当前位置:9136范文网>教育范文>教案>《方程的意义》教案

《方程的意义》教案

时间:2024-05-28 10:06:20 教案 我要投稿

《方程的意义》教案精品【15篇】

  作为一名专为他人授业解惑的人民教师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。那么你有了解过教案吗?下面是小编整理的《方程的意义》教案,欢迎阅读,希望大家能够喜欢。

《方程的意义》教案精品【15篇】

《方程的意义》教案1

  教学内容:教材P62~63及练习十四第1、2、3题。

  教学目标:

  知识与技能:使学生理解和掌握等式与方程的意义,明确方程与等式的关系。

  过程与方法:通过自主探究、合作交流激发学生的学习兴趣,培养他们的合作意识。

  情感、态度与价值观:让学生感受方程与生活的密切联系,发展其抽象思维能力和符号感。

  教学重点:理解和掌握方程的意义。

  教学难点:弄清方程和等式的异同。

  教学方法:观察、分析、分类、抽象、概括和交流

  教学准备:多媒体,天平。

  教学过程

  一、知识铺垫

  认识天平。谈谈你对天平有哪些了解。(天平可以称量物体的质量,还可以判断两个物体的质量是否相等;使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。)

  二、自主探究

  1.探究活动一:利用天平探索认识等式和不等式

  (1)天平左边放一个空杯子,右边放一个100克的砝码,此时天平 ,说明天平左右两边的重量 ,这个杯子的重量是 。

  (2)如果天平的左边加上一个50克的砝码,要想使天平平衡,天平右边的杯子里需加上 克的水,用式子表示天平两边的质量关系为: 。

  (3)如果天平左边的杯子里加满了水,此时天平会 ,表示天平左右两边的重量 ,用式子表示天平两边的.质量关系为: 。

  温馨提示:

  (4)如果继续向天平的右边加上100克的砝码,此时天平 ,说明 边重,天平左右两边的质量关系表示为: 。

  (5)如果继续向天平的右边加上100克的砝码,此时天平  ,说明 边重,天平左右两边的质量关系表示为: 。

  (6)如果把天平右边一个100克的砝码换成50克的,此时天平 ,说明左右两边的质量 ,它们的关系用式子表示为: 。

  2. 探究活动二:认识方程

  (1)把上面的算式进行分类,并说说分类的想法和依据。

  (2)小结:表示左右两边相等的式子,我们称其为 ,表示左右两边不相等的式子,我们称其为 。像100+x=250这样的含有未知数的等式,称为 。

  3.讨论:等式和方程之间有什么样的关系?

  让学生比较50+50=100与100+x =250两个等式,有什么不同?

  学生自主思考,并交流得出:第一个等式没有未知数x ,第二个等式含有未知数x 。

  教师小结:像100+x =250这样的含有未知数的等式,称为方程。(板书:方程)

  4.引导学生思考:是不是所有的等式都是方程?(不是。)

  那么,方程有哪些特点?

  归纳小结:方程的特点:是一个等式,且含有未知数。

  三、课堂达标

  1.下面的式子哪些是方程?(在方程后面的括号里打√)

  X+3.6=12( ) a×12.8<24( ) 10-2.5=7.5( ) χ+8=9×2( )

  X÷2.4=16( ) 3÷b ( ) 5y=15 ( ) χ-2.9=0( )

  32÷4>7( ) 3χ-2=4.4( ) 1.2+3.5-4=0.7( ) 4.5χ-2.6( )

  2. 判断

  (1)含有未知数的式子叫方程。( )

  (2)等式都是方程,但方程不一定是等式。( )

  3.用方程表示下面的数量关系。

  【学习评价】

  四、巩固拓展

  1.让学生仿照课本情境图,自己试着写一些方程。注意指导学生:方程一定是等式,并含有未知数。

  2.完成教材第63页“做一做”第1题。

  先让学生说一说什么样的式子是方程,再自主判断,最后集体交流。

  3.完成教材第63页“做一做”第2题。先说一说图意,再写方程表示数量关系。

  如:第一幅图天平的左边有两个重量是x g的球,右边是一个重50g的砝码,也就是两个x g的球的重量是50g,列方法表示为2x =50。第二幅图是一条线段分成了两部分,一部分是x ,一部分是73,这两部分总数是166,即x +73=166。

  4教材第66页练习十四第1、2、3题。生独立完成,集体反馈。

  五、课堂小结

  师:这节课你学会了什么?有哪些收获?

  引导总结:1.像100+x =250这样含有未知数的等式叫做方程。

  2.方程有两个重要条件:一个是等式,一个是含有未知数。

  3.方程一定是等式,等式不一定全都是方程。

  布置作业:

  板书设计:

  方程的意义

  不平衡 平衡

  100+x >200 100+x =250

  100+x<300

  像100+x =250这样的含有未知数的等式叫做方程。

《方程的意义》教案2

  教学内容

  P53-54及“做一做”,练习十一1-3题。

  教学目标

  1、初步理解方程的意义,会判断一个式子是否是方程。

  2、会按要求用方程表示出数量关系。

  培养学生观察、比较、分析概括的能力。

  知识重点

  会用方程的意义去判断一个式子是否是方程。

  教学难点

  天平、空水杯、水(可根据实际变换为其它实物)

  教学过程

  教学方法和手段

  引入

  教学过程

  一、 导入新课

  今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的'物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。

  二、新知学习

  1、实物演示,引出方程。

  操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;

  第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。

  第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。

  第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300.

  第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。

  像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。

  2、写方程,加深对方程的认识。

  学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。

  看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。

  3、反馈练习。

  完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。

  课堂练习

  这节课学习了什么?怎么判断一个式子是不是方程?

  提问:方程是不是等式?等式一定是方程吗?

  看“课外阅读”,了解有关方程产生的数学史。

  课后追记

  本课方程的特征比较容易,从两点(1)含有字母(2)等式来判断。虽然形式比较简单,但是仍然要注意区分式子和方程。

《方程的意义》教案3

  教学内容:方程的意义和解简易方程(教材第105一107页,练习二十六)。

  教学要求:

  1.使学生理解和掌握等式及方程、方程的解和解方程的意义,以及等式与方程,方程的解与解方程之间的联系和区别。

  2.使学生理解并掌握解方程的依据、步骤和书写格式,培养良好的解题习惯。

  教 具:

  教学天平、小黑板。

  学 具:

  自制的简易天平、定量方块。

  教学步骤:

  一、复习

  1.根据加法与减法,乘法与除法的关系说出求下面各数的方法。

  (1)一个加数=( )○( )

  (2)被减数=( )○( )

  (3)减数=( )○( )

  (4)一个因数=( )○( )

  (5)被除数=( )○( )

  (6)除数=( )○( )

  2.求未知数X(并说说求下面各题X的依据)。

  (1)20十X=100 (2)3X=69

  (3)17—X=0.6 (4)x÷5=1.5

  二、新授

  1.理解和掌握“方程的意义”。

  (1)出示天平,介绍使用方法(演示)后,设问:

  在天平两边放物体,在什么情况下才能使天平保持平衡?

