当前位置:9136范文网>教育范文>教案>乘法分配律的教案

乘法分配律的教案

时间:2024-08-28 12:00:16 教案 我要投稿

乘法分配律的教案

  作为一位优秀的人民教师,有必要进行细致的教案准备工作,教案是教材及大纲与课堂教学的纽带和桥梁。那么优秀的教案是什么样的呢?以下是小编帮大家整理的乘法分配律的教案,欢迎大家借鉴与参考,希望对大家有所帮助。

乘法分配律的教案

乘法分配律的教案1

  教学内容:苏教版小学数学第七册P56—57

  教学目标:

  1.让学生掌握能用乘法分配律进行简便计算的式题的特点。

  2.让学生学习应用估算的方法判断计算结果的合理性。

  3.让学生联系实际问题运用规律解决问题,感受数学规律的普遍适用性,进一步体会数学与生活的.联系。

  教学重点、难点:让学生掌握能用乘法分配律进行简便计算,进一步体验简便计算的实际应用价值。

  教学准备:教学情境挂图

  设计理念:在比较中体验运用乘法分配律进行计算的简便,体验运算律的应用是广泛而经常的,培养自觉进行简便运算的意识。

  教学步骤

  教师活动

  学生活动

  一、

  复习铺垫导入新课

  1.出示复习题

  在里填上合适的数,在

  里填上运算符号。

  64×7+64×3=64(+)

  25×(3+4)=

  提问:你是根据什么规律来填的?

  2.谈话:这节课我们学习应用乘法分配律进行简便计算。

  学生独立填表。

  学生口答。

  二、探究新知应用规律

  1.教学例题

  (1)出示挂图

  从图中你知道哪些信息?

  怎样列式?

  板书:32×102=

  (2)你能先估计一下计算的结果吗?

  你能口算出买102件要付多少钱吗?

  (3)口算得对不对呢?我们再用笔算来验算一下。

  指名板演。

  (4)谈话:口算和笔算相比,哪一种算法简便呢?你能把口算的过程详细地写下来吗?

  教师板书:

  32×102

  =32×(100+2)

  =32×100+32×2

  =3200+64

  =3264

  提问:谁来说一说先怎么办?再怎么办?这样计算的根据是什么?

  (5)用简便方法计算。

  28×30176×101402×25

  2.教学“试一试”

  用简便方法计算。

  46×12+54×12

  展示学生的答案,集体评议。

  3.小结

  什么样的式题能够应用乘法分配律进行简便计算呢?

  学生观察,讨论,回答。

  指名回答。

  小组讨论,集体评讲:

  把102件看作100件,32×100=3200(元),所以32×102的积比3200大。

  学生口算,指名回答。

  买100件要3200元,买2件要64元,一共用3264元。

  独自列式计算

  学生回答,说算式。

  指名口答。

  独立练习,集体评讲。

  学生独立尝试练习。

  小组讨论,全班总结。

  三、组织练习应用巩固

  1.想想做做第1题

  2.想想做做第2题的第一排

  展示答案,共同评议。

  3.想想做做第3题

  4.想做做第5题

  5.想想做做第6题

  独立填空,再交流想法。

  各自做题。

  指名说说口算过程。

  独立练习,集体评讲。

  独立练习,集体评讲。

  四、全课总结自我评价

  提问:

  通过这节课的学习,你有什么收获?你的表现怎样呢?

  指名回答,自我评价。

  作业设计:课堂作业:想想做做第二题的第二排,第四题

  家庭作业:完成思考题

  教学反思:

乘法分配律的教案2

  教学目标:

  1、使学生在探究的过程中,能自主发觉乘法安排律,并能用字母表示。

  2、通过视察、分析、比较,培育学生的分析、推理和概括实力。

  3、发挥学生主体作用,体验探究学习的欢乐。

  教学重点:

  指导学生探究乘法的安排律。 教学难点:

  乘法安排律的应用。

  教学打算:

  课件、口算题、例题、练习题等。 教学策略:

  本节课的学习我主要实行自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、英勇地体验尝试和实践活动来进行综合学习。

  教学流程:

  一、设疑导入

  师:同学们,上节课我们学习了乘法结合律和乘法交换率。

  谁来说一说,驾驭乘法结合律和乘法交换率有什么作用?

  生:可以使计算简便。

  师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速推断。(生口算。)

  设计意图:这样开宗明义的导入,不但可以巩固旧知,为新课作铺垫,而且当学生快速口算到新课题时,会出现一种戛然而止的效果,出现问题情境,从而自然导入新课。

  二、探究发觉

  1、猜想。

  师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

  师:这道题算得怎么不如刚才的快啊?

  生:它和前面的题目不一样。 师:好,我们来看一下它与前面的题目有什么不同?

  生:前面的题都是乘号,这道题既有乘号还有加号。 生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。

  师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。

  生:(10+4)×25=10×25+4×25。 师:为什么这样算哪?

  生:我是依据乘法安排律算的。 师:你是怎么知道的?你知道什么是乘法安排律吗?

  生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。

  师:你自学实力很强,但对乘法安排律的内涵还不了解,这节课我们就来探究乘法安排律好吗?(板书课题:乘法安排律。)

  2、验证。

  师:同学们看两个数的和同一个数相乘,假如可以这样计算的话,那可简便多了。究竟能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

  师:说说你有什么发觉。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。) 小结:通过验证,这道题的确可以这样算,那是不是全部的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是全部的两个数的'和同一个数相乘都可以这样计算?

  师:由于时间关系,老师就写到这里,通过举例我们可以发觉,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们视察黑板上的几组等式,看看你们得到的结论是什么? 3、结论。

  生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。 师:同学们真聪慧,你们知道吗?这就是乘法的第三个运算定律“乘法安排律”。(出示课件,学生齐读安排律的意义。)

  师:假如老师用a、b、c表示两个加数和乘数,你能用字母表示乘法安排律吗?

  (a+b)×c=a×c+b×c

  师:回到第一题,看来利用乘法安排律,的确可以使一些计算简便。接下来,我们利用乘法安排律计算几道题。 设计意图:在探究乘法安排律的过程中,让学生经验了一次严密的科学发觉过程:猜想——验证——结论。为学生的可持续学习奠定了基础。

  三、练习应用

  (生练习应用定律。)

  师:通过这两道题的计算,我们可以看出,乘法安排律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

  四、总结

  师:本节课我们学习了乘法安排律,看到乘法安排律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)

  反思:

  本课的学习要使学生理解和驾驭乘法安排律,并能正确地进行表述。让学生参加学问的形成过程,培育学生概括、分析、推理的实力,并渗透从特别到一般,再由一般到特别的相识事物的方法。本节课的教学较好地贯彻了新课程标准的理念,主要体现在以下几点:

  一、主动探究,实现亲身经验和体验

  现代教学论认为:学生的学习过程应是学习文本批判、质疑和重新发觉的过程,是在详细的情境中整个身心投入到学习活动,去经验和体验学问形成的过程,也是身心多方面须要的实现和发展过程。本节的教学中,我从口算导入新课,引出(10+4)×25这样一个特别的算式。接下来,让学生猜想它的简算方法,然后让学生通过计算来验证方法的可行性,再让学生举例验证方法的普遍性,最终由学生通过视察、探讨、发觉、归纳总结出乘法安排律。整个过程中,我不是把规律干脆呈现在学生面前,而是让学生通过自主探究去感悟发觉,使主体性得到了充分发挥。在这个探究过程中,学生经验了一次严密的科学发觉过程:猜想——验证——结论——联想。为学生的可持续学习奠定了基础。

  二、多向互动,注意合作与沟通

  在数学学习中,学生的思维方式、智力、活动水平都是不一样的。因此,为了使不同的学生在数学学习中都得到发展,老师在本课教学中立足通过师生多向互动,特殊是通过学生与学生之间的相互启发与补充,来培育他们的合作意识,实现对“乘法安排律”这一运算定律的主动建构。学生对“乘法安排律”的建构过程,正是学生个人的方法化为共同的学习成果,共同体验胜利的喜悦,生命活力得到发展的过程。正所谓“一枝独秀不是春,百花齐放迎春来”。

乘法分配律的教案3

  教学目标:

  知识与技能

  1、理解乘法分配律的意义,并能正确地描述。

  2、初步懂得运用乘法分配律进行简算。

  过程与方法

  1、让学生参与乘法分配律的归纳过程,培养学生概括、分析、推理的能力。

  2、使学生了解从特殊到一般,再由一般到特殊这种认识事物的方法。

  情感态度与价值观

  通过观察、验证、归纳等数学活动,使学生体验数学问题的探索性,感受数学思考过程的条理性。使学生感受数学和现实生活的联系,培养学生学习数学的兴趣。

  教学重难点:

  重点

  充分感知并归纳乘法分配律。

  难点

  理解乘法分配律的意义,充分感知并归纳乘法分配律。

  教学准备:

  多媒体课件。

  教学设计:

  一、创设情景,引入新课

  同学们,你们看了自然环境被破坏而出现的沙尘暴、水土流失等一些情景的图片,有什么想说的吗?

