关于可能性教案6篇
作为一名老师,往往需要进行教案编写工作,借助教案可以有效提升自己的教学能力。那么优秀的教案是什么样的呢?下面是小编收集整理的可能性教案6篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

可能性教案 篇1
学具准备:
学生学具:
1、每组一盒 3红3白(号盒子2红2黄2白,号盒子5白1红,发给左侧两小组)
2、分好6个小组,按坐的顺序定好1-6号,中间一人组长,培训组长、示范摸球。
教师学具:
1、四个硬纸板盒子(其中13号打印,塑封;还有一个用作放球用);三块黑卡纸;4红4黄4绿吸铁石。
2、教师有3个盒子,一号1白1红1黄(例题演示),二号7白(备10白1红),三号4红3黄(用作猜球练习)。
3、备红粉笔1支,确认磁性黑板,在黑板上布好点,放好12个吸铁石。
教学过程:
一、摸球
师:同学们一定在想,今天给我们上课的怎么是杨老师?不过,杨老师上课可不空手,今天,我给大家带来了一盒球礼品,想不想看看?
生:想(很兴奋)
师:咱们看看。(满面含笑摸出一个球,高举这是一个),
生:齐答:黄球
师:(放进去再摸出一个),里面啊还有(生接:白球),还有(生接:红球)
师:(欣喜)这红球漂亮吗?(漂亮)想要吗?(想)
师:这红球可不是心里想要就要得到的,我得把这几种颜色的`球放在一个盒子里,让小朋友们去摸,如果你摸到红球,就把它送给你,想不想试试?
生:(斩钉截铁)想
师:现在,老师这儿有三个盒子,都装了些什么球呢,瞧(贴,这是1号盒子,这是2号盒子,这是3号盒子)现在,如果你特别想从盒子里摸出一个红球,你会选择到几号盒子里去摸?1号、2号还是3号?
生1:第3个,生2:第3个,生3:第3个。
师:想摸3号盒子的举手。哇,你们都想摸第3个盒子?奇怪,为什么你们都选3号?
生:因为3号盒子全部都是红球。
师:追问:全部是红球怎么了呢?
生1继续:随便摸哪个球都是红球。 生2:先摸哪个球都是红球。
师:都这么想吗?还有补充吗?是呀,盒子里全是红球,任意摸一个,会怎么样啊?(贴一定摸出红球:数学上,我们可以说)
可能性教案 篇2
教学内容:
人教课标版教材三年级上册第八单元(P110—111)
教学目标:
1、通过练习让学生进一步感受可能性,知道事件发生的可能性是有大有小的。
2、通过实际操作活动,培养学生的动手实践能力,合作交流能力。
3、巩固本单元知识。
教学过程:
一、情境引入,回顾再现
师:同学们,通过前面的学习我们知道有些事情的发生是确定的,有些则是不确定的。哪位同学愿意用“一定”、“可能”、“不可能”等词语来描述生活中一些事情发生的可能性呢?(指2—3名同学举例,其他同学评判,教师适时点评。)
师:我们还知道事件发生的可能性有大有小。下面就请同学们猜一下三、一班的张晨同学做哪个游戏的可能性比较大?(大屏幕出示:大课间活动,三、一班的40名同学在操场上做游戏,有30人在丢手绢,6人在跳绳,4人在踢毽子。张晨是三、一班的学生,她做哪个游戏的可能性大?为什么?)
生1:张晨做丢手绢游戏的可能性大,因为……。
生2:……
生3:……
师:这节课我们就来针对这些内容进行相关练习。(引出并板书课题:可能性的`练习。)
(设计意图:让学生通过对“一定”“可能”“不可能”等现象的描述和事件发生可能性大小的解答,回忆再现新授课中有关的知识和方法。)
二、分层练习,强化提高
师:首先,看一看同学们能不能做一名合格的小法官。(出示)
1、基本练习
(1)我是小法官。(快速抢答,看谁说的又对又快。)
①一周有七天。()
②人的一生中一定要吃饭。()
③小明长大后一定能当飞行员。()
④下周一一定是阴天。()
(2)从放5个红球和1个绿球的口袋中随意摸出一个球,摸出什么球的可能性更大些?(指生回答,重点说原因。)
师:刚才同学们的表现真棒!下面我们来做个游戏好吗?