  (两边的物体同样重时,天平才能保持平衡。)

  (2)演示:在左边放两个重物各20克和30克,右边砝码也是50克,让学生观察,天平是平衡的。说明了什么?怎样用式子表示?

  板书:20十30=50

  指出:表示左右两边相等的式子叫等式。

  (并板书)等式:表示等号两边两个式子的相等关系,即等式是表示相等关系的式子。

  (3)教学例2(课本105页)。

  ①教师继续演示,调整,在左盘放一20克的重物和一个未知重量的方块,右盘里放一个100克重的砖码。(如教材105页第二幅图)让学生观察天平是否平衡(指针正好指在刻度线中央,天平是平衡的),那么也就说明了这个天平左右两边的物体的重量相等。怎样用等式表示出来呢?

  板书:20+?=100

  ②等式“20+?=100”中的?是未知数,通常我们用“X”来表示,那么上面的等式可写成 (板书)20十X=100

  ③比较:等式“20+X=100”与等式“20+30=50”有什么不同?(含有未知数)教师指出,“20+X=100”是含有未知数的等式。

  ④想一想:X等于多少,才能使等式“20+X=100”左右两边相等?(未知方块重80克时才能使天平两边的重量相等,即X=30)

  (4)教学例3(课本106页)。

  出示教材第106页上面的例图的放大图,并根据图意写出等式。设问:

  ①图中每个篮球的`价钱是X元,3个篮球的总价是多少元?(3x)

  ②依图示(看图)表明3个篮球的总价(3x)是多少元?(234元)它们之间的关系可以用一个怎样的等式表示出来?

  (板书)3X=234

  ③这个等式有什么特点?(含有未知数)当X等于多少时,这个等式等号左右两边正好相等?(X=78)

  (5)方程的意义:

  综合观察以上三个等式,想一想,它们之间有什么联系,有什么区别:

  20+30=50……一般的等式

  20+X=200 含有未知数的等式

  3X=234 称之为方程

  (板书)像20+x=100 3X=234 X—10=35 X÷12=5等,含有未知数的等式叫做方程。

  ①根据方程的含义,方程应该具备哪些条件,(一要是等式,二要含有未知数,二者缺一不可。)

  ②方程与等式之间是什么关系?(是方程就一定是等式,但是等式不一定是方程,也就是说方程是等式的一部分,小学数学教案《数学教案-方程的意义和解简易方程》。)

  (6)练一练(指名学生判断,并说明理由)教材第106页“做一做”。

  2.学习“解简易方程”。

  (i)理解和掌握方程的解和解方程的含义。设问:①看教材第107页,什么叫做方程的解?什么叫解方程?

  (板书)使方程左右两边相等的未知数的值,叫做方程的解。

  例如:X=80是方程20+X=100的解;

  X=78是方程3X=234的解。

  (板书)求方程的解的过程叫做解方程。

  ②方程的解和解方程有什么联系和区别?

  方程的解是指未知数的值等于多少时能使等式左右两边相等;而解方程是指求出这个未知数的值的过程。因此方程的解是解方程过程中的一部分。它们既有联系,又有区别。

  (2)教学例1:

  解方程X一8=16

  ①教师指出:我们以前做过一些求未知数X的题目,实际上就是解方程,以前怎么解,现在仍然怎么解,只是在格式要求方面增加了新的内容。

  ②引导学生说出自己的推想过程:题中的未知数X相当于什么数?(被减数)怎么求被减数?(减数十差)

  (板书)解方程X一8=16

  解::根据被减数等于减数加差;

  X=16十8(与原来学过的求X的思路相同)

  X=24

  检验:把X=24代人原方程

  左边=24一8=16,右边=16

  左边=右边

  所以X=24是原方程的解。

  总结有关的格式要求:

  ①做题时要先写上“解”字。

  ②各行的等号要对齐,并且不能连等。

  ③方框里的运算根据可以不写。

  ④验算以“检验”的形式出示,有固定的格式。解方程时,除了要求写检验以外,都要口算进行检验,防止走过场。

  指导学生看教材第105一107页。

  三、巩固

  1.教材107页“做一做”。

  2,教材第108页练习二十六第1、2题。

  四、练习

  教材第108页,练习二十六第3~5题。

  作业辅导

  1.判断题。

  (1)含有未知数的式子叫方程。 ( )

  (2)方程是等式,所以等式也叫方程。 ( )

  (3)检验方程的解,应当把求得的解代人原方程。()

  (4)36是方程X÷3=12的解。 ( )

  2.把下面的各关系式写完整。

  (1)一个加数=( )○( )

  (2)被减数=( )○( )

  (3)减数=( )○( )

  (4)一个因数=( )○( )

  (5)除数=( )○( )

  (6)被除数=( )○( )

  3.解下列方程。(第一行两小题要写出检验过程)

  10—X=0.42 4.5X=27 X十5.8=16.4

  X÷28=76 2÷X=0.5 X—8.75=4.65

  板书设计:

  解简易方程

  例1 解方程X-8=16

《方程的意义》教案4

  【教材分析】方程在小学乃至初中整个学习过程中,都具有非常重要的地位。《方程的意义》这一节内容是学习其他方程知识的基础。本课只要求学生初步理解方程的意义,知道什么是方程,能判别一个式子是不是方程。整个教学过程先通过天平演示引出等式和含有未知数的等式,然后对一些不同的式子通过观察.比较.分析对其进行分类,最后归纳.概括出方程的意义,培养了学生分析.比较.归纳.概括.创新等能力,为以后学习解方程和列方程解答应用题打下良好的基础

  【教学目标】

  1.理解和掌握等式与方程的意义,明确方程与等式的关系。

  2.通过自主探究.合作交流激发学生的学习兴趣,养成合作意识。

  3.感受方程与生活的密切联系,发展抽象思维能力和符号感。

  【教学重点】理解和掌握方程的意义。

  【教学难点】弄清方程和等式的异同。

  【数学思想】符号化思想,转化的思想,数形结合的思想。

  一.创设情境,引出问题

  教师活动

  学生活动及达成目标

  1.同学们,谁还记得《曹冲称象》的故事?

  2.谁能简单地说一下曹冲是利用什么原理称出了大象的重量呢?

  3.同学们其实在生活中有很多工具能帮我们测量出相同重量的物体。今天就先来认识其中的一种:天平。

  简单介绍《曹冲称象的故事》

  能说出让大象和石头的重量相等,再称石头的重量。

  达成目标:创设贴近学生实际不仅能集中学生注意力,调动学生的积极性,激发学习兴趣,也为下面出示天平做好铺垫。

  二.共同探索,总结方法

  教师活动

  学生活动及达成目标

  1.出示天平:让学生说一说对天平有哪些了解?

  如果学生说得不全教师做补充:使用天平一般是左盘放物体,右盘放砝码;指针在中间说明天平平衡。

  2.合作探究。

  (1)在天平的右边放一个100g的砝码,怎样才能让天平平衡呢?

  用算式怎样表示呢?

