几种?每一种各有哪些数?
3、引导学生说明:
有一个约数的。(板书:有一个约数的)
有两个约数的。(板书:有两个约数的)
有三个约数的,有四个约数的,有六个约数的。
师提示:像有三个、四个、六个甚至更多的约数,我们把它们归纳为一种情况,用一句话概括为有两个以上约数的。(板书:有两个以上约数的)。
(二)按约数个数的多少,把自然数分成三种情况;
1、分组再讨论。
2、汇报讨论结果。
3、引导学生说出:1的约数是:1(板书:1的约数:1)
有两个约数,它们分别是:
板书:2的约数:1.2
3的约数:1.3
5的约数:1.5
7的约数:1.7
11的约数:1.11
有两个以上的约数,它们分别是:
板书:4的约数:1.2、4
6的约数:1.2、3.6
8的约数:1.2、4.8
9的约数:1.3、9
10的约数:1.2、5.10
12的约数:1.2、3.4、6.12
……………
(三)观察比较发现特点。
1、观察2.3、5.7、11的约数,你发现了什么?
(板书:只有1和它本身两个约数)
2、观察4.6、8.9、12的约数,你发现了什么?
(板书:除了1和它本身还有别的.约数)
3、教师明确:根据这些数约数的个数的多少,给这些数分类,也就是今天我们要学习的新知识,质数和合数。(板书课题:质数和合数)
(四)质数、合数的定义。
1、一个数,如果只有1和它本身两个约数,这样的数叫做质数。(或素数)(板书)
2、一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。(板书)
3、教师提问:1是质数还是合数?
学生明确:1既不是质数也不是合数,因为1只有一个约数,既不符合质数的特点,又不符合合数的特点。
1既不是质数,也不是合数。(板书)
(五)按约数个数的多少给自然数分类。
1、按照能否被2整除可以把自然数分为奇数、偶数,那么,按照约数个数的多少,自然数又可以分为哪几类?(三类:质数、合数和1)
2、教师提问:判断一个数是质数还是合数,关键是找什么?(关键:找约数的个数
(设计意图:质数和合数是对自然数进行分类的另一种方法,在本环节学中老师把探求知识过程让学生自己发现,让学生在合作交流中找到了按约数个数多少可以把自然数分为质数和合数。并且找到了判断一个数是质数还是合数的关键词。学生很容易掌握了本节所学知识轻松愉快的突破了教学难点。)
质数和合数教案优秀5
附板书设计:
质数与合数
因数个数
1 1个
自然数质数(素数):只有1和它本身两个因数。 2个
合数:除了1和它本身还有别的因数。 2个以上
1不是质数,也不是合数。
教学内容:人民教育出版社五年级下册p23《质数和合数》
教学目标:
1、理解什么是质数,什么是合数。
2、能熟练判断质数与合数,能够找出100以内的质数。
3、通过对“你知道吗”的介绍激发学生的.学习兴趣和探究欲望。
教学重点:能熟练判断20以内的数哪些是质数,哪些是合数。
教学难点:能正确区分因数、倍数、奇数、偶数、质数、合数等概念。
教学准备:铅笔、多媒体课件等。
质数和合数教案优秀6
一、素质教育目标:
(一)知识教学点:
1、使学生理解质数,合数的概念。
2、熟记20以内的质数。
(二)能力训练点:
1、培养学生归纳概括能力。
2、掌握正确判断质数、合数的方法。
(三)德育渗透点:引导学生探索知识的内涵,激发学生兴趣。
教学重点:
1、理解掌握质数。合数的概念。
2、初步学会准确判断一个数是质数还是合数。
教学难点:区分奇数。质数。偶数、合数。
教具学具准备:投影仪。投影片若干张。小黑板一块。
教学步骤:
一、铺垫孕伏:
(小黑板出示例1),要求写出下面各数的所有约数:
1的约数2的约数3的约数4的约数
5的约数6的约数7的约数8的约数
9的约数10的约数11的约数12的约数
(指名板演)其它同学打开书58页,按要求把例:填好,集体订正。
二、探究新知:
1、引导学生归纳:
(1)按这些约数个数的多少,可以分为哪几种情况,也就是说这些数的约数都有几个,从少到多找一找。
(2)分组讨论后汇报。
(3)引导学生说明:
有一个约数的。(板书:有一个约数的)
有两个约数的。(板书:有两个约数的)
有三个约数的,有四个约数的,有六个约数的。
教师提示:像有三个、四个。六个甚至更多的约数,我们把它们归纳为一种情况,用一句话概括为有两个以上约数的'。(板书:有两个以上约数的)
2、按约数个数的多少,把自然数分成三种情况。
(1)分组再讨论。
(2)汇报讨论结果。
(3)引导学生说出:1的约数是:1(板书:1的约数:1)
有两个约数,它们分别、:
板书:2的约数:1.2
3的约数:1, 3
5的约数:1.5
7的约数:1, 7
11的约数:1.11
有两个以上的约数,它们分别是:
板书:4的约数:1, 2, 4
6的约数:1.2、3.6
8的约数:1.2、4, 8
9的约数:1, 3, 9
10的约数:1, 2, 5.10
12的约数:1, 2.3、4.6、12
【质数和合数教案优秀】相关文章:
《质数与合数》教学反思03-27
《质数与合数》教学反思(通用5篇)06-09
找质数教案03-05
《狮子和鹿》优秀教案09-07
《陶罐和铁罐》教案优秀04-13
《酸的和甜的》教案优秀09-11
《找质数》教学设计04-11
《找质数》教学反思05-30
《和氏献璧》教案优秀09-12