2、综合练习
(1)课本110页第8题。
师:掷骰子游戏喜欢吗?请同学们拿出写有1—6这几个数字的骰子来,我们一起玩。
①让生说一说掷出后可能出现的结果有哪些?
②猜测试验后的结果会有什么特点?
③实践、记录、统计。(全班一起掷一次,师参与记录各个面出现的次数。)
④说说从统计数据中发现了什么?
⑤由于实验结果与理论概率存在差异,如果得不到预期结果,可以再让学生多掷次,增加实验总次数,尽量使实验结果接近理论概率。
(设计意图:让学生亲自动手实践,使学生进一步感受事件发生的等可能性。)
(2)课本110页第9题。(出示主题图)
师:过元旦的时候,三一班用抽签的形式来决定每位同学所要表演的节目。其中讲故事5张,唱歌3张,跳舞1张。如果你是其中的一员,你最有可能表演什么节目?
生:我最有可能表演讲故事。
师:为什么?
生:因为讲故事的签比较多。
师:谁能用“最有可能”和“最不可能”说一说其它两个事件发生的可能性?
生:我觉得最有可能抽到唱歌,最不可能抽到跳舞。
(3)课本111页第10题。
师:我这里有4个盒子,其中一个盒子里放有硬币,猜一猜可能在哪个盒子里?(注意:每个同学只能选择一次,不能重复选。)
①生猜。
②简单统计猜测情况。
③揭示结果。
④说一说为什么猜错的比猜对得多。(引导学生发现:硬币只能在4个盒子中的1个,有3个盒子中没有,所以猜错的人数比较多猜错的可能性大。)
师:同学们真聪明!考虑问题真全面。接下来老师提高一下难度,有没有信心做好?
可能性教案 篇3
复习内容:教科书第12册112页-115页整理与反思和练习与实践。
教学目标:
1、进一步明确各种统计图在描述数据方面的特点及作用,体会要根据相关数据的特点。恰当地选择统计图和统计表进一步体会有关统计量在表示数据特征方面的特点和作用,掌握简单统计量的基本计算方法。
2、进一步明确各种统计图在描述数据方面的特点及作用,体会要根据相关数据的特点恰当地选择统计图和统计表。进一步体会有关统计量在表示数据特征方面的特点和作用,掌握简单统计量的基本计算方法。
3、进一步体会有关平均数、众数、中位数在表示数据特征方面的特点和作用;明确各种统计图在描述数据方面的特点及作用,进一步掌握简单统计量的基本计算方法。
教学过程
一、复习有关统计的知识和方法。
1、引导学生回忆收集和整理数据的方法。
①广泛地有针对性地收集各种原始数据。
②对数据进行加工,去粗取精,去伪存真。
③数据处理、分类和计算。
④ 按一定的顺序或方式表示出来。
提问:收集数据有哪些方法?(小组讨论,集体交流)
小结:常用的方法有调查、测量、实验以及直接从报刊、杂志、图书和网络中获取。
2、提问:记录数据有哪些方法?举例说明。
(如选举中队长统计选票时可以用画正字的方法,作图形符号的方法)
3、出示填空题。
( )统计图能清楚地表示出数量的增减变化情况
( )统计图可以清楚地表示出各部分同总数的关系。
( )统计图能清楚地直接比较出数量的多少。
小结:我们学过了条形统计图、折线统计图、扇形统计图,它们在描述数据时,各自有自己的.特点,我们要根据数据特点进行选择。
4、指导学生完成第1题
⑴引导观察教材提供的两张统计表,说说从中获得哪些信息。(第一张统计表,重点引导学生对各个城市的数据进行比较,突出最多量和最少量;第二张统计表,不仅要引导学生对数据进行比较,还要引导学生说说发展变化趋势。)
⑵思考:这两组数据分别制成什么统计图比较合适?为什么?
⑶鼓励学生独立完成相应的统计图,并进一步讨论这两种统计图的结构和特点。
⑷提出一些问题让学生看图回答。
二、回忆不同统计图的特点。
(一)出示教材113页的统计图指导观察统计图
1、指名回答,这是什么统计图?
2、组织讨论:这个复式条形统计图与普通复式条形图有什么不同?
(①直条方向是横着的,也就是用横轴方向表示数量的多少;②表示同一组两个数量的直条不是并着排列的,而时是首尾相接。)
3、独立完成统计表
根据图中的信息将统计表填写完整。
4、小组交流讨论教材中提出的4个问题
引导学生可以根据统计图或统计表进行回答出示条形统计图
(二)指导完成第3题
1、出示第3题统计表,说说从表中可以了解哪些信息?