  让学生观察式子,等号左边与右边相等,这样的式子就是一个等式。(板书:等式)

  (2)把一个杯子放在天平的左边,右边放100g的砝码,让学生观察天平说一说发现了什么。

  教师质疑:如果我往杯子里倒些水,观察天平现在的情况。

  师:一杯水的重量是多少,怎样表示?你有办法吗?

  追问:如果用未知数x来表示水的重量,那么杯子和水一共有多重,又该怎样表示呢?

  (3)再次让学生观察现在的天平(天平右边放100g砝码),发现了什么?哪边重一些呢?你们能用数学算式来表示吗?

  (4)教师在右边依次加一个100g的砝码,加两个100g的砝码让学生观察,并说一说天平的.情况,用数学算式怎样来表示吗?

  教师让学生继续操作,怎样才能使天平平衡呢?

  这说明了什么?

  (一杯水的重量等于250g)

  (5)你们能用数学算式来表示这天平的状况吗?

  (师板书)

  引导学生观察比较这三个算式有什么不同?

  100+x >200

  100+x<300

  100+x =250

  师总结:像这样两边相等的算式我们把它叫做等式。(板书:等式)

  (6)让学生比较50+50=100与100+x=250两个等式,有什么不同?

  教师小结:像100+x =250这样的含有未知数的等式,称为方程。(板书:方程)

  (7)引导学生思考归纳小结:

  是不是所有的等式都是方程?

  是不是所有的方程都是等式?

  那么,方程有哪些特点?

  (8)让学生仿照课本情境图,自己试着写一些方程。

  自由发言,可能会说:天平有两个托盘,中间有指针;天平一边放物品一边放砝码,物品的重量与砝码的重量相等;天平可以称量物体的质量,还可以判断两个物体的质量是否相等。

  让学生自主思考.交流操作,得出:在天平的左边放2个50g的砝码就可以保持平衡。

  用算式表示:50+50=100。

  学生认真观察,然后会发现:现在天平平衡,说明空杯子重100g。

  学生看出在空杯里加一杯水后天平不平衡了。

  思考得出:一杯水的重量=水的重量十杯子的重量。

  学生汇报:100+x

  学生回答:天平两边不平衡,用数学算式来表示100+x >100

  学生观察后分组讨论:

  汇报时用式子表示:

  100+x >200

  100+x<300。

  这时学生很容易发现这杯水的重量大于200g,小于300g。

  引导学生把右边的砝码换成250 g,使天平左右两边平衡。

  学生自主思考,再全班交流汇报:100+x =250

  生观察后会发现:前面两个算式两边不相等,后面一个算式两边是相等的。

  达成目标:通过直观演示活动,在老师引导,学生积极参与讨论.交流的过程中得出上面的式子,为下面的分类讨论环节做准备,同时培养学生观察思考.发现问题和解决问题的能力。

  学生自主思考,并交流得出:第一个等式没有未知数x,第二个等式含有未知数x。

  不是

  是

  达成目标:这样的设计我主要是给学生创造了一个大胆设想,敢于发现,抽象概括的机会,真正体会到自己获取知识,发现知识的成功乐趣。

  三.运用方法,解决问题

  教师活动

  学生活动及达成目标

  完成教材第63页“做一做”第1题。

  完成教材第63页“做一做”第2题。

  让学生说一说什么样的式子是方程,再自主判断,最后集体交流。

  先说一说图意,再写方程表示数量关系。

  达成目标:通过学生自主分类比较,

  调动了学生的主动性和能动性,

  让学生自己发现知识的形成过程,

  层层递进,达到理解方程意义和掌握方程判断方法的目的,同时培养学生对比.概括能力和发散思维。

  四.反馈巩固,分层练习

  教师活动

  学生活动及达成目标

  基础练习:66页练习十四第1.2.3题。

  拓展练习:见

  达成目标:孩子大部分应该能发现存在的等量关系,但可能会出现40-28=x这样的式子,应该规范孩子的写法。

  五.课堂总结,提升认识

  教师活动

  学生活动及达成目标

  这节课你运用了哪些学习方法,你有什么收获?你对自己这堂课的表现是怎么评价的?

  达成目标:方程的特点:是一个等式,且含有未知数。

  1.像100+x =250这样含有未知数的等式叫做方程。

  2.方程有两个重要条件:一个是等式,一个是含有未知数。

  3.方程一定是等式,等式不一定全都是方程。

《方程的意义》教案5

  教学内容:人教版小学数学五年级上册第53~54页内容,方程的意义教学设计。

  教学目标:

  1、理解和掌握方程的意义,弄清楚方程和等式两个概念的关系。

  2、培养学生认真的观察、思考分析问题的能力。

  3、通过自主的探究、合作交流等教学活动,激发学生的兴趣,培养合作意识。

  教学重点:理解和掌握方程的意义

  教学难点:弄清方程和等式的异同。

  教学过程:

 一、 创设情境,生成问题

  (1)出示ppt 显示曹冲称象的画面 引导同学们自己思考怎么把大象的重量称出来

  小组之间讨论并得出结论 全班集体订正。继而引出相等,平衡的概念。

  (2)课件出示天平,让学生说说天平的特点。师概括总结得出天平的平衡这一特点。

  师;怎样才能使天平左右两边相等?

  出示一架天平的左边是有物体20克和30克,右边是50克

  师:用算式怎么表示?

  生:20+30=50

  引导总结得出这个一个等式。

  二、探索交流,解决问题再出示天平左边是20克的.物体和?克的物体,右边是100克的物体,教案《方程的意义教学设计》。

  师:“?”表示什么?我们可以用什么表示?

  生:用字母表示。

  生1:20+x=100

  生2:100-x=20

  生3:100-20=x

  师:你认为用哪个式子更能表示天平的作用两边是平衡的?

  引导得出:20+x=100 表示天平左右两边是平衡的.

  出示6架天平,根据天平的平衡状态写算式。

  把这8个算式标号,得练习:

  ①20+30=50 ⑤ 80<2χ

  ②20+χ=100 ⑥ 3χ=180

  ③50×2=100 ⑦100+20<100+50

  ④50+2χ> 180 ⑧100+2χ=3×50

  思考:你能给这些式子分类吗?并说说是按照什么标准分类的。

  同桌合作交流汇报

  等式 不等式

  ①20+30=50 ④50+2χ> 180

  ②20+χ=100 ⑤ 80<2χ

  ③50×2=100 ⑦100+20<100+50

  ⑥ 3χ=180

  ⑧100+2χ=3×50

  含有未知数的式子 不含未知数的式子

  ②20+χ=100 ①20+30=50

  ④50+2χ> 180 ③50×2=100

  ⑤ 80<2χ ⑦100+20<100+50

  ⑥ 3χ=180

  ⑧100+2χ=3×50

  师:既是等式,又含有未知数的的式子有哪几个?

  生:②20+χ=100

  ⑥ 3χ=180

  ⑧100+2χ=3×50

  像这种含有未知数的等式我们今天给它起个新的名字,称为“方程”

  三、巩固应用,内化提高

  练习:下面哪些是方程?哪些不是方程?