  生:1、我想大声的呼吁:请不要再滥伐树木了,不然的话沙尘暴会更厉害。

  2、请保护好我们共同的`家园吧!

  3、要保护我们的家园,还要大量植树。

  师:说的太好了。要保护我们的家园就要植树造林,种植花草。同学们,你们还记得前段时间学校植树活动的情况吗?

  (多媒体展示植树的场景,并附文字:一共有25个小组参加植树活动,每组里4人负责挖坑、种树,2人负责抬水、浇树)

  二、探究新知

  1、探究乘法运算定律

  (1)发现问题,提出问题,独立解决问题

  师:同学们,你都得到了哪些数学信息?

  学生回答。

  师:根据这些信息,你能提出什么问题?

  生:一共有多少同学参加了这次植树活动?

  教师随学生的回答板书问题。

  师:请根据这些信息解决这个问题。

  学生列式计算。

  (2)交流解决问题的方法

  生展示汇报:

  (4+2)×25 4×25+2×25

  =6×25 =100+50

  =150(人) =150(人)

  师:谁和第一位同学的算式一样?请举手。谁来说一说你们解决问题的步骤?

  生:先用加法算出每组有几人,再乘25算出一共有多少人?

  师:谁和第二位同学的算式一样?请举手。谁来说一说第二种方法解决问题的步骤?

  生:根据收集到的信息,先分别算出负责挖坑种树的人数和抬水浇树的人数,再把这两部分合起来算出一共有多少人?

  师:回答的很好。我们来看4×25和2×25分别表示什么?还有不同的想法吗?

  生:我也是先算出每组有几人?即(4+2)×25。

  师:同学们用不同的方法解决了这个问题,请大家一起回答这次植树活动的学生一共有多少人?(150人)

  2、探究乘法分配律

  (1)探讨

  师:同学们用不同的方法解决了这个问题并且计算结果相同,那么,这两个算式之间有什么关系?

  出示:(4+2)×25 4×25+2×25

  生:两个算式的结果相等,在这两个算式中间可以用等号连接。

  师:谁能用自己的语言来描述这个等式。

  生1:4加2的和乘25等于4乘25加上2乘25。

  2:4加2的和乘25等于先把4和2分别与25相乘再相加。

  师:刚才同学们是先算出每组有几人,再算一共有多少人,算式为25×(4+2)。想一想:计算25乘4加2的和还可以怎样算呢?动手试试再把想法说给同桌听。

  师:谁来给大家说自己的想法?

  生:25乘4加2的和,可以先把25分别与4和2相乘,再相加。也就是先算25×4和25×2,再把两个积相加。即25×(4+2)=25×4+25×2

  (2)举例观察

  师:我们知道了4加2的和与25相乘,可以先把4和2与25分别相乘,再相加。请你再举出几个这样的例子,写在本子上。你怎么来说明你写的算式左右两边是相等的?

  师:谁来汇报你写的式子,师随生汇报板书。请同学们观察这两组等式以及自己写的等式,有什么发现?请先和同学交流。

  (3)交流概括

  师:谁来说说自己的发现?

  生:我发现,两个数的和与一个数相乘,可以把两个数分别与这个数相乘求出积,再把积相加。

  师:两个数的和与一个数相乘,可以把两个数分别与这个数相乘求出积,再把积相加。这就叫乘法分配律。

  板书课题:乘法分配律。

  师:刚才同学们写的算式都对,那我们可不可以用一个算式就能表示出所有的式子?

  生试着在练习本上写,并抽学生汇报。

  生1:a、b表示两个加数,c表示因数。a加b的和乘c等于a乘c加b乘c。即(a+b)×c=a×c+b×c。

  生2:a表示因数,b、c表示两个加数,a乘b加c的和等于a乘b加上a乘c。即a×(b+c)=a×b+a×c。

  三、巩固练习

  1、在□里填上适当的数。

  (15+20)×12=□×12+□×12

  25×(4+9)=□×4+□×9

  8×(10+5)=□×□+□×□

  75×24=75×□+75×□

  2、把左右两边相等的算式用线连接起来。

  48×12+52×12 15×18+26×18

  (15+18)×26 25×40+25×4

  25×(40+4)(48+52)×12

  14×(45-5)11×4+25×4

  (11×25)×4 14×45-14×5

乘法分配律的教案4

  【教学内容】

  人教版四年级下册课本36页例3.

  【教材与学情定位】

  本内容是人教版四年级下册四则运算之中的一个规律性知识,是在学生学习认知了加减乘除各部分之间的关系和加法、乘法交换律、结合律之后的知识内容,其承载了 “两个数的和与一个数相乘,可以把这两个数分别同这个数相乘”的内容,学生计算起来容易出现问题或者错误,总是会把其中一个加数与因数相乘,却把另外一个加数忽略。

  【设计理念】

  1、乘法分配律在学习两位数乘一位数的乘法口算、笔算以及两位数乘两位数的笔算教学中已经有所渗透。乘法分配律的学习是否可以由此引入,由此加强与学生已有知识基础的联系,运用知识的正迁移,解决学生对乘法分配律难理解,易用错的问题。

  2、乘法分配律到底难在哪里?是学生体验不到成功,还是乘法分配律作为简便运算的一个方法而不能体现其简便性。如果是又当如何体现,其教学的临界点在哪里?

  2、乘法分配律必须在学生了解了乘法交换律和结合律的基础上进行吗?通过两位数乘两位数的乘法计算是否可以进行导入?如果可行,是不是我们在一年的教学中把‘花开两朵单表一枝’做的太过了而忽略了另一只鲜花的存在?

  【教学目标】

  1、通过观察、分析、比较,引导学生概括、理解并且掌握乘法分配律,体会到乘法分配律作为一种简便运算的手段的可实行性和其存在的必然性。

  2、通过观察、分析、比较,培养学生概括、分析、推理的能力。通过观察、分析、比较,培养学生概括、分析、推理的能力。

  【教学重点】

  从数字到图形到字母形式的转化提炼,抽象概括出乘法分配律。

  【教学难点:】

  1.理解乘法分配律,体会其优越性。

  2.乘法分配律应用中出现的问题如何有效突破。

  【教学过程】

  1、同学们我们前面学习过两位数乘两位数,

  出示:25×14=

  算式表示什么意义?(14个25是多少。)你能计算这个题目吗?(能)完成在练习本上。

  (师把25×14写在黑板左侧,指生上展示台展示自己的书写过程,并分别说明100是怎么求的?250呢?教师把学生的想法记录在展示本上)

  过程:25

  ×14

  100 25×4

  25 25×10

  350

  问及全班,相同计算过程与结果的举手,师边走边问回到黑板刚才我们怎么计算的?100=25×4,再算250=25×10,然后把它们的积+起来,顺手板书(注意前后顺序先写右侧25×4,在写25×10最后写‘+’号)。注意看,前面明明是25×14,怎么在右侧却变成了25×10 和25×4?(实际上是把14分成了10+4的和)

  师随生动:14分成(10+4)的和乘25

  指25×14表示什么?14个25是多少

  指(10+4)×25表示什么?14个25是多少?

  指10×25+4×25表示什么?14个25是多少?

  可以画等号吗?可以

  那下面这几个算式表示什么?也可以这样写吗?