2、引导学生完成折线统计图:描点、标数据、连线。(注意实线和虚线之分)
3、指导观察完成的折线统计图,引导发现,乙车路程和时间所对就的点连接起来有何特点?(小组讨论)
4、进一步分析每辆车行驶时间与路程的关系,明确乙车所行路程和时间是成正比例。
5、在讨论中完成对两个问题的解答。
(三)指导完成第4题
1、讨论扇形统计图的有关特征?
2、独立完成书上3个问题的解答,然后集体校对
课前思考:
考虑到《统计与可能性》这部分知识难度不大,所以将潘老师设计的两课时合并成一课时上。
在复习统计时,要让学生认识到各类统计图的特点,有关中位数、众数的理解可以结合具体的练习题来分析。
教材提供的第113页的第2题的条形统计图与一般的条形统计图表示有所不同,需要加以指导,要让学生都能看懂这幅统计图。
第3题中涉及的计算较多,需要指导学生根据统计图提供的数据现分别计算出两个年级的学生总人数,然后再计算。
讨论第6题时要让学生看到由于男生体重的10个数据中出现了2个极端数据,所以平均数的位置明显偏离这组数据的中心,这种情况下用中位数代表男生体重的一般情况比较合适。
课后反思:
复习统计的知识要注意引导学生结合具体的例子展开讨论。重点帮助学生进一步明确收集、整理数据的方法,体会数据与现实生活的密切关系,明确各种数据收集、记录和整理方法的特点及作用;不仅要让学生回忆学过了哪些统计图,更要引导学生结合实例说说各种统计图在描述数据方面的特点。
练习与实践中,先让学生观察教材提供的统计表,并说说从表中能获得哪些信息,再用统计图表示出统计表中的数据,体会根据数据特点选择适当统计图的必要性。
通过复习中位数、众数和平均数的求法,让学生体会到:中位数、众数和平均数都是表示一组数据特征的统计量,但由于数据自身特点不同,这几种统计量在表示数据特征时所具有的代表性也就有所区别。
课前思考:
本节课不仅要学生能够会绘制统计图,更要体会不同统计图的特点,会灵活选择适当的统计图。让学生知道条形统计图:能清楚的看出数量的多少。折线统计图:不仅能清楚的看出数量的多少,而且能清楚的知道数量的增减变化情况。扇形统计图:能清楚的看出各部分数量同总数量之间的关系。众数:出现次数最多的一个数。中位数:正中间的一个数。平均数:总数份数。学生不容易判断的是用中位数、众数和平均数哪个数据更具代表性。
课后反思:
指导学生计算每组数据的中位数,让学生计算中位数要注意先把数据按从大到小或从小到大的顺序进行排列。在完成P114页第4题时,学生的估计能力不是很好,当然这要在充分读清楚题意的基础上,合理的进行估计。如:本课中各档节目所占的百分比是容易估计得到的,但时间不太容易掌握,因此先不估计时间。在画折线统计图时,一定要注意所描的点和点之间的线段,是直线的连在一起画,不是直线时,要一段一段画。
课后反思:
复习统计的知识要注意引导学生结合具体的例子展开讨论。重点帮助学生进一步明确收集、整理数据的方法,体会数据与现实生活的密切关系,明确各种数据收集、记录和整理方法的特点及作用;不仅要让学生回忆学过了哪些统计图,更要引导学生结合实例说说各种统计图在描述数据方面的特点。
练习与实践中,先让学生观察教材提供的统计表,并说说从表中能获得哪些信息,再用统计图表示出统计表中的数据,体会根据数据特点选择适当统计图的必要性。
通过复习中位数、众数和平均数的求法,让学生体会到:中位数、众数和平均数都是表示一组数据特征的统计量,但由于数据自身特点不同,这几种统计量在表示数据特征时所具有的代表性也就有所区别。
可能性教案 篇4
课前准备
教师准备 多媒体课件 盒子及不同颜色的小球若干
学生准备 红色球若干 白色球若干 纸箱一个
教学过程
⊙联系生活,导入新课
师:同学们,你们抽过奖吗?中奖了吗?前两天我去买东西,遇见超市搞抽奖活动。抽奖规则很简单,就是摸球,摸到绿球有奖,摸到红球就没有奖。商家会怎样放球?为什么?如果你是顾客,你希望商家怎样放球?为什么?