  ① 35-χ =12 ( ) ⑥ 0.49÷χ =7 ( )

  ② Y+24 ( ) ⑦ 35+65=100 ( )

  ③ 5 χ+32=47 ( ) ⑧χ-14> 72 ( )

  ④ 28< 16+14( ) ⑨9b-3=60 ( )

  ⑤ 6(a+2)=42 ( ) ⑩ χ +y=70 ( )

  张强也列了两了式子,不小心被墨水弄脏了。猜猜他原来列的是不是方程?

  (1) 6X + ( =78

  (2) 36 + ( ) =42

  四、回顾整理,反思提升 通过这一节课的学习,你有哪些收获?

《方程的意义》教案6

  一、教学内容:

  人教版五年级上册第62~63页“方程的意义”。

  二、教学目标:

  1.在具体的情境中理解方程的含义,初步认识等式与方程的关系,会用方程表示简单的等量关系。

  2.在观察、比较、描述、抽象、概括的过程中,让学生经历将现实问题抽象成等式与方程的过程,体会方程是刻画现实世界的数学模型,发展抽象思维。

  3.加强数学知识与现实生活的联系,有利于培养学生的数学应用意识。培养学生认真观察、善于思考的'学习习惯,渗透转化的数学思想。

  三、教学重、难点:

  1.教学重点:理解并掌握方程的意义。

  2.教学难点:建立“方程”的概念,并会应用。

  四、教学过程:

  (一)情境引入

  今天的这节数学课上老师带了一种利用平衡创造的工具,你们看是什么?(出示天平)关于天平你们都有哪些了解的?(简单介绍天平的工作原理)

  (二)探究新知

  1.现在我们对天平有了初步的了解,那我们来看这幅图(出示天平:左盘2个50g的物品,右盘100g砝码。)

  请同学们仔细观察,在这副图里你获得了哪些信息?

  师:能用一个式子表示这种平衡状态吗?(50+50=100或50×2=100)。

  2.我们再来看这幅图又告诉了你什么信息?(课件出示:左边一个空杯子,右边一个100g砝码的天平。)(杯子重100g)

  3.师:现在我给杯子倒满水,天平还平衡吗?天平发生了怎样的变化呢?

  师:我们不知道加入的水有多重,可以用一个未知数x来表示(水重xg),那么天平左边的杯子和水共重多少克?可以怎样表示呢?(100+x)

  师:天平向左倾斜,说明左边这杯水的重量比右边100g砝码的重量要重。得到数学式子:100+x>100

  4.现在我给右盘再加一个100g的砝码,仔细观察,现在天平平衡了吗?得到数学式子:100+x>200

  师:我给右盘再增加一个100g的砝码,你又发现了什么?得到数学式子:100+x<300

  师继续演示:将右盘中的一个100克砝码换成50克砝码,天平逐渐平衡,从中得到数学式子100+x=250。

  5.观察比较:

  50+50=100

  100+x>100

  100+x>200

  100+x<300

  100+x=250

  总结:像这样两边相等的(用等号连接的)算式我们把它叫做等式。

  像100+x=250这样,含有未知数的等式就是方程。

  揭题:今天这节课我们学的就是“方程的意义”。(板书课题)

  6.提问:这一个等式是方程吗?为什么?

  追问:这两个式子里都含有未知数,它们是方程吗?

  思考:你认为一个方程应该符合哪些条件?

  (强调:方程既要是等式,又要含有未知数。)

  (三)巩固练习

  1.判断下面哪些式子是方程,并同桌说一说理由。

  35+65=100 8-x=2 y+24

  2.4=a×2 x-14>72 15÷b=3

  5x+32=47 28<16+14 6(y+2)=42

  2.下面哪些天平不能用方程表示?(出示6幅天平图)

  用方程表示出剩下天平的数量关系。

  (说一说天平两边的数量关系,列方程)

  3.用方程表示下面的数量关系。(说数量关系,列方程)

  先独立列出方程,再与同桌说一说方程表示的数量关系。

  4.猜方程

  让学生初步感知:方程一定是等式,等式不一定是方程。

  5.写方程,编故事。

  6.方程“史话”。

  (四)课堂小结

  今天这节课我们学习了方程,方程必须要具备几个条件?方程和等式是怎样的关系?

《方程的意义》教案7

  教学内容:

  教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。

  教学目标:

  理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。

  教学重点:

  理解并掌握方程的意义。

  教学难点:

  会列方程表示数量关系。

  教学过程:

  一、教学例1

  1.出示例1的天平图,让学生观察。

  提问:图中画的是什么?从图中能知道些什么?想到什么?

  2.引导

  (1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。

  (2)如果学生能主动列出等式,告诉学生:像50+50=100这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出你会用等式表示天平两边物体的'质量关系吗?

  二、教学例2

  1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。

  2.引导:告诉学生这些式子中的x都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。

  3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。

  三、完成练一练

  1.下面的式子哪些是等式?哪些是方程?

  2.将每个算式中用图形表示的未知数改写成字母。

  四、巩固练习

  1.完成练习一第1题

  先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。

  2.完成练习一第2题

  五、小结

  今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?

  六、作业

  完成补充习题

  板书设计:

  方程的意义

  X+50=100

  X+X=100

  像X+50=150、2X=200这样含有未知数的等式叫做方程

《方程的意义》教案8

  一、教学目标

  1.知识与技能目标:使学生初步认识方程的意义,知道等式和方程之间的关系,并能进行辨析。

  2.过程与方法目标:通过自主探究、合作交流激发学生的学习兴趣,培养他们的合作意识。

  3.情感态度价值观目标:让学生感受方程与生活的密切联系,发展其抽象思维能力和符号感。

  二、教学重难点

  重点:理解方程的意义。

  难点:理解方程与等式的异同。

  三、教学过程

  尊敬的各位老师大家好,我是小学数学组2号考生,今天我试讲的题目是方程的意义,下面我将正式开始我的试讲。

  上课,同学们好,请坐。

  【导入】

  导入:同学们,你们都喜欢玩跷跷板吗?看熊二和光头强也在玩跷跷板,我们一起来看一看,可以他们的体重悬殊太大了,光头强高高的被挂了起来。看吉吉和图图也来了。光头强和吉吉涂涂坐在一边,熊二坐在另一边,怎么样?对呀,跷跷板正好平衡了,那你们用一个算式来表示就是,对,熊二的体重等于光头强+{吉吉+图图的体重,其实在跷跷板中也蕴含着丰富的数学知识,这节课就让我们一起走进数学王国,去探究方程的意义。

  【新授】

  活动一:

  根据翘翘板的.这种现象呀,科学家就设计出了天平。看老师面前就有一个天平,天平已经是我们的老朋友了,之前我们认识克的时候就认识了她,那谁来向大家介绍一下这位老朋友呢?请你来介绍,你介绍的可真全面,请坐,天平有两个托盘,中间有一个刻度盘,天平中间有一个指针,天平左右两边物体重量相等的时候,天平就平衡,我们一般是左物右码。

  那我们一起来操作一下天平,同学们仔细看,老师先将右盘上放上100克砝码,再在左盘上放上两个50克的砝码,你们发现了什么?对呀,天平平衡了。谁来用一个式子的来表示呢?请你来说,说的非常准确,请坐,50+50=100。