  【设计意图】

  本环节设计主要是通过两位数乘两位数竖式计算算理的研究,打通与乘法分配律的`关系,初步建立知识的感知。

  出示15×12= 23×16=

  学生观察:发现都是两位数乘两位数的运算,表示可以。

  师指生描述算式的含义并由学生独立完成算式转换。

  学生通过验证认识到:

  15×12=(10+2)×25=10×15+2×15

  23×16=(10+6)×23=10×23+6×23

  16×25=(10+6)×25=10×25+6×25

  现在还想等吗?

  15×12=(10+2)×25=10×15+2×15

  23×14=(10+4)×23=10×23+4×23

  16×25=(10+6)×25=10×25+6×25

  生:相等。

  师:为什么?谁能说明白为什么仍旧相等?等号左边表示什么右边又表示什么?

  生:等号左边表示10+4的和个23就是14个23是多少;右边10个23+4个23是多少。两边都是14个23是多少,所以相等。

  师:读一遍等式,体会等式的意义。(此处不去小结,让学生初步意会到,但是不适合言传)

  【设计意图】

  本环节意在学生初步感知乘法分配律的意义存在,通过等号左右两边的关系和意义说明乘法分配律的存在的意义与其存在的实际价值。

  师:同学们如果给你写出左边的算式,你能推导出右边的算式吗?

  生:可以。

  2、出示三道练习题目,(完成在练习本上)引导学生探究发现、总结规律

  (20+3)×37=

  (10+9)×23=

  (32+25)×74=

  学生写出正确的右半边后教师引导学生观察黑板和屏幕上全部内容,等号左边和右边有什么相同和不同吗?你发现了什么?

  生可能发现:左侧先算加法,再算乘法,右侧先算乘法再算加法;

  左侧三个数,右侧四个数;

  ……

  小结:两个数加起来的和乘第三个数,就等于这两个数分别乘第三个数,然后把乘积加起来。

  【设计意图】

  通过仿写,学生体会乘法分配律的意义和作用。深刻认知‘分别’的含义。

  师抓住第二条,对呀,怎么多了一个数还想等?引导学生发现,屏幕红色字体呈现以(20+3)×37=为例说明是左侧括号里面的数分别乘括号外的数,所以多了一个。你能说出一组符合这个规律的数吗?

  生一:(10+5)×74=10×74+5×74

  同意的举手,鼓励的掌声送给他

  生二:(10+7)×52=10×52+7×52

  生三:(10+9)×24=10×24+9×24

  生四:(30+2)×52=52×30+52×2

  【设计意图】

  学生如果完全可以自己仿制,说明这个内容孩子们真的掌握了,明确了,可以使用了,意思能够说明白了,但是仅仅是不能语言描述而已。

  师:能说完吗?不能,看来这个层次的大家都没问题了,我出一个你会做吗?下面内容分层出示,体现知识层次性。

  (16+△)×51=

  (△+■)×○=

  引导出字母形式:

  (a+b)×c=

  师:观察和班上和屏幕上的所有式子,你发现了什么?(可以进一步引导有规律吗?),同桌交流---组内交流(教师深入小组参与交流),全班交流。

  【本环节学生必须充分的讨论,争论,作为教师必须在学生的练习中找到问题,并及时全班范围内解决。】

  汇报时学生说的意思对就可以,多组汇报之后,逐步修正成比较完善的说法。教师出示规范的说法,学生自己说一遍,同桌互说一遍

  小结:刚才我们从两位数乘法入手逐步发现:两个数的和乘一个数,可以把两个数分别同这个数相乘再相加,得数不变。这就是乘法分配律。

  字母形式:(a+b)×c=a×c +b×c

  也可以写成a×(b+c)=a×b+a×c

  【设计意图】

  本环节实现从数字到图形到字母形式再到文字表达形式的转化,提高认知难度的同时开拓新的只是先河,为五年级用字母表示数打下初步基础。

  3、看谁算的又对又快:

  (4+6)×27 ○ 4×27+6×27

  (14+86)×39 ○14×39+86×39

  (100+1)×37○100×37+1×37

  3×62+5×62+2×62=

  集体订正,说学生的做法,怎么做的?怎么想的!

  【设计意图】

  通过学生自己计算,感悟、发现乘法分配律作为一种简便运算的手段的优越性和可行性!

  4判断:

  (1)(36+27)×5=36×5+27×5 ( )

  (2)(13+79)×12=13+79×12 ( )

  (3)(34+61)×43=34×61+43 ( )

  (4)(2+4+3+1)×5=2×5+4×5+3×5+1×5 ( )

  手势表示,对的举对号,错误的举起十字。

  【设计意图】

  本环节意在学生判明乘法分配律易错题目的认知,避免今后的练习中出现类似的错误。

  5、情景剧:生活中的握手问题:

  两个学生到老师这里来看望老师,进门需要握手,通过握手分别对以上题目进行展示,让学生进一步感知为什么不对,把知识做到最大程度的内化。

  【设计意图】

  学生在今后的解决问题中难免碰到类似的错误,如何更加有效地突破其难点,设计一个小情景剧,学生一旦出现类似的错误,只要想起握手问题,将会很容易改正,有效的突破手段。

  6、全课小结:这节课我们共同研究了乘法分配律,你能举例说明什么样的算式才符合乘法分配律吗,乘法分配律你会应用了吗?

  师:透露个小秘密,这是我们四年级下学期的内容,距离我们还很远,而我们却掌握了这个规律,最后一次把热烈的掌声送给自己。

乘法分配律的教案5

  教学目标:

  略

  学问与技能:

  1、让学生在解决问题的过程中发觉并理解乘法安排律,初步了解乘法安排律的应用。

  2、使学生会用字母表示乘法安排律。

  3、能用乘法安排律进展简便计算。

  过程与方法:

  1、使学生结合详细的问题情境经受探究乘法安排律的过程,理解并把握乘法安排律。

  2、学生在发觉规律的过程中,进展比拟、分析、抽象、概括的力量,增加用符号表达数学的意识,进一步体会数学与生活的联系。

  情感态度与价值观:

  1、感受数学学问之间的.内在联系,培育学生发觉、探究的意识。

  2、让学生感受数学规律确实定性和普遍适用性,获得发觉数学规律的愉悦感和胜利感,增加学习的兴趣和自信。

  重点:

  理解乘法安排律的意义,并归纳出定律,会运用乘法安排律。

  难点:

  抓住等号左右两边算式的特征和联系,理解乘法安排律的意义。

  教学过程:

  一、谈话导入,提醒课题。

  师:昨天,同学们通过微视频自学了什么内容?(乘法安排律)

  这节课我们就进一步深入的学习乘法安排律。

  二、沟通自主学习任务单

  师:通过观看《乘法安排律》的微视频,你知道了什么?

  (乘法安排律的意义,如何理解乘法安排律)

  (一)小组沟通:任务一

  1、任务一:乘法安排律的意义

  从“举例”、“意义”和“用字母表示”这3点绽开沟通。

  2、学生汇报:

  师:谁有不同的举例?像这样的例子可以举多少个?(很多个)

  通过举例,你有什么发觉?

  (提醒乘法安排律的意义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法安排律)

  用字母表示:(a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  师:“分别相乘”你是怎样理解的?请结合字母表示说一说。

  (二)小组沟通:任务二

  1、任务二:理解乘法安排律

  从“画图”、“乘法的意义”这2点绽开沟通。

  2、学生汇报:(画图理解)

  师:谁有不同的画法?(课件演示)

  认真看图和等式,谁看懂了?说给大家听。

  1、求这个长方形的周长。

  4×2+6×2=(4+6)×2

  长方形的周长=(长+宽)×2

  师:看来,我们在三年级学习的长方形的周长公式中就孕伏了今日学习的乘法安排律。

  2、组合图形大长方形的面积:

  4×2+6×2=(4+6)×2

  师:计算组合图形的面积中也有乘法安排律,利用数形结合的方法来理解乘法安排律,很好。

  3、结合乘法安排律来理解多位数乘法的笔算。

  25实际上是把12分成25×12×12()+()进展计算=25×(+)

  师:同学们能联系旧学问学习新学问,真棒!只要你做一个有心人,你就会发觉其实数学中有些新、旧学问是有联系的。

  4、乘法的意义理解乘法安排律。

乘法分配律的教案6

教学目标:

1、发现、理解和掌握乘法分配律;

2、能用准确的语言表述乘法的分配律,并能初步运用乘法的分配律;

3、培养学生观察、归纳、概括等初步的逻辑思维能力。

4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探究、自己得出结论的学习意识。

教学重点:乘法分配律的意义及其应用。

教学难点:应用乘法分配律进行简便计算。

教学过程:

一、创设情境,激发兴趣:

(请两位同学到前面)假如20年后,二位在机场见到了我,你们会怎么样?