师:其实,中奖率高低与可能性大小密切相关,今天我们就来复习可能性大小这个问题,学习了今天的内容,你就会找到抽奖时中奖率低的真正原因了。(板书课题:可能性的大小)
⊙回顾梳理,整理复习
1.课件出示情境图,根据教材中的四幅图回答书中问题。
学生小组讨论并回答问题。
2.事件发生的不确定性。
师:在我们的生活中,有很多事情是可能发生的,也有很多事情是一定会发生的,还有很多事情是不可能发生的。同学们能举例说说吗?
(1)先在小组内说一说,然后全班交流。
(2)汇报。
预设
生1:太阳不可能从西边升起。
生2:人不可能长翅膀。
生3:时间不可能倒流。
生4:妈妈今年可能会带我去外婆家过寒假。
生5:明天可能会下雨。
生6:小鸟不可能在水里游。
……
(3)教师小结。
通过同学们的发言,我们可以知道,在生活中,有的事情是可能发生的,有的事情是不可能发生的,还有的事情是一定会发生的。我们要学会用“可能”“一定”“不可能”描述事件发生的不确定性。
(4)请你用“可能”“一定”“不可能”说一说生活中的现象或事物。
3.事件发生的可能性。
师:我在盒子里面放了10个红球、8个白球和4个绿球,这些球除颜色不同外,其他都相同。任意摸出一个球,摸出哪种颜色球的可能性最大?摸出哪种颜色球的'可能性最小?请同学们根据以前的学习分组讨论。
(1)学生小组交流讨论,得出结论。
(2)学生根据讨论结果汇报。
预设
生1:摸出红球的可能性最大,因为盒子里红球的数量最多。
生2:摸出绿球的可能性最小,因为盒子里绿球的数量最少。
(3)提问:现在老师想让摸出绿球的可能性变大些,摸出红球的可能性变小些,你有哪些办法呢?
可能性教案 篇5
教学内容:义务教育课程标准实验教科书三年级上册106页例3及“做一做”,练习二十的第4、6、10题。
教学目标:
1、知识目标:经历可能性的试验过程,知道事件发生的可能性是有大小的。
2、能力目标:培养学生通过实验获取数据、利用数据进行猜测与推理的能力;并能列出简单试验所有可能发生的结果。
3、情感目标:在活动交流中培养合作学习的意识和能力。
教学重点:学生通过试验、收集和分析试验数据知道事件发生的可能性是有大小的。
教学难点:利用可能性的知识解决实际问题。
教学准备:两个转盘、盒子、红球24个、蓝球6个、漂亮的卡通人物、硬币、多媒体课件,颜色笔。
教学过程:
一、创设情境,激趣猜测
1、听故事,激发学习兴趣
(1)老师知道同学们最喜欢听故事,特意准备了一个《小猴子下山》的故事,想听吗?
(动画播放:有一天,小猴子下山来。它看见玉米地里的玉米结得又大又多,就掰了一个扛着往前走。走着走着,来到桃树底下,看见满树的桃子又大又红,就扔了玉米去摘桃子。小猴子棒着几个桃子走到一个瓜地里,它看见满地的西瓜又大又圆,就扔了桃子去摘西瓜。它抱着一个大西瓜往回走,走着走着,看见一只小兔蹦蹦跳跳的多可爱,就扔了西瓜去追小兔。)
2、猜测:请同学们想一想,小猴去追小兔,结果会是怎样呢?
学生猜测:它有可能追到小兔,也有可能追不到小兔。
师:那追到的可能性会......很小。
3、有些同学认为小猴不可能捉到小兔,有些同学认为小猴还有可能捉到小兔,只是可能性很小,看来,事情的发生不仅有可能性,而且发生的可能性还有大、有小。今天这节课我们就继续来学习有关可能性的问题。
(板书课题:可能性的大小)
实践是最好的老师,下面我们就通过摸球试验来研究,好吗?
二、探究、验证
1、试验准备。
(1)介绍试验材料。
师:每个小组准备了一个盒子,盒子里都有红球和蓝球。
(2)说明试验要求。
(多媒体出示小组合作要求。)
师:请同学们根据屏幕上的要求进行摸球试验,摸球20次,根据摸球的情况完成好摸球情况统计表和统计图,然后观察统计图思考以下两个问题:(一)摸到哪种颜色球的可能性大?