  活动二:

  那我们一起观察这个算是它有什么特点呢?请你来说目光非常敏锐等号左边和右边相等,这样的式子就是一个等式。接下来再来认真观察,老师将左边两个50克的砝码拿下来,在重新在天平的左边放上一个杯子,你们发现了什么?对呀,天平平衡了,也就是说杯子的重量是100克,同学们是这样的吗?那老师带往杯子里倒一些水,又出现了什么情况呀?对呀,天平朝向杯子这边倾斜了,也就是说杯子的重量加水的重量大于100克。那我们再向天平右边放个100克的砝码,看一看有什么变化?天平还是朝杯子这边倾斜,那你们能用将这个过程用一个式子来表示一下嘛,请你来说。说的真不错,请坐。杯子加水的重量大于200克,谁还有更好的方法,来做的最端正的同学,请你来说你的小脑袋可真灵活,请坐。对呀,上节课我们已经学过了用字母表示数。我们可以用字母x来表示水的重量,刚刚我们已经称出了杯子的重量是100克,所以用式子来表示就是x+100大于200。同学们,你们都想到这个方法了吗?你们可真棒,那我们继续操作,我们再向右边托盘放100克的砝码,看一看有什么变化呀?来请你来说,说的非常棒,请坐。天平朝向右边托盘倾斜了。那这个过程我没有该用哪个式子来表示呢?对呀,x+100小于300,看来我们刚刚放100克的砝码放过大了,那我们再放一个小一点的试一试。

  我们将这100克的砝码换成50克的砝码来试一试。同学们仔细观察,对呀,我们的天平竟然平衡了,那也就是说我没杯子加水的重量等于250克,那我们用算式来表示该如何表示呢?来躲着最端正的同学,请你来说,说的非常棒,请坐x+100=250。同学们可真是太棒了,

  活动三:

  通过我们的共同探索,和一起操作写出了这么多的方式,我们带来仔细观察这些算式,这些算式之间有哪些共同点和不同点呢?

  先独立思考,再小组合作讨论,完成以端正的坐姿来示意老师,看哪个小组的发现又快又好开始。老师看同学们都已经坐端正了,谁来说一说你的发现,请你来说观察的非常敏锐,请坐。有的算式是等式,洋浦的是不等式,那我们再来看一看这等式的两个算式之间他们有什么不同呢?请你来说,这可真是一个了不起的发现,请坐。第二个算式有一个未知数x,而第一个没有,其实像这种含有未知数x的等式就是我们今天所学习的方程。

  那是不是所有的等式都是方程呢?对呀,不是。只有含有未知数的等式才是方程,也就是说要判断一个式子是不是方程,我们需要注意哪几点呢?来请你来说,说的非常棒,我们需要有两个条件,一个是含有未知数,二是等式。

  同学们,你们都是这样想的吗?那老师这样说你们看对不对?方程是等式,对这样说是正确的,那等式是方程呢?对呀,这样说不正确,因为还需要一个条件,也就是说这个等式里必须含有未知数。

  观察一下黑板上这些内容,以上就是本节课所要学习的方程的意义。

  【巩固练习】

  那我们看一看这道题,老师买了三本练习本,一共花了2.4元,我都没本练习本价格用x来表示,那又该如何列算式?请你来说好,请多3xx等于2.4,我们上节课已经学习了,用字母表示数的时候数字与字母相乘,其中的称号我们可以省略,数字放在前面,所以是3x等于2.4。是方程吗/对呀,是我们一起来看一看符合不符合这两个条件是不是等是,对是等式,而且还有未知数。

  【课堂小结】

  不知不解本节课已经接近了尾声哪位同学来说一说本节课都有那些收获呢?班长你手举得最高你来说,他说啊通过本节课认识了什么是方程,什么是等式。看来啊本节课上特听讲非常认真,请坐!

  【作业布置】

  那接下来老师老师给大家布置一个小任务,课下去搜集一下我国古代如何解决类似的问题呢?下节课一起来交流讨论一下。

  本节课就先上到这,下课,同学们再见!

  尊敬的各位考官,我的试讲到此结束,感谢各位考官的耐心聆听!

《方程的意义》教案9

  第5单元 简易方程

  第7课时 方程的意义

  【学习目标】

  1.知识与技能:使学生初步理解“等式”、“不等式”和“方程”的意义,并能进行辨析。

  2.过程与方法:利用天平的原理,理解不等式和方程。

  3.情感、态度与价值观:渗透认识来源于实践的辨证唯物主义思想。

  【学习重、难点】

  重 点:会用方程的意义去判断一个式子是否是方程。

  难 点:会按要求用方程表示出数量关系。

  【学习准备】天平、空水杯、水(可根据实际变换为其它实物)

  【学习过程】

  一、创设情景,引入新课

  今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在托盘两端的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。

  二、自主探究

  学生自学并完成相关练习。

  三、例题精讲

  1、实物演示,引出方程。

  操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克。

  第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了什么?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。

  第三步,增加100克砝码,发现了什么?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。

  第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎样用式子表示?让学生得出:100+x<300。

  第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎样?用式子怎样表示?让学生得出:100+x=250。

  像这样含有求知数的等式,人们给它起了个名字,你们知道叫什么吗?对,叫方程。请大家试着写出一个方程。

  四、练习设计

  1、写方程,加深对方程的认识。

  学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它们不是方程的原因。

  看书第63页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有未知数(即字母),这也是判断一个式子是不是方程的依据。

  2、反馈练习,教材P63做一做第1题。

  完成做一做,在是方程的'式子后面打上“√”。对于不是方程的几个式子要说明其理由。

  3、完成P66练习十四第2题,先让学生说出图意,再根据图意再列出相应的方程。

  4、独立完成P66练习十四第3题,评讲时,介绍什么叫数量关系,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,所以方程形式也可能不同。

  五、作业:P66练习十四第1题。

《方程的意义》教案10

  教学内容:教科书第1~2页的内容及练习一的1~3题。

  教学目标:

  1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

  2、培养学生概括、归纳的.能力。

  教学重点与难点:通过学习,使学生理解方程的含义。

  教学流程:

  一、教学例1

  出示例1,提出要求:你能用等式表示天平两边物体的质量关系吗?

  学生在本子上写。

  指名回答,板书:50+50=100

  含有等号的式子叫等式,它表示等号两边的结果是相等的。

  二、教学例2

  学生自学

  1、学生在书上独立填写,用式子表示天平两边的质量关系。

  2、小组同学交流四道算式,最后达成统一认识:

  X+50>100X+50=100

  X+50<100X+X=100

  3、把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。

  学生可能会这样分:

  第一种:X+50>100X+50=100

  X+50<100X+X=100

  第二种:X+50>100X+X=100

  X+50<100X+50=100

  引导学生理解第一种分法:

  你为什么这样分,说说你的想法。

  小结:像右边的式子就是我们今天所要学习的方程,请同学们在书上找到什么是方程,读一读,不理解的和同桌交流。

  指名学生说,教师板书:像X+50=150、2X=200这样含有未知数的等式是方程。

  提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”

  那X+50>100、X+50<100为什么不是方程呢?