生:(齐)高兴激动。

生1::打个招呼,宋老师好。

生2:宋老师好!

师:我把这个过程在黑板上用简笔画画出来,提问是有两个宋老师吗?

生:不是,是分别握手。

生:乘法分配律(小声地)

(设计意图:创设情境,吸引学生注意力,为学习新课埋下伏笔,激发学生的求知欲望。)

二、自主探索,合作交流

师:今天能和大家一起学习,老师非常高兴。现在正是阳春三月,植树造林、绿化环境的好季节。

1、引入主题图(:植树情景及信息):每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动?

(1)阅读理解:让学生充分表达自己知道了什么。

生1:已知每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动。

生2:每个小组共有6人。

(2)分析解答:

学生汇报自己的解法,引导学生说明不同算法的理由。

板书:(4+2)×25 4×25+2×25

2.两个算式的结果怎样?用什么符号连接?生读等式

板书:(4+2)×25=4×25+2×25

生读算式(4+2)×25=4×25+2×25

3、春季运动会李老师欲订购9套运动服,上衣每件58元,裤子每件42元,一共需要都少钱?

口头列式,得出(58+42)×9=9×58+9×42(生读等式)

4、观察这两组算式,请你写出一些类似的`式子.

每个学生都能正确写出几组算式,有很多学生已经用字母或图形表示的。(3个学生写错,2名学生自己改过来了)

投影展示

生1:(1+2)×3=1×3+2×3

(3+2)×4=4×3+2×4

(10+2)×5=10×5+2×5

(6+4)×5=6×5+4×5

生2:(4×2)×3=4×3+2×3

生3:他的算式是错的,括号里应该是两数之和。

生4:( + )× = × + ×

(a+b)×c= a×c+ b×c

a×(b+c) = a×b+ a×c

师;尝试用文字总结发现的规律

生:两个数相加,乘第三个数,可以先把第三个数分别与前两个数相乘,再相加。、、、、

等号两边的算式有什么相同和不同?

5、集体归纳。

抓住:两个数和、分别相乘

小结:这个规律是具有普遍性的。你们发现的这个规律就是我们的数学前辈们早已研究得出的“乘法分配律”。(板书课题:乘法分配律)也就是---(电脑出示下面的文字)

两个数的和与一个数相乘,可以把这两个数分别和这个数相乘,再把两个积相加,结果不变。

6、讨论记忆乘法分配律的方法。

师:乘法分配律与乘法交换律、结合律不同,大家讨论一下记忆乘法分配律的方法。

生1:就像课前老师与两位同学见面一样,老师和两位同学分别握手再求和。

生2:括号外面的字母c就像我自己,放学回来,站在门外,爸爸和妈妈在房子里,我进门后先和爸爸打招呼,再和妈妈打招呼,最后一家人围坐在一起。

学生的方法很多。

(设计意图:通过自己模仿写算式和寻找记忆方法的环节,让学生体会理解分配律的本质特点,激发学习兴趣)

三、巩固新知,尝试练习

1、数学王国正在举行有奖竞猜的活动,你能拿到那些精美的奖品吗?

(12+200)×3=□×3+□×3

15×(40+2)=□×40+□×2

2、数学游戏:找朋友

(1)找出得数相等的两个算式,(将算式卡片展示在黑板上)

(设计意图:一共出示了四组算式,让学生在辨别正误的同时,进一步巩固所学知识,提高学习兴趣)

提问: 22×7+18 和(22+18) ×7 是朋友吗?如果要让它们成为朋友,该怎么改?

(2)整理卡片,分成两组

甲组 乙组

① 100×31+2×31 ① (100+2)×31

② 9×(37+63) ② 9×37+9×63

③ (22+18)×7 ③ 22×7+18×7

分组计算比赛: 女生计算甲组的三道题,男生计算乙组的三道题.看谁算的快。

(设计意图:制造冲突,引出认知矛盾)

男同学这组为什么算的慢?你们认为这样比赛公平吗?你们有没有办法很快算出得数?(引导学生思考得出简便计算的方法:把乙组题转化成乘法分配律的另一种形式,使计算简便。)

小结:能口算,并且能凑整十、整百数,算起来比较简便。

利用乘法分配律可以使一些计算简便。

(这一环节进行充分运用,渗透简便运算的意识)

四、运用规律,内化新知

(8+4)× 25= 34×72+34×28=

先观察,说一说算式特点,再尝试计算、 指名板演、全班交流

(设计意图:前后呼应,既显示了内容的完整性,又激发了学生的探索欲望,增强了学习的自信心。)

五、课堂总结与评价:

用自己的话说一说什么是乘法分配律?

(设计意图:培养学生的归纳总结意识和数学语言的表达能力。)

板书设计:

乘法分配律

(4+2)×25 = 4×25+2×25

(a+b)×c= a×c+ b×c

甲组 乙组

① 100×31+2×31 ① (100+2)×31

② 9×(37+63) ② 9×37+9×63

③ (88+12)×7 ③ 88×7+12×7

乘法分配律的教案7

  教学目标

  1.使学生理解乘法分配律的好处.

  2.掌握乘法分配律的应用.

  3.透过观察、分析、比较,培养学生的分析、推理和概括潜力.

  教学重点

  乘法分配律的好处及应用.

  教学难点

  乘法分配律的反应用.

  教具学具准备

  口算卡片、投影仪.

  教学步骤

  一、铺垫孕伏

  1. 口算.

  (27+73)×8 40×9+40×1 14×

  (10+2) 10×6+10×4

  2. 用简便方法计算.(说明根据什么简算的) 25×63×4

  3. 师生比赛,看谁算得又对又快. 20×5+5×80 (1250+125)×8

  让学生说明是怎样算的?

  二、探究新知

  1.导入:

  刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,明白了乘法的又一个定律能够使运算简便,你们想明白吗?这就是我们这天要研究的资料.(板书课题:乘法分配律).

  2.教学例6:

  (1)出示例6:演示课件“乘法分配律”出示例6下载 (2)引导学生观察每组的两个算式.

  (3)教师提问:从上方的例子你发现了什么规律? (4)学生明确:每组中的两个算式都能够用等号连接.

  教师板书:(18+7)×6=150

  18×6+7×6=150

  (18+7)×6=18×6+7×6

  (5)教师出示:20×(15+9)=480

  20×15+20×9=480

  20×(15+9)=20×15+20×9

  学生分组讨论:每组中算式所表示的好处.

  (6)反馈练习:按题要求,请你说出一个等式.(投影出示) (__+__)×__=__+__×

  教师提问:像贴合这种条件的式子还有许多,那么这些算式到底有什么规律呢?

  引导学生观察:等号左右两边算式的规律性

  启发学生回答:首先是等号左边两个数的和同一个数相乘. 其次是等号右边两个加数分别同一个数相乘再把两个积相加. 最后是等号左右两边的两个算式相等.

  3.教师概括运算定律:两个数的和同一个数相乘,能够把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做乘法分配律.

  4.反馈练习:

  横线上能填几?为什么?

  (32+35)×4=__×4+__×4

  (62+12)×3=__×__+__×__

  教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?

  根据练习学生从而得出: (a+b)×c=a×c+b×c 使学生明确:有的题两个数的和同一个数相乘比较简便,有的.题把两个加数分别同这个数相乘,再把两个积相加比较简便.

  5.教学例7:演示课件“乘法分配律”出示例7下载 (1)出示例7:102×43

  启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?

  引导学生比较:(100+2)×43,102×(40+3)这两种算式哪种比较简便?

  使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律能够使计算简便.

  教师板书:

  (2)出示9×37+9×63

  引导学生观察:这类题目的结构形式是怎样的?有什么特点?

  教师提问:根据乘法分配律,能够把原式改写成什么形式? 根据学生的回答教师板书:9×37+9×63 =9×(37+63)

  =9×100

  =900

  学生讨论:这样算为什么简便?

  师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和

  ②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数

  ③另外两个不一样的因数,是两个能凑成整十、整百、整千的加数

  (3)揭示教师算得快的奥秘

  上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便。此刻你们会了吗?