(二)摸到哪种颜色球的可能性小?
(3)提出注意事项。
师:最后还请同学们特别注意:摸球时不能用眼晴看,摸球试验结束后不要打开盒子哟,能做到吗?下面请小组长拿出记录表和统计图,就可以开始试验了。
2、合作试验、初步推测。
(1)各小组试验,教师巡视。
(2)观察、汇报。
师:谁把你们组的试验结果汇报一下?
生汇报。
3、推理、验证、归纳。
(1)观察。
(集中展示各小组的摸球情况统计图。)
师:这是我们6个小组的摸球情况统计图,请同学们仔细观察,你发现什么呢?
生发现:每个小组都是摸出红球的可能性大,摸出蓝球的可能性小。
师:(疑惑地)咦!每个盒子里都有红球和蓝球,为什么每个小组都是摸出红球的可能性大,摸出蓝球的.可能性小呢?
(2)思考。
师:这都是你们的推测,到底对不对呢?有什么方法可以知道?
师:好!莫老师数三声,我们就一起把盒子打开。
师:请同学们数一数,红球有几个?蓝球有几个?看了这些颜色球的数量,再联系刚才的试验结果,你知道了什么?
(红球的数量多,摸到的可能性大,蓝球的数量少,摸到的可能性小。)
师:也就说,在摸球试验中,可能性的大小和什么有关系呢?
(与球的数量有关。)
师:如果让你在自己小组的盒子里再摸一次,你觉得摸到什么颜色球的可能性大?为什么?好,请六个小组长一起来摸摸看。
(3)归纳。
师:同学们通过刚才的摸球试验发现了可能性的大小与不同颜色球的数量有关。哪种颜色球数量多,它的可能性就......(大);哪种颜色球数量少,它的可能性就......(小)。那可能性小是不是就代表没有可能摸到呢?
三、应用、拓展
师:其实生活中还有不少事情的出现与可能性的大少有关,你们能运用可能性知识来解决一些生活中的实际问题吗?
1、转转盘。(课本106页的“做一做”。)
师:看,这里有个大转盘,想来转转吗?莫老师手里有许多漂亮的图片,你来选一种颜色格,如果你真的转到那种颜色格的话,我就送你一个图片,谁想来试试?还有谁想来?
(生可能会选黄色)你为什么会选黄色格呢?
(因为黄色格的数量多,红色格的数量少,所以转到黄色的可能性大。)
转转试试看?
不行,每次都是你们赢,我得换个转盘,这次如果你还是转到黄色格的话,我就送你一张更漂亮的图案,谁来转?(指名3名学生上台转)
师:为什么只有()个同学拿到图案?
(因为黄色格的数量少,蓝色的数量多,转到黄色的可能性小。)真聪明!那就把这张图案送给你吧?
3、拓展。
师:老师这里还有一个有趣的转盘(出示幸运转盘)。
商场为了吸引顾客购物,经常让顾客参与购物转奖的游戏。他们为什么把一等奖的部分这样设计呀?
(因为一等奖的奖品很贵重,所以要让人们转到一等奖的可能性小,转到其它奖的可能性大。)
师:你们能用学到的数学知识解释生活中的问题,真是棒极了!
2、设计转盘。(练习二十第4题。)
师:看了这个转盘,你们想不想也来设计这样有趣的转盘?
(1)课件出示设计要求。
请同学们在书本109页上涂一涂。
(2)谁想上来展示一下自己的作品?(用实物投影仪投影学生作品)
问:在设计转盘时你是怎样想的呢?你们也是这样想的吗?
(3)。
师:在设计第一个转盘时我们只要使得红色格的数量比蓝色格多就行了,在设计第二个转盘时只要使得蓝色格的数量比红色格多就可以了,你们都设计出了符合要求的转盘了吗?
4、解决问题。
师:今天还有一位我们非常熟悉的朋友来到了我们的课堂,看谁来了?(课件出示小猫扑蝴蝶)
师:小精灵明明带着他的魔棒来了,还有谁来了?(小猫)
师:听,小精灵有问题要问了:天空中有7只黄蝴蝶,3只红蝴蝶,小猫随意扑一只,扑到哪种蝴蝶的可能性大呢?