  提问:那等式和方程有什么关系呢,在小组里交流。

  方程一定是等式,但等式不一定是方程。

  三、完成“试一试”、“练一练”

  学生独立完成。

  集体订正时围绕“含有未知数的等式”进一步理解方程的含义

  四、课堂作业:练习一的1、2、3。

  板书:X+50=100

  X+X=100

  像X+50=150、2X=200这样含有未知数的等式是方程。

《方程的意义》教案11

  教学目标:

  1、使学生理解方程的意义,知道什么是方程的解,什么是解方程,并弄清等式与方程的关系。

  2、会判断什么是方程,会解一步计算的方程,并会检验方程的解。

  3、使学生养成良好的检查、验算习惯。

  教学重点:

  理解方程的意义。

  教学难点:

  理解等式与方程的关系。

  教学过程:

  一、创设情境

  我们学过了用字母表示数,下面用含有字母的式子表示下面各题的数量关系。(口答)

  (1)x与6的和 (2)x与4的和

  (3)20减x的5倍的差 (4)x的2倍加1. 8

  在上幼儿园的时候你都喜欢玩哪些游戏呢?

  看看这两位小朋友在做什么游戏?你想不想玩?

  那接下来我们也一起来玩一玩。

  老师有65千克(板书:65)你呢?(指名学生)

  请大家闭上眼睛想一想,当我与他坐上翘翘板两端的时候,会出现怎样的情况呢?

  那怎样就能使翘翘板平衡了呢?

  你能用一个式子把它表示吗?(板书:30+35=65,左右两边相等)

  同学们,你们在生活中见过与翘翘板相类似的物体吗?(天平)

  今天我这里有一架天平,谁能介绍一下天平的使用方法吗?(那什么时候天平就平衡了呢?当两重量相等的时候或者指针指向中间的时候。)

  你了解得的可真多!

  二、探究新知

  1、理解方程的意义

  师:这里也有两架天平也保持着平衡,你能用一个算式表示出来吗?

  (1)20+30=50 (2)20+x=100

  师:那么x是多少?(80克)这个x是固定的值。能不能随便的说?(不能)前面我们学的用字母表示数时可以表示任意的数,但这里是一个固定的值,不能表示任意的数,只能是使等式左右两边相等的值。

  师:那么这两个算式有什么不同?(含有未知数)

  同学们,真厉害!

  前几天,学校又新买了3只篮球,(出示篮球图)共用去186元,同学们,你们能用一个等式来表示吗?(板书:3x=186)

  大家观察一下这几个等式,你能不能把它们分分类?

  30+35=65 20+x=100

  20+30=50 3x=186

  揭示方程概念:含有未知数的等式叫方程。(板书)

  2、比较等式和方程

  下面我们观察一下,它们有什么相同?什么不同?(小组讨论)

  得出相同点:都是等式,不同点:方程含有未知数

  强调:方程必备两个条件:一、含有未知数。二、等式

  谁能用这个图来表示等式和方程的关系?(小组讨论)

  谁能说说等式和方程的.关系 等式

  方程

  那你能说几个方程吗?

  练习:下面哪些是方程?哪些不是方程?

  35-x=12 84÷12=7 4x-32

  49÷x=7 450x=900 69+x

  3、自学什么是解方程、方程的解

  (1)学生自学课本99页,回答下列问题:

  a:什么是方程的解?

  b:什么是解方程?

  c:方程的解和解方程一样吗?

  d:和以前学的求知数有什么关系?

  4、解方程

  下面我们一起来解方程

  例1 x-18=30 根据被减数=差+减数

  解: x=30+18

  x=48

  检验 把x=48代入原方程。

  左边=48-18=30,右边=30

  左边=右边

  所以x=48是原方程的解。

  进一步明确:方程的解和解方程

  解方程和求知数又有什么不同呢?

  三、巩固练习

  1、试一试:4x=6.4(要求写出检验过程)

  2、判断:

  (1)、含有未知数的式子叫做方程。 ( )

  (2)、方程是等式,所以等式也是方程。( )

  (3)、检验方程的解是否正确,应当把求得的解代入原方程。( )

  (4)、x=36是方程x÷3=12的解。 ( )

  (5)x=1是方程。( )

  3、选择

  (1)x-12=20的解是( )

  a、x=18 b、x=32

  (2)4x=6的解是( )

  a、x=1.5 b、x=2

  (3)3x-7=21这个式子是( )

  a、方程 b、不等式 c、既是等式又是方程

  (4)x=5是方程( )的解

  a、15x=3 b、3x+2=17

  4、解方程(机动)

  28+x=92 x÷16=5(要求写出检验过程)

  四、小结

  通过学习你有什么收获?

  你觉得哪些地方值得注意?

  板书:

  30+35=65

  20+30=50

  20+x=100 含有未知数的等式叫方程。

  3x=186 使方程左右两边相等的未知数的值,叫做方程的解。

  求方程的解的过程叫做解方程。

《方程的意义》教案12

  设计说明

  1、引导学生边观察、边思考,提高自主学习能力。

  《数学课程标准》中指出:数学教学活动必须建立在学生的认知发展水平和已有知识经验的基础上。本教学设计没有将等式、方程的概念强加给学生,而是充分尊重学生的原有知识水平,结合具体情境,运用天平保持平衡的原理来解释各数量之间的相等关系,按照教材上的连环画,通过教师反复操作,一步一步观察,思考每一步骤的数学含义,让学生逐步理解式子中的“=”就是天平的平衡,从而让学生初步体验和感受方程的意义。  2。引导学生辨方程、写方程,重视学情反馈。

  数学学习重要的是巩固和应用,因此学习后的学情反馈是很重要的。本设计在学生明确方程的概念后,引导学生自己写方程,识别方程并说出理由的练习,进一步掌握方程的意义,明确判断一个式子是不是方程的两个要素:一看是不是等式,二看有没有未知数。通过应用反馈,加深对方程特点的理解,提高了学习效率。

  课前准备

  教师准备:PPT课件、学情检测卡、课堂活动卡

  学生准备:小黑板、练习卡片

  教学过程

  情境引入,体会“等”与“不等”

  师:同学们,我们学校一年一度的足球比赛又如火如荼地开始了,昨天的比赛是五(1)班对战五(3)班,由于上半场五(3)班发挥出色,上半场的.比分为1∶4,中场休息后,五(1)班马上调整了战术,下半场五(3)班没得分,五(1)班连追了x分。

  师:两个班最后的比分是几比几?(学生回答,教师板书:x+1∶4)

  师:哪个班赢了?你能用一个数学式子来表示吗?