  三、巩固发展

  演示课件“乘法分配律”出示练习 下载

  1. 练习十四第1题.

  根据运算定律在□里填上适当的数. (43+25)×2=□×□+□×□

  8×47+8×53=□×(□+□)

  3×6+6×7=□×(□+□)

  8×(7+6)=8×□+□×□

  2.在横线上填上适当的数.

  (1)(24+8)×125=__×__+__×

  (2)25×(20+4)=25×__+25×__

  (3)45×9+ 55×9=(__+__) ×__

  (4)8×27+73×8=8×(__+__)

  其中做(3)、(4)题之前教师要提醒学生明确此类题,务必是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.

  3.把相等的算式用等号连接起来: (1)32×48+32×5232×(48+52)

  (2)(24+8)×824×5+24×8

  (3)20×(l+15)0×17+20×15

  (4)(40+28)×540×5+ 28

  (5)(10×125)×810×8+125×8

  (6)4×(30+25)4×30×4×25

  学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

  4.选取题:

  (1)28×(42+29)与下方的()相等

  ①28×42+28×29②(28+42)×(28+29)③28×42×29 (2)与a×8-b×8相等的式于是()

  ①(a+b)×8②(a-b)×(8+8)③(a-b)×8 (3)与(10+8+9)×5相等的式子是()

  ①10×5+8×5+9×5②10+5×8+5×9③10×5+5×8+9 5.练习十四第4题,投影出示.

  一辆凤凰牌自行车420元,一辆永久牌自行车405元.此刻各买三辆.买凤凰车和永久车一共用多少元?

  四、课堂小结

  这天我们学习了乘法分配律,明白了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.期望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.

  五、布置作业

  练习十四第3题.

  用简便方法计算下方各题.

  (80+8)×2535×37+65×37

  32×(200+3)38×29+38

乘法分配律的教案8

  素质教育目标

  (一)知识教学点

  1.使学生理解乘法分配律的好处。

  2.掌握乘法分配律的应用。

  (二)潜力训练点

  透过观察、分析、比较培养学生的分析、推理和概括潜力。

  (三)德育渗透点

  透过乘法分配律的应用,激发学习兴趣。 教学重点:乘法分配律的好处及应用。

  教学难点:乘法分配律的反应用。

  教具学具准备:小黑板、(转板)口算卡片、投影仪、投影片、红、白方木块

  教学步骤

  一、铺垫孕伏

  1.口算:(卡片)

  25×17×4 125×24

  引导学生说一说运用了什么运算定律,这样计算有什么好处。

  2.先口算,再把得数相同的两个算式用等号连接起来。(投影片)

  (6+4)×56×4+4×5

  (8+12)×4 8×4+12×4

  8×(7+3) 8×7+8×3

  二、探究新知

  1.导入新课

  前面我们已经学习了乘法的交换律、结合律,并且明白应用这些定律可使一些计算简便。这天这节课,我们再学习乘法的分配律。(板书课题)

  2.教学例5

  (1)出示例题:(小黑板)

  小强摆小木块,每行摆5个白木块,3个红木块,摆了4行。小强一共摆了多少木块?(两种方法解答) (2)指名读题并使学生明确题中已知条件和问题。

  (3)让学生拿出学具红、白小木块,按照要求摆一摆,并计算。(启发学生用两种方法解答,教师巡视)

  (4)学生试做后,引导回答如何列式解答,并说出解题思路。

  根据学生回答教师板书:

  (5+3)×4

  =8×4

  =32(个)

  5×4+3×4

  =20×12

  =32(个)

  教师引导学生分析,使学生明确:不一样解法的不一样解题思路。

  解题思路:

  ①先算出每行红、白木块共摆多少个,再算出4行一共摆木块多少个。

  ②先求出4行白木块和4行红木块各摆多少个,再算一共摆了多少个。

  (5)教师引导学生观察两种算式发现了什么?使学生懂得: ①两个算式相等。

  ②两个算式可用等号连接。

  学生答教师板书:

  (5+3)×4=32

  5×4+3×4=32

  (5+3)×4=5×4+3×4

  (6)教师出示:

  (18+7)×6=

  18×6+7×6=

  (18+7)×6○18×6+7×6

  20×(5+2)=

  20×5+20×2=

  20×(5+2)○20×5+20×2

  组织学生分组讨论,使学生明确:每组中算式所表示的好处。(学生答教师用色粉笔描4、6、20这些数,从而渗透“一个数”) 反馈练习:按题目要求,请你说出一个等式。(投影出示) (________+________)×________=________×________+________×________

  学生答教师填写投影。

  【透过学生的`观察、分析、实践,使学生初感乘法分配律的知识,填空题的发散思维训练,让学生拥有足量的感性材料,使得学生对乘法分配律知识的获得到达水到渠成。】

  教师:像贴合这种条件的式子,还有许多,那么这些算式到底有什么规律呢?教师进一步引导学生观察等号左右两边算式的规律性,使学生明确:

  ①两个数的和同一个数相乘。(教师引导学生明确:“相乘”指不固定被乘数和乘数的位置。)

  ②两个加数分别同一个数相乘再把两个积相加。 ③等号左右两边两个算式相等。

  3.概括定律:

  透过学生观察比较,启发学生用数学语言概括乘法分配律资料。(转板出示)让学生结合板书理解乘法分配律的概念,然后再引导学生回答其资料,加以巩固。

  4.反馈练习做一做:

  横线上能填几?为什么?

  (32+35)×4=________×4+________×4

  (62+12)×3=________×________+________×________

  教师:启发学生用字母表示乘法分配律资料并指名板演,提示学生3个数可分别用a、b、c表示,然后,让学生说明算式的好处。这时,教师再提醒学生还有没有别的写法。透过教师引导学生答出c×(a+b)=c×a+c×b,并问学生根据什么?(乘法交换律,或用相乘来解释)

  三、巩固发展

  1.练习十四第1题

  2.在横线上填上适当的数

  (1)(24+8)×125=________×________+

  ________×________

  (2)25×(20+4)=25×________+25×________

  (3)45×9+55×9=(________+________)×________ (4)8×27+73×8=8×(________+________)

  其中做(3)、(4)题之前教师要提醒学生明确此类题,务必是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写。

  3.把相等的算式用等号连接起来: (1)32×48+32×52 32×(48+52)

  (2)(24+8)×524×5+24×8

  (3)20×(17+15) 20×17+20×15

  (4)(40+28)×5 40×5+28

  (5)(10×125)×810×8+125×8

  (6)4×(30+25)4×30×4×25

  学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?

  4.选取题:

  (1)28×(42+29)与下方的(相等

  ①28×42+28×29

  ②(28+42)×(28+29)

  ③28×42×29

  (2)与a×8-b×8相等的式子是(。

  ①(a+b)×8

  ②(a-b)×(8+8)

  ③(a-b)×8

  (3)与(10+8+9)×5相等的式子是(。 ①10×5+8×5+9×5

  ②5×10+5×8+5×9

  ③10×5+5×8+9

  四、课堂小结:这天学习了乘法分配律,明白了两个数的和与一个数相乘,等于两个数分别与一个数相乘,再把两个积相加。 五、课堂作业:练习十四第2题。 六、板书设计

  乘法分配律

  例5.… (5+3)×4 =8×4 =32(个) 5×4+3×4) =20×12 = 32(个) 答:小强一共摆了32个木块。 (5+3)×4=32 4×4+3×4=32 (5+3)×4=5×4+3×4 (18+7)×6=150 18×6+7×6=150 (18+7)×6=18×6+7×6 20×(15+9)=20×15+20×9 (a+b)×c=ac+bc c×(a+b)=ca+cb

乘法分配律的教案9

  教学内容:北师大版四年级下册数学教科书第36页内容,和练习四的第5.6.7.9题。

  教学目标:

  1.从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

  2、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

  教学重点:充分感知并归纳乘法分配律。

  教学难点:理解乘法分配律的意义。充分感知并归纳乘法分配律。

  教具准备:多媒体课件

  教学设想:本课试图在一种开放的教学环境下,让学生通过“联系实际,感知建模;类比归纳,验证模型;质疑联想,拓展认识;联系实际,深化认识;归纳概括,完善认识”的探索过程来逐步丰富对“乘法分配律”的认识。培养学生积极参与、合作探究、勇于质疑、大胆表现、主动探索的学习精神和创新意识,体现课堂教学中以学生为主体、教师为主导的教学原则。充分体现了“为解决实际问题而学习数学”的新理念。

  活动过程:

  一、比赛激趣,提出猜想

  (1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)

  9×37+9×63

  9×(37+63)

  (2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的.同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)

  这两道题运算顺序不同,但结果相同,可以用一个等式表示:

  9×37+9×63=9×(37+63)

  (3)命名猜想。

  这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)

  二、引导探究,发现规律。

  1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)

  2、

  (1)谁能估计一下一共贴了多少块瓷砖?