(小猫扑到黄色蝴蝶的可能性大。)
师:那我们就来看看小猫是不是扑到黄色蝴蝶的可能性大。(课件演示小猫扑到了一只黄色的蝴蝶。)
师:看来确实是扑到黄蝴蝶的可能大。现在天空中还有几只黄蝴蝶和几只红蝴蝶?小猫再随意扑一只,扑到哪种蝴蝶的可能性大呢?
(天空中还有6只黄蝴蝶3只红蝴蝶,小猫随意扑一只,还是扑到黄色蝴蝶的可能性大。)
师:我们一一看。(课件演示小猫扑到了一只红蝴蝶。)
师:(疑惑地)咦!不是说小猫扑到黄蝴蝶的可能性大吗?怎么会扑到一只红蝴蝶呀?
(因为天空中还有红蝴蝶,所以还是有可能扑到红蝴蝶的,只不过扑到红蝴蝶的可能性小一点。)
师:扑到红蝴蝶的可能性小并不是说不可能扑到红蝴蝶。
听!小猫又有问题想问了:你能想办法让我扑到红蝴蝶的可能性大吗?(增加红蝴蝶的只数,让它的只数比黄蝴蝶多。)
(师用课件演示:小精灵用它的魔棒增加了7只红蝴蝶。)
5、猜一猜。(练习二十第10题。)
师:下面我们来做个游戏怎么样?这里有四个盒子,其中只有一个盒子里面放着一个硬币,你来猜一猜,可能会在哪个盒子里?下面我们来统计一下,注意:每个同学只能选择一次;认为在一号盒子里的举手,认为在二号盒子的,三号盒子,四号盒子。
师:下面我们来揭晓,哦!原来在2号盒子里。也就说只有X个同学猜对了。现在请同学们想想,为什么猜对的人少,而猜错的人多呢?
汇报:因为硬币只能在四个盒子中的一个,有三个盒子中没有,所以猜错的人数多,猜错的可能性就大。
师补充:虽然猜对的可能性小,但我们也是有可能猜对的。
四、、延伸
1、延伸。
师:其实,关于可能性的问题,在很久以前就有不少的数学家做过研究,最典型的是掷硬币的试验。同学们看一看,这是一枚1元的硬币,将硬币掷出,结果会怎样?掷到哪一面的可能性大呢?今天的作业是回家后,请你和爸爸、妈妈一起来做一做这个掷硬币的小试验,自定试验次数,老师建议次数多一点,这样试验结果才准确;并将硬币正、反面朝上的情况做好统计,明天把你的试验结果记录表拿回来全班一起交流好吗?
2、。
(1)今天这节课你学会了什么?最高兴的是什么?对自己的学习满意吗?你觉得老师表现得怎样?
(3)师:刚才《小猴子下山》的故事还没讲完,想听完吗?
出示录音:小兔子看到小猴追上来,马上串进草丛里不见了,这时太阳快下山了,小猴只好空着手回家去了。
师:看了这个故事结果后,你们有话要跟小猴子说吗?
小朋友们,我们可不要像小猴那样三心两意哦!