  (学生回答:x+1>4,x+1<4,x+1=4;并注意提问式子的意义)

  师:其实在我们的生活中有许多现象是可以用数学式子来表示的。今天我们就来一起学习一个新的数学知识。(教师板书课题:方程的意义)

  设计意图:用学生经历的真实活动为情境,充分调动学生的学习积极性,使学生切实感受到数学来源于生活,服务于生活。同时通过熟悉情境的创设,让学生更易理解,更深刻地感受“等”与“不等”,为后面理解方程的意义作铺垫。

  情境呈现,抽象模型

  1、自学方程的意义,初步感悟新知。(课件出示教材62页情境图)

  自学提示:

  (1)理解教材62页每幅图画及对应式子的含义。

  (2)标示出你认为重要的内容。

  (3)思考:方程应该具备哪几个条件?

  (4)结合你对方程概念的理解,完成教材63页“做一做”1题。

  2、合作学习。

  (1)你能自己写几个方程吗?小组内互相订正。

  (2)组内交流收获。在小组内互相说一说:你学到了什么?

  由组长带领组内成员集体订正教材63页“做一做”1题的答案,说清理由,并将小组内认为不是方程的算式记录在小黑板上。

  (3)全班交流。教师展示学生的完成情况,先把答案相同的进行分类,再从答案最少的一块着手分析。遇到问题,学生之间互相解答,加深对方程的意义的理解。

  (此环节教师要随机应变,注意提问学生“方程应该具备哪几个条件”。如果出现了对方程理解有困难的同学,再次为学生讲解)

  预设:

  ①全班同学的答案一致,全对。

  ②一部分小组全对,一部分小组有错误。

  这时教师可以先找有错误的一个小组到黑板上汇报讲解。讲解时随时和下面的同学互动交流,在学生的争论中,教师适时引导、提问,指导学生判断正误的方法。

  3、整理分类,加深对方程意义的理解。

  (1)组织学生分组活动,根据黑板上的算式特点进行分类。

  (2)交流汇报,说出分类依据。教师板书。

  4、独立完成教材63页“做一做”2题,汇报,集体订正。

  5、引导学生独立完成教材66页1题,集体订正,并加以补充:判断0=5z-15是不是方程。

《方程的意义》教案13

  教学内容: 教科书第1~2页的内容及练习一的1~3题。

  教学目标:1、通过学习,使学生理解方程的含义,感受方程思想。知道像X+50=150、2X=200这样含有未知数的等式是方程。

  2、经历从生活情景到方程模型的建构过程。

  3、培养学生观察、描述、分类、抽象、概括、应用等能力。

  教学重点:使学生理解方程的含义,感受方程思想

  教学难点:使学生理解方程的含义,感受方程思想

  课前准备:天平、砝码

  教学过程:

  一、创设情景,抽象数学模式。

  1.出示实物天平。

  师:认识吗?它在生活中有什么作用?(称物体的重量、使得左右平衡)

  2.演示:

  出示两个50g砝码和一个100g砝码,(将未标有重量的一边朝向学生)

  师:它们的重量我们还不知道,如果要分别放在两个盘上,天平会怎样呢?(演示)

  学生观察后发现天平平衡(这时,将砝码标有重量的一边朝向学生)

  提出要求:你能用等式表示天平两边物体的质量关系吗?

  学生在本子上写。

  指名回答,板书:50+50=100

  3、出示例1

  说明:含有等号的式子叫等式,它表示等号两边的结果是相等的。

  (板书:含有等号的式子叫等式)

  二、引导分类,概括方程概念。

  1、学生自学

  要求:

  (1)学生在书上独立填写,用式子表示天平两边的质量关系。

  (2)小组同学交流四道算式,最后达成统一认识:

  X+50>100 X+50=100

  X+50<100 X+X=100

  根据学生的回答,教师板书这4道算式。

  (3)把这4道算式分成两类,可以怎样分,先独立思考后再小组内交流,要说出理由。

  A、想一想你分类的标准是什么?

  B、把自己分类的情况,写在纸上?

  学生可能会这样分:

  第一种:

  X+50>100 X+50=100

  X+50<100 X+X=100

  第二种:

  X+50>100 X+X=100

  X+50<100

  X+50=100

  2、概括概念

  过渡:看来同学们都能按自己的标准对式子进行分类。

  引导学生理解第一种分法:

  你为什么这样分,说说你的想法。

  A、教师指着黑板说:像右边的式子就是我们今天所要学习的方程。(板书:像X+50=150、2X=200这样_____________的等式方程)

  B、你能说说什么叫方程吗?

  C、学生发言,概括出:“含有未知数的等式叫做方程”(板书)

  提问:你觉得这句话里哪两个词比较重要?“含有未知数”“等式”

  那X+50>100 、X+50<100为什么不是方程呢?

  提问:那等式和方程有什么关系呢,在小组里交流。

  方程一定是等式,但等式不一定是方程。

  3、举例方程、理解概念

  你能例举出方程吗?谁能举的与刚才不一样吗? (用字母Y表示、有难度的方程)

  以前我们见过方程吗?

  三、完成“试一试”、“练一练”

  1、“试一试”

  (1)观察左边的天平图,说说图中的是数量关系,列出方程。

  (2)观察右边的图,弄清题意,列出方程。

  1、练一练第1题

  (1)观察,找一找哪些是等式,哪些是方程?

  (2)交流:

  (3)说明:方程中的未知数可以用X表示,也可以用Y表示,还可以用其他字母表示。

  (4)判断:方程是含有未知数X的等式。……..( )

  2、练一练第2题

  (1)先写一些方程

  (2)组织交流

  3、练一练第3题

  四、课堂作业:

  1、练习一第1题 先独立完成在交流

  2、练习一第2题

  (1)先说一说每题的数量关系

  (2)独立列出方程

  (3)交流

  3、练习一第3题

  (1)说一说天平两边有什么物体,这些物体的质量间有什么关系

  (2)独立思考列出方程

  (3)观察方程,初步感知等式的性质。

  习题超市:

  1、讨论判断:下面的式子哪些是方程,哪些不是方程?

  8x=0 6x+2 4+2>10 2y÷5=10 n-5m = 15

  17-8 = 9 10<3m 6x +3 = 11+2x 4+3z =10 a÷8=60

  2、根据下面的信息,你能列处几个不同的方程?

  我比莉莉重25 kg,,我重61 kg。

  我186 cm。

  我身高x cm,我比爸爸矮40cm。

  我重y kg。

  板书设计及课后反思:

  方程的意义

  含有等号的式子叫等式

  X+50=100

  X+X=100 像X+50=150、2X=200这样含有未知数的等式是方程。

  教材简析:

  等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,本单元教材首先让学生体会等式的含义。

  天平两臂平衡,表示两边的物体质量相等;两臂不平衡,表示两边物体的质量不相等。让学生在天平平衡的直观情境中体会等式,符合学生的认知特点。例1在天平图下方呈现“=”,让学生用等式表达天平两边物体质量的`相等关系,从中体会等式的含义。教材使用了“质量”这个词,是因为天平与其他的秤不同。习惯上秤计量物体有多重,天平计量物体的质量是多少。教学时不要把质量说成重量,但不必作过多的解释。

  例2继续教学等式,教材的安排有三个特点:

  第一,有些天平的两臂平衡,有些天平两臂不平衡。根据各个天平的状态,有时写出的是等式,有时写出的不是等式。学生在相等与不等的比较与感受中,能进一步体会等式的含义。第二,写出的四个式子里都含有未知数,有两个是含有未知数的等式。这便于学生初步感知方程,为教学方程的意义积累了具体的素材。第三,写四个式子时,对学生的要求由扶到放。圆圈里的关系符号都要学生填写,学生在选择“=”“>”或“<”时,能深刻体会符号两边相等与不相等的关系;符号两边的式子与数则逐渐放手让学生填写,这是因为他们以前没有写过含有未知数的等式与不等式。

  第2页的“试一试”和“练一练”第3题都是看图列方程,编排这些题的目的是培养学生发现和理解现实情境里的等量关系的能力,体会方程是表示等量关系的数学方法,从而进一步巩固方程的概念,并为以后列方程解决实际问题打下扎实的基础。这些内容在编排上有两个特点:

  一是直观情境的呈现从天平图开始,发展到带括线的图画。带括线的图画在一年级(上册)就出现了,学生比较熟悉。但是,从列算式求答案的习惯思维转向列方程表示等量关系,仍然会有困难。因此,教材先让学生看天平图列方程。天平两臂平衡,表示它左右两边物体的质量相等,已经在两道例题里教学得很充分了,看天平图列方程能让学生初步知道什么是列方程和怎样列方程,对依据什么列方程和列出的方程表示什么有所体验。

  在此基础上,过渡到列方程表示带括线的图画里的等量关系,会平稳得多。二是带括线的图画里的等量关系,突出两个或几个部分数相加是它们的总数。在几个部分数相同时,它们相加用乘法比较简便。这些关系是数量之间最基本的关系。而且这些关系建立在加法和乘法的意义上,学生容易理解。如文具盒的价钱加笔记本的价钱一共20元,买4本同样的故事书一共要16.8元,列出的方程分别是12+x=20和4x=16.8。如果少数学生列出的方程是20-x=12或16.8÷x=4也是可以的,但不宜提倡;绝不能列出20-12=x、16.8÷4=x这样的方程。因为后者仍然是过去列算式的思路,不利于学生体会数量间的相等关系,对以后的教学也是有弊无利的。

《方程的意义》教案14

  教学内容:

  教科书第1-2页例1、例2。

  教学目标:

  1、通过学习,使学生理解方程的含义,知道像X+50=150、2X=200这样含有未知数的等式是方程。

  2、培养学生概括、归纳的能力。

  教学准备:

  天平、砝码。

  教学重点及难点:

  理解方程的意义,方程与等式的关系。

  教学过程:

 一、借助天平体会等式的含义。

  (1)你会用等式表示天平两边物体的质量关系吗?(50+50=100 50×2=100)

  (2)你还能写出这样的等式吗?根据学生举例写下2~3个。

  (3)你感觉什么样的式子是等式呢?

  用等于号连接的数学表达式;左右两边相等的式子;左边算起来来等于右边的;

  二、感知不等式,教学方程的意义。

  1、出示实物天平:

  (1)左边放克,右边放克,可以用什么式子来表示?

  板书:

  (2)现在老师要在左边再放一个物体,左边的质量怎样来表示呢?(+x)

  (3)这时候,你觉得天平会发生什么变化呢?你能把这些可能写下来吗?

  交流并板书+x< +x= +x>

  (4)这些式子与等式相比有什么不同?(有字母,有的不是等式。用大于号或者小于号连接,我们把这些叫不等式。)。

  2、例二的内容

  (1)学生在作业纸上完成例二的内容。集体交流汇报。板书

  x+5>100 x+50=150 x+50<200 2×x=200

  (2)概括概念

  A、观察黑板上的算式,你能把他们分分类吗?

  B、你分类的依据是什么?

  第一次分类:按照等式、不等式分

  (老师把黑板上不是等式的式子擦掉)剩下的式子是什么?(都是等式)

  还能再分下去吗?

  第二次分类:按既含有字母且是等式分

  (此处也可能先按有字母和没有字母来分,然后再按等式和不等式来分)

  C、像x+50=150、2x=200这样含有未知数的等式叫做方程。(板书:方程)

  像50+50=100、x+50>100和x+50<200为什么这些不是方程呢?把板书补充完整。

  D、完成试一试

  三、突出方程概念的内涵与外延

  1、讨论判断

  (1):哪些是等式,哪些是方程?

  6+x=14 36-7=2960+23>708+x y-28=35

  x+4〈14 m+n=100

  (2)在判断之后,你对等式和方程有什么新的认识呢?

  可能有:未知数可以用x、y等多个字母表示;

  一个等式中可以含有多个未知数;

  等式与方程这两个概念之间的包含与被包含关系。即方程都是等式,但等式不都是方程。(如果学生说不到或者不明白就出现以下的比较辨析。)

  (3)讨论比较,辨析概念。

  讨论下面的说法正确吗?

  所有的`方程都是等式。

  所有的等式都是方程。

  (4)刚才我们是用语言描述的方式表示出了方程和等式的关系,你还有什么更清楚简明的办法来表示它们之间的关系吗?

  (5)你能自己创造一到两个和现实生活有联系的方程的例子吗?能够将自己创造出来的方程与邻座的同学分享讨论,集体分享。(不会,老师先举个例子。)

  (6)引导质疑你还有什么疑问?

  四、用方程表示直观情境里的相等关系

  (1)看图列方程

  (2)用方程表示下面的数量关系。

  (3)列式:妈妈买米用了50元,买油用了15元,妈妈一共用了多少钱?

  (说明:并不是任何时候都要列方程的。)

  五、总结提升,介绍方程的数学史

  板书设计:方程的意义

  X+50=100

  X+X=100

  像X+50=150、2X=200这样含有未知数的等式是方程。

  教学后记:

《方程的意义》教案15

  一、教学内容:

  教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。

  二、教学目标:

  理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。

  三、教学重点:

  理解并掌握方程的意义。

  四、教学难点:

  会列方程表示数量关系。

  五、教学过程:

  1、出示例1的天平图,让学生观察。

  提问:图中画的是什么?从图中能知道些什么?想到什么?

  引导

  (1)让不熟悉天平不认识天平的'学生认识天平,了解天平的作用。

  (2)如果学生能主动列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”

  2、出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。

  引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。

  3、讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。

  4、完成练一练

  (1)下面的式子哪些是等式?哪些是方程?

  (2)将每个算式中用图形表示的未知数改写成字母。

  5、巩固练习

  (1)完成练习一第1题

  先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。

  (2)完成练习一第2题

  6、小结

  今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?

  7、作业

  完成补充习题

  六、板书设计:

  方程的意义

  X+50=100

  X+X=100

  像X+50=150、2X=200这样含有未知数的等式叫做方程

【《方程的意义》教案】相关文章:

《方程的意义》教案05-16

方程的意义教案03-30

《方程的意义》教案[必备]05-16

(精品)《方程的意义》教案15篇05-16

方程的意义说课稿07-13

《方程的意义》教学反思10-03

《方程的意义》教学反思[精选]07-07

方程的意义教学反思01-15

方程的意义教学反思09-22

方程的意义的教学反思12-22