  (2)请大家用自己的方法来验证他的估计是否正确。

  (3)(谁来汇报自己的算法)出示两种不同的算式6×9+4×9和(6+4)×9,为什么这样列算式,观察这两个算式,你有什么发现?

  3、举例验证,进一步感受

  认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)

  把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)

  轻声读这些等式,你发现了什么?

  4、归纳总结,概括规律。

  (1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

  (2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。

  (3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)

  (3)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?四人小组商量一下,这个算式看起来怎样——(稍等)简洁、明了。这就是数学的美。

  等号左边表示什么意思?等号右边表示什么意思?大家说的意思实际上就是乘法分配律的文字表述,请看大屏幕,这是老师通过大家的表述总结出来的,谁能给大家读一下。

  在读这句话的时候,哪里应特别注意?

  请看黑板上的等式,这个等式从左到右成立,反过来从右到左呢?也是成立的。

  三、探索发展,应用规律

  (1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)

  (2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。

  (80+4)×2534×72+34×28

  (完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)

  (3)、刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?

  38×29+3843×102

  (4)、小结:通过研究,你认为怎样的题目才能应用乘法分配律使计算简便?如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。

  四、巩固练习,解决问题(我们刚才发现认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习。)

  1、请大家根据运算定律在下面的_里填上适当的数。5.6.7题和前面几道题哪里不一样?可以应用乘法分配律吗?为什么?四人小组讨论一下。

  2、大家请到数学医院,帮老师判断对错。

  3、完成连一连。(给一分钟思考时间,然后抢答)

  4、完成填一填。(这道题我找表现最好的小组来开火车)

  5、应用题(请大家帮老师解决一个实际问题,在练本上独立完成)

  五、全课小结

  请你选择一个最能代表今天研究成果的。算式,说说我们今天研究了什么?

  请大家想一想,我们是怎样发现乘法分配律的呢?

  今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。

乘法分配律的教案10

  教学内容:人教社教材四年级下册P26页例7

  教学目标:

  1、通过自主探索及与同伴交流,使学生亲历观察、猜测、验证、归纳、建构乘法分配律的全过程。理解乘法分配律的意义。

  2、会应用乘法分配律,使某些运算简便。

  3、使学生感受数学与现实生活的联系,在知识的形成过程中,培养学生的观察能力、概括能力和语言表达能力。

  教学重点:

  让学生积极的动手实践、自主探索及与同伴交流,亲历观察、归纳、猜测、验证、推理等探索发现的全过程,学习科学探究方法。

  教学难点:理解和掌握乘法分配律的推导过程。

  教学设计思路:

  1、通过买衣服的情境转入乘法分配律。

  2、通过观察、分析、比较几组不同的算式,引导学生发现一般规律,然后归纳总结出字母公式,并能用语言表述出来,使学生理解乘法分配律的意义。

  3、会用乘法分配律进行简单的计算。

  教学过程

  一、创设情境,生成问题

  1、生活引入,激发兴趣

  今年十月,县里准备举行中小学生田径运动会,我们学校准备派5个同学参加比赛,学校准备为这5位同学选一套运动服装。老师在商店逛来逛去选了几件衣服和几条裤子,请看大屏幕。

  出示:两件上衣(价格分别是100元、80元)

  两条裤子(价格分别是70元、50元)

  2、提出问题,独立思考

  出示:(1)一共有几种搭配方法?

  (2)选择你自己喜欢的一种方案计算出总价(用多种方法计算)。

  二、探索交流,建构规律

  1、生选择搭配方案并计算。

  2、组内研讨,并出示:

  (1)一共有几种搭配方案?

  (2)介绍自己的方案,并说一说需要花多少钱?你是怎么算的?

  3、汇报交流:

  (1)探讨第一种方案。

  师:哪一个同学想先来给项老师推荐他的方案?

  (预设学生回答:A:要求5套衣服多少钱,就要先求出1套多少钱。即:一套的价钱×套数=总价。列式为:(100 70)×5

  B:要求5套衣服多少钱,就要先求出5件上衣的价钱和5条裤子的价钱。即:上衣价钱 裤子价钱=总价.列式为:100×5 70×5)

  (2)探讨第二种方案。

  (3)探讨第三种方案。

  (4)探讨第四种方案。

  教师板书:

  一套 ×套数 = 5件上衣 5条裤子

  (150 100)× 5 = 150×5 100×5

  (150 70)× 5 = 150×5 70×5

  (100 100)× 5 = 100×5 100×5

  (100 70)× 5 = 100×5 70×5

  4、生列举例子。

  (1)出示:活动要求

  A、写出三个这个的`算式。

  B、交流:你怎么来说明你写的算式左右两边是相等的?

  (2)汇报、师板书学生说的等式,并让学生说一说怎样证明算式左右两边是相等的。

  5、用字母表示乘法分配律。

  问:谁能用一个算式表示全班所有同学的算式?

  6、学生归纳概括:乘法分配律的意义。

  三、巩固应用,训练提升

  1、在□里填上适当的数。

  (15 20)×12=□×12 □×12

  25×(4 9)=□×4 □×9

  8×(10 5)=□×□ □×□

  30×24=30×□ 30×□

  2、把左右两边相等的算式用线连接起来。

  48×12 52×12 15×18 26×18

  (15 18)×26 25×40 25×4

  25×(40 4) (48 52)×12

  14×(45-5) 11×4 25×4

  (11×25)×4 14×45-14×5

  四、全课小结:今天这节课我们学习了什么内容?还记得我们是怎样学的吗?

乘法分配律的教案11

  教学目标:

  1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

  2、透过观察、分析、比较,培养学生的分析、推理和概括潜力。

  3、发挥学生主体作用,体验探究学习的快乐。 教学重点:指导学生探索乘法的分配律。 教学难点:乘法分配律的应用。

  教学准备:课件、口算题、例题、练习题等。 教学策略:本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。 教学流程:

  一、设疑导入

  师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用? 生:能够使计算简便。

  师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速决定。(生口算。)

  二、探究发现

  1。猜想。

  师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

  师:这道题算得怎样不如刚才的快啊? 生:它和前面的题目不一样。

  师:好,我们来看一下它与前面的题目有什么不一样? 生:前面的题都是乘号,这道题既有乘号还有加号。 生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。

  师:这道题内含不一样运算符号了,有能口算出来的吗?说说你的想法。

  生:(10+4)×25=10×25+4×25。

  师:为什么这样算哪?

  生:我是根据乘法分配律算的。

  师:你是怎样明白的?你明白什么是乘法分配律吗? 生:我是从书上明白的,我明白它的字母公式(a+b)×c=a×c+b×c。

  师:你自学潜力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)

  2。验证。

  师:同学们看两个数的和同一个数相乘,如果能够这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

  师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)

  小结:透过验证,这道题确实能够这样算,那是不是所有的两个数的`和同一个数相乘的算式都能够这样计算呢?透过这一个例子能下结论吗?(不能。)那怎样办?(再举几个例子。)好,下方请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都能够这样计算?

  (学生计算,并汇报。)

  ……

  师:由于时光关系,老师就写到那里,透过举例我们能够发现,两个数的和同一个数相乘都能够这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下方请同学们观察黑板上的几组等式,看看你们得到的结论是什么?

  3。结论。

  生:两个数的和同一个数相乘,能够用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。

  师:同学们真聪明,你们明白吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的好处。) 师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?