五、板书设计
可能性大小
数量多可能性大
数量少可能性小
可能性教案 篇6
【教材分析】
(一)教学内容分析:
可能性和概率是七年级下册第三章《事件的可能性》的第3节内容。这是在学生通过具体情境了解了必然事件、不确定事件、不可能事件等概念,并在具体情境中了解事件发生的可能性的意义,会用列举法(包括列表、画树状图)统计在简单问题情境中可能发生的事件的种数的基础上,对其中的可能性事件的进一步学习和提升。通过一些简单的事例,初步认识概率的意义,导出等可能性事件的概率公式,知道不可能事件的概率为0,必然事件的概率为1,不确定事件的概率大于0且小于1。这样的安排完全是按照《新课程标准》的分步到位,螺旋式上升的整体设计。
教材中通过以下步骤建立概率的意义:通过实例认识事件发生的可能性及其大小——用事件发生的可能性的大小定义概率——在等可能性的前提下用比的形式来表示概率。其中第3个步骤“等可能性”这个前提十分重要。课本通过说理的方法来让学生认识等可能性。有关概率的概念,本教科书将在八年级下册学习频数和频率的基础上,主要安排在九年级上册学习。因此在本章教学中尽量不随意提高要求,主要是为以后的进一步学习打下扎实的基础。同时也进一步使学生了解概率的产生与发展是与生产、生活紧密联系的。
(二)学情分析
考虑到七年级学生的认知水平和知识结构,遵循启发式原则,在新课标的指导下,本节课采取发现与探究结合的教学方法。充分体现教师组织、引导、合作的作用,凸现学生的主体作用,让学生充分经历实际问题的情景,这是认识事件发生的可能性及其大小的唯一途径。教学中应通过大量的实际例子,让学生知道什么是等可能性?怎样认识两个事件发生的可能性是否相等?计算等可能事件发生的概率对学生来说不太容易。 涉及一些简单事件的概率计算,主要目的是让学生初步认识概率的意义,以及在等可能性的条件下概率的一种直观表现形式。这是学生学习了事件的可能性后的一个自然延伸。在教学中,应注意所学内容与日常生活、自然、社会和科学技术领域的联系。让学生感受到学习等可能性事件的概率的重要性和必要性。还应注意使学生在具体情境中体会事件的可能性与概率的意义。这些不仅是学习本节的关键,对于学好本章及至以后各章也是很重要的。
【教学目标】
1、 了解概率的意义
2、 了解等可能性事件的概率公式
3、 会用列举法(包括列表、画树状图)计算简单事件发生的概率
进一步认识游戏规则的公平性
【教学重点、难点】
重点:概率的意义及其表示
难点:例2涉及转盘自由转动2次,事件发生的条件构成比较复杂,是本节教学的难点。
【教学过程】
(一) 创设情境,引入新知:
引例:小红与小李被同学们推选为班长,获票数相等,谁担任正班长哪?老师决定用抽签的办法来决定:做4个纸团,其中只有1个纸团里写有“正”字。由小红从中任取1个纸团。抽出有“正”字的纸团,就决定由小红担任正班长。这个办法公平吗?如果不公平,怎样改正才会使之公平?
分析:小红从4个纸团中抽出写有“正”字的纸团的可能性是 ,即小红担任正班长的可能性是 。如果小红抽到写有“正”字的纸团,就决定由小红担任正班长,这个办法不公平。然后由学生共同合作讨论,得到改正的方法。而且,这改正的方法不止一种。要充分发挥学生的主观能动性和合作精神,让学生积极参与。
解答:这种抽签决定正班长的办法是不公平的,如果仅对小红而言是不公平的。如果小李也按这个办法实行,小李担任正班长的可能性也是 ,也就是说,双方获胜的.可能性相同。这个办法才是公平的。(改正的方案不唯一)
(这样的引入,体现数学来源于生活,素材与学生现实紧密结合,从解决实际问题的欲望而促进对数学学习的兴趣,鼓励合作学习。从多角度思考,采用多种解决问题的办法,创造积极合作、讨论的氛围。)
(二) 师生互动,探索新知:
从此题解答中可以得到,在客观条件下使小红与小李抽签胜出的可能性大小相等(也称机会均等)那么才是公平的。而事实上,我们在日常生活中,常常会遇到指明可能性大小的情况:教师可举一些描述实际生活中有关可能性大小的几个例子:
①小明百分之百可以在一分钟内打字50个以上,即小明在一分钟内打字50个以上的可能性是100%。
②小华不可能在7秒内跑完100米,即小华在 秒内跑完100米的可能性是0。
③通过摇奖,要把一份奖品奖给10个人中的一个。每人得奖的可能性是 。
接着类似的可以让学生自己结合生活经验独立举一些例子。
(这样的安排是使学生有独立思考的空间并让学生充分发表自己的意见。只要合理、正确都予以高度肯定,激发学生的兴趣。但学生难免犯错,但相信同学之间也能纠错。教师放手让学生在互相讨论和互相评价中得以提高和加深对知识的理解。在学生评价中,集思广益,能体会到如何更完善和辨证地分析问题。)
然后教师归纳,在教学中我们把事件发生的可能性的大小也称为事件发生的概率,一般用 表示。事件 发生的概率也记为 ,事件 发生的概率记为 ,依此类推。
如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件 发生的可能的结果总数,那么就可用以下式子表示事件 发生的概率:
强调:概率的数学意义是一种比率,这个概率公式适用的条件——事件发生的各种可能结果的可能性都相等。这一点学生容易疏忽。可根据学生具体情况确定是否再举一些实例加以辨别各种可能结果的可能性是否都相等。
例如:任意抛掷一枚硬币,有“正面朝上”和“反面朝上”两种结果。由于硬币质地均匀,抛掷时具有任意性,所以出现“正面朝上”和“反面朝上”的可能性认为是相等的。适用等可能性事件的概率公式。而对于“投篮”,虽然也只有两种可能结果:“命中”与“没命中”,但由于投篮的命中率与投篮者的技术水平相关,“命中”与“没命中”的可能性通常是不相等的。
(三) 讲解例题,综合运用:
在弄清等可能性的含义后,就可以应用本节课的概率公式解决实际问题。
例1:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是1的概率是多少?是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?