  (a+b)×c=a×c+b×c

  师:回到第一题,看来利用乘法分配律,确实能够使一些计算简便。接下来,我们利用乘法分配律计算几道题。

  【设计意图:在探究乘法分配律的过程中,让学生经历了一次严密的科学发现过程:猜想——验证——结论。为学生的可持续学习奠定了基础。】

  三、练习应用

  (生练习应用定律。)

  师:透过这两道题的计算,我们能够看出,乘法分配律是互逆的。为了使计算简便,我们既能够从左边算式得到右边算式,又能够从右边算式得到左边算式。但遇到实际计算时,要因题而异。

  四、总结

  师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都能够应用这样的方法。)

乘法分配律的教案12

  教学目标:

  略

  知识与技能:

  1、让学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。

  2、使学生会用字母表示乘法分配律。

  3、能用乘法分配律进行简便计算。

  过程与方法:

  1、使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。

  2、学生在发现规律的过程中,发展比较、分析、抽象、概括的能力,增强用符号表达数学的意识,进一步体会数学与生活的联系。

  情感态度与价值观:

  1、感受数学知识之间的内在联系,培养学生发现、探究的.意识。

  2、让学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

  重点:

  理解乘法分配律的意义,并归纳出定律,会运用乘法分配律。

  难点:

  抓住等号左右两边算式的特征和联系,理解乘法分配律的意义。

  教学过程:

  一、谈话导入,揭示课题。

  师:昨天,同学们通过微视频自学了什么内容?(乘法分配律)

  这节课我们就进一步深入的学习乘法分配律。

  二、交流自主学习任务单

  师:通过观看《乘法分配律》的微视频,你知道了什么?

  (乘法分配律的意义,如何理解乘法分配律)

  (一)小组交流:任务一

  1、任务一:乘法分配律的意义

  从“举例”、“意义”和“用字母表示”这3点展开交流。

  2、学生汇报:

  师:谁有不同的举例?像这样的例子可以举多少个?(无数个)

  通过举例,你有什么发现?

  (揭示乘法分配律的意义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律)

  用字母表示:(a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  师:“分别相乘”你是怎样理解的?请结合字母表示说一说。

  (二)小组交流:任务二

  1、任务二:理解乘法分配律

  从“画图”、“乘法的意义”这2点展开交流。

  2、学生汇报:(画图理解)

  师:谁有不同的画法?(课件演示)

  仔细看图和等式,谁看懂了?说给大家听。

  1、求这个长方形的周长。

  4×2+6×2=(4+6)×2

  长方形的'周长=(长+宽)×2

  师:看来,我们在三年级学习的长方形的周长公式中就孕伏了今天学习的乘法分配律。

  2、组合图形大长方形的面积:

  4×2+6×2=(4+6)×2

  师:计算组合图形的面积中也有乘法分配律,利用数形结合的方法来理解乘法分配律,很好。

  3、结合乘法分配律来理解多位数乘法的笔算。

  25实际上是把12分成25×12×12()+()进行计算=25×(+)

  师:同学们能联系旧知识学习新知识,真棒!只要你做一个有心人,你就会发现其实数学中有些新、旧知识是有联系的。

  4、乘法的意义理解乘法分配律。

  4×2+6×2

  表示:()个2()个2

  一共()个2

  所以:4×2+6×2=(+)×2

  三、巩固练习。

  1、下面哪些算式是正确的?正确的画“√”,错误的画“×”,并说说判断理由。

  56×(19+28)=56×19+28()

  32×(7×3)=32×7+32×3()

  64×64+36×64=(64+36)×64()

  2、脱式计算:(两种方法计算)

  (8+4)×25(8+4)×25

  师:你喜欢哪种计算方法,为什么?

  3、用简便方法计算下面各题。

  125×48 34×72+34×28

  99×38+38 73×30—3×30

  4、解决生活中的实际问题。

  这套运动服上衣65元,裤子35元。李阿姨购进了42套这种运动服,花了多少钱?(列综合算式解答)

  四、总结

  通过今天的学习你有什么收获?

乘法分配律的教案13

学情分析:

乘法分配律这个知识点在本节课以前学生已经有一些潜移默化的理解,在实际计算中也有应用,如:本单元第一课时的《卫星运行时间》乘数是两位的乘法中,“114×21=” 不论是第一种“114×20=2280,114×1=114, 2280+114=2394 ”还是第四种用竖式计算,其实质都是在利用乘法分配律这一理论依据,即将21个114,分成20个114和1个114的和,只是表达形式不同罢了。因此,基于这些基础,我教学时特别注重与旧知的联系和在意义上的沟通。

教学目标:

1.理解并掌握乘法分配律并会用字母表示。

2.能够运用乘法分配律进行简便计算。

3.在乘法分配律的发现过程中训练学生观察、归纳、概括等能力。

4.感受“由特殊到一般,再由一般到特殊”的认识事物的方法,增强独立自主、主动探索、自己得出结论的学习意识。

教学重点:

理解并掌握乘法分配律。

教学难点:

乘法分配律的推理及运用。

教学过程:

一、情景激趣,提出猜想

1.情景

暑假中,我们谕小娃娃表演的《阳光羌娃》在比赛中获得了巨大的成功,而且,他们马上还要到香港参加演出。(出示照片)

出示资料: 他们每天都在辛苦地训练着,有时会练得吃饭的时间都没有,昨天晚上,王老师就给参加训练的18个男生和23个女生每人准备了一份8元的快餐,你知道王老师一共用了多少钱吗?

(设计意图:以学生熟悉的学校中的大事作为问题背景,可以让学生切实的感受到数学的广泛应用性,也利于学生主动解决问题。)

①整理条件、问题

从这段资料中你知道了那些信息?王老师遇到了哪些问题?

②学生列式,抽生回答: (18+23)×8, 18×8+23×8

③交流算式的意义

第一个算式先算什么?再算什么?第二个算式呢?

④计算:(发现两个算式结果相等)

⑤观察、分析算式特点

咦,我发现这两个算式非常有意思。你看看,这是两个不同的算式,很多地方都不相同,仔细看看,又有相同的地方,对吧!

现在,就来仔细观察一下这两个算式,看看它们到底有哪些相同点?又有哪些不同点?

⑥全班交流,引导学生从下面几个方面进行思考

A.涉及到得运算及顺序:都包含了+、×这两种运算,左边是先算加法,合起来以后再乘;右边是分别先乘,然后再加。

B.涉及到的数:都用到了18、23和8这三个数,其中8在左边出现了一次,在右边出现了两次。

C.计算结果:结果相等。

(设计意图:对算式意义的分析让学生明白这两个算式相等的道理,而从外在特点的分析则让学生初步感知乘法分配律的特点。同时,细致的特点分析也为学生后面的举例验证打下基础)

2.提出猜想

真有趣,运算顺序不同,数据也有不一样的,结果却一样,那是不是只有这一个算式才是这样呢?还是像这样的算式都有这样的规律呢?

怎样才能知道像这样的算式都有这样的规律?

引导学生想到用举例的方法进行验证。

师小结:要想知道这是不是一个普遍的规律,那我们就举出一些这样的例子,再看看它们的结果想不想等就可以了。

(设计意图:对一个人而言,记忆一个知识、规律并不是最重要的,最重要的是他要知道从哪里去寻找知识和规律,要知道他的发现如何去获得证明。本节课就是要以乘法分配律的学习为载体,培养学生这方面的能力,这才是真正的立足于学生一生的发展而在教学。)

二、举例验证,证明合理性

1.全班举例:抽生举例,全班进行判断,看所举的算式是否符合猜想的特征。

2.分组举例

两个孩子为一组,一起举一个例子,再一起计算验证,看结果是否相等。

3.交流:谁愿意把你举的例子和大家一起分享?

A.这个式子符合要求吗?

B.这些式子都有一个共同的规律,这个共同的规律是什么?

教师引导学生小结:左边都是把两个数合起来再与第三个数相乘,右边是分开乘,再把两个积相加,右边算式中这个相同的乘数,在左边算式中放在了括号的外面。

(设计意图:让学生经历举例验证的过程,经历归纳概括的过程。)

三、概括归纳,建立模型

1.个性概括

这样的式子你们还能写吗?能写完吗?

强调这样的例子还有很多很多,是写不完的。

你能用一个式子将所有的像这样的式子都概括出来吗?

学生用自己的方法概括规律。(学生可能用文字概括,可能用图形符号概括,可能用字母概括)。

2.统一认识

教师指出一般用a、b、c表示式子中的三个数,这个规律可以表示成

(a+b)×c=a×c+b×c

给出规律的名称:今天,我们一起动手动脑发现了这个非常有趣的规律,这个规律是四则运算中一个非常重要的规律,叫做乘法分配律。

3.进一步认识

这个式子表示两个数合起来与第三个数相乘的结果与用这两个数分别与第三个数相乘,再把两个积相加的结果相等。反之,两个数都与同一个数相乘,再把积相加所得到的.结果与先把这两个数合起来再与第三个数相乘,所得到的结果相等。

齐读式子。

(设计意图:学生通过不完全归纳法,得出规律。在这个过程中,通过不同方法的概括,培养学生的抽象能力,尤其是分析与综合的能力,归纳与概括的能力。)

四、巩固应用,深化认识

1.哪些算式与72×35相等

72×30+72×5

72×35 72×30+5

70×35+2×35

70×35+2

问:为什么相等?

(设计意图:让学生理解乘法分配律的本质意义)

2.你会填吗?

(10+7)×6= ×6+ ×6

8×(125+9)=8× +8×

7×48+7×52= ×( + )

问:订正时强调第一小题为什么这样填?第三个式子中括号外面为什么要写7。

(设计意图:学生进一步深刻理解乘法分配律)

3. 7×48+7×52 7×(48+52)

这两个式子你想选择哪个进行计算?为什么?

如果只给你第一个式子,你会想办法让你的计算变得简便吗?

小结:利用乘法分配律有时候可以使计算变得更简便。

(设计意图:通过学生的观察,明白乘法分配律在计算中的意义。)

4.先想一想,下列各题怎样计算更简便,把你的简便方法写出来。

①34×72+34×28(订正时问:为什么不直接算)

(80+4)×25

订正时问:把(80+4)×25写成80×25+4×25依据是什么?

如果不用好不好算?

(80+20)×25

问:这道题与(80+4)×25的样子一样,都是两个数的和与第三个数相乘,为什么你们又不用乘法分配律来计算了呢?

教师小结:在计算中要根据数据特点,灵活运用乘法分配律。

②21×25 75×99+75

小结:在计算中遇到不符合乘法分配律特点的式子,可以利用拆数等方法,在不改变原数大小的前提下将式子变成符合乘法分配律特点的式子,然后再进行简算。

(设计意图:通过题组练习,让学生在计算中要根据数据特点,灵活运用乘法分配律,培养学生思维的灵活性,不生搬硬套题型。)

五、全课小结

孩子们,你们今天收获了什么?

当你们在一些具体的问题中发现某些规律,而你又不敢肯定它正确时,你可以怎么办呢?

板书设计

乘法分配律

(18+23)×8 (18+23)×8=18×8+23×8 7×48+7×52=7×(48+52)

=41×8 … … … …

=328(元) 学生举例 … … … … 34×72+34×28 (20+4)×25

18×8+23×8 … … … … (80+20)×25

=144+184 个性概括:… …

=328(元) (a+b)×c=a×c+b×c 21×25 75×99+75

乘法分配律的教案14

  教学目标:

  1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。

  2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

  3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

  教学重难点:发现并理解乘法分配律。

  教学准备:多媒体课件。

  教学流程:

  一、创设情境,导入新课。

  师生谈话,引入主题图:

  短袖衫32元,裤子45元,夹克衫65元。

  师问为了穿着统一漂亮,有几种配套的穿法。

  生回答。

  二、自主探索,合作交流。

  1.课件出示:买5件夹克衫和5条裤子,一共要付多少元?

  师问你打算怎样算?

  生口答师板书:

  (65+45)×5 65×5+45×5

  2.师问猜想一下,这两道算式的`结果会怎样?

  要验证我们的算式是否正确,应该用什么方法?

  生计算,个别板演。

  证明这两道算式的结果是相等的。

  中间应用“=”接连。

  3.生读算式(65+45)×5=65×5+45×5

  师问等号两边的算式有什么相同和不同?

  生同桌说一说,并汇报。

  4.这两道算式相等是一种巧合还是有规律的呢?

  出示:(2+10)×6=2×6+10×6

  (5+6)×3=5×3+6×3

  师问中间可以用“=”来连接吗?

  5.小组讨论:这三组等式左边有什么特点?

  右边有什么特点?

  生汇报。

  6.师问你能写出具有这样规律的等式吗?

  生独立写一写,个别板书。

  7.师问你能想出一道等式,可以把我们今天学习的所有具有这种规律的等式都包括在内吗?

  生写一写,个别板演。

  8.揭题:乘法分配律

  (a+b) ×c=a×c+b×c

  9.师总结两个数的和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。

  三、巩固练习,拓展应用。

  想想做做:

  1.在口里填上合适的数,在○里填上运算符号。

  (42+35)×2=42×口+35×口

  27×12+43×12=(27+口)×口

  15×26+15×14=口○(口○口)

  72×(30+6)=口○口○口○口

  强调:乘法分配律,可以正着用,也可以反着用。

  2.算一算,比一比,每组中哪一道题的计算比较简便。

  (1) 64×8+36×8 25×4+25×2

  (64+36)×8 25×(4+2)

  让学生体会乘法分配律可以使计算简便。

  3.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。

  生独立完成并汇报。

  4.课件出示:买5件夹克衫比5条裤子贵多少元?

  生口答,并完善乘法分配率。

  四、全课小结

  师问今天你有什么收获?

乘法分配律的教案15

教学目标

1.引导学生探究和理解乘法分配律。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学重点:借助实际问题体会、认识乘法乘法律。

教学难点:用乘法交换律和结合律算式。

预设过程

一、引入

1、学校要买25副乒乓球,每个乒乓球4元,每个乒乓球板9元,一共要多少元?

2、理解题意

二、探新

1、学生独自列式

2、小组交流想法

3、汇报:根据学生的回答板书

25×(4+9)=25×4+25×9=325

25×(4+9)=25×4+25×9

指名学生说出每一步表示的意义

(4+9)×25=4×25+9×25=325

(4+9)×25=4×25+9×25

4、改题:如果改为买45副,你又可以怎样算?

45×(4+9)=45×4+45×9

(4+9)×45=4×45+9×45

5、观察:请你们仔细观察上面这几题,

6、你们发现了什么?

相同点:左边都是两个数的和与一个数相乘,

右边都是两个数和这个数相乘再相加。

不同点:算式左边和右边有什么不同?

联系:算式左边和算式右边有什么联系?

6、举例:这样的算式你能再举出一些吗?

7、概括:你们能把上面的规律概括成一句话吗?

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

你能用字母表示吗?(a+b)×c=a×c+b×c

a×(b+c)=a×b+a×c

8、质疑:还有什么问题?

三、巩固

1、做一做

判断并说明理由

2、第5题:下面哪些算式运用了乘法分配律

3、第6题

103×1220×5524×20525×24

四、:你们还有什么问题?

五、布置作业:

1、口算

2、作业本

3、寻找生活中乘法分配律的例子。

板书设计

作业设计:

课堂作业本P15

口算训练P16

教学反思

课后反思:在第一个班上课,我是运用以上的情境情境进行教学,但是题意不是很清楚,学生在这个地方也浪费了许多时间,而后面探究规律的.顺序是这样的:先根据情境列式计算,再引导学生观察以上习题,再让学生相关的规律,但是这样下来感觉学生学得非常被动,对规律的概括非常困难,学生理解不够深入,也难以用语言表达出来。

在第二个班上课时,就做了如下的调整:情境改为学校要买25套衣服,每件上衣要20元,每件裤子要10元,一共要多少元?这样的情境比较清晰,学生列出算式后再让学生说一说,

生1:我觉得这样的两个数的和与一个数相乘,可以把这两个数与这一个数相乘,再相加。

生2:是呀,一个数好像是公共财产,都是它们共有的。

这样学生对这个因数理解起来就比较简单,也觉得比较有意思。再让学生举例,举例时再让学生说明这样写的理由,这样学生对于乘法分配律的理解比较轻松。

【乘法分配律的教案】相关文章:

《乘法分配律》教案02-17

乘法分配律教案03-29

乘法分配律教案02-18

《乘法分配律》教案08-01

乘法分配律的应用教案04-09

乘法分配律教案优秀09-21

乘法分配律优秀教案04-15

乘法分配律教案15篇03-30

《乘法分配律》数学教案03-18