分析:由于一枚骰子有六个面。当骰子停止运动后,每一个面朝上的可能性都为 。即为等可能性事件。因此可用概率的公式计算。
解:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数有可能性相同的 种可能,即1、2、3、4、5、6。所以朝上一面的数是 只有 种可能,即朝上一面的数是 的概率 ;是偶数的有 种可能,即2、4、6。所以朝上一面的数是偶数的概率 ;是正数的有 种可能,即1、2、3、4、5、6。所以朝上一面的数是正数的概率 ;是负数的可能结果有 种,即所有可能的结果都不是负数,所以朝上一面的数是负数的概率 。
一般地,必然事件发生的概率为100%,即 。不可能事件发生的概率为0,即 。而不确定事件发生的概率介于0与1之间,即 。
(例1的目的主要巩固等可能性事件的概率公式,教师着重讲清解法的思路和方法步骤。解这类问题的基本思路是先分析判断是否适用等可能性事件的概率公式。然后统计所有可能的结果数和所求概率的事件所包含的结果数,再把它们代入公式求出所求概率。)
从例1中自然引出必然事件的概率为1,不可能事件的概率为0,不确定事件的概率为 。
(四) 练习反馈,巩固新知:
做一做:
1、 从你所在小组任意挑选一名同学参加诗朗诵活动,正好挑中你的可能性是多少?
(根据班级各小组的实际人数回答)
2、 转盘上涂有红、蓝、绿、黄四种颜色,
每种颜色的面积相同。自由转动一次转盘,
指针落在红色 区域的概率是多少?
指针落在红色或绿色 区域的概率是多少?
(1/4,1/2)
(五)变式练习,拓展应用:
例2:如图所示的是一个红、黄两色各占
一半的转盘,让转盘自由转动2次,指针2
次都落在红色 区域的概率是多少?一次落在
红色 区域,另一次落在黄色 区域的概率是多少?
分析:
(1)由于转盘上红、黄两色面积各占一半,转盘自由转动一次,指针落在黄色 区域和落在红色 区域的可能性是相同的。
(2)统计所有可能的结果数,让学生自己列表或画树状图。应注意转盘的两次自由转动意味着事件的发生分两个步骤,各种可能包括了顺序的因素。
(3)统计所求各个事件所包含的可能结果数。
解:根据如图的树状图,所
有可能性相同的结果数有4种:
黄,黄;黄,红;红,黄;红,红。
其中2次指针都落在红色 区域的可能结
果只有1种,所以2次都落在红色 区域
的概率 ;
一次落在红色 区域,另一次落在黄色 区域的可能有结果2种,所以一次落在红色 区域,另一次落在黄色 区域的概率 。
变式:在例2的条件下,再问:第一次落在红色 区域,第二次落在黄色 区域的概率是多少?讲解时注意让学生自己分析同例2的第二问的区别。从中求出变式的正确的解答为 。
(本环节主要让学生体验变式中的探究学习,培养学生的严谨的科学态度,提倡题后反思。)
(五) 反思总结,布置作业:
引导学生总结本节课的所学知识,反思有什么样的收获。进一步激发学生的学习热情,也让参与反思的学生更多。在交流的过程中学会学习,完善自己的知识体系。然后布置作业,有助于学生应用能力和创新能力的培养。
五、教学说明:
本章计算等可能性事件的概率只涉及简单的独立事件。一般每次取1个,最多取3次。教师应把握好教学要求。
【可能性教案】相关文章:
可能性教案10-29
可能性教案06-22
可能性教案优秀11-22
可能性教案设计07-08
可能性教案3篇04-28
可能性教案(15篇)10-10
可能性教案15篇06-11
实用的可能性教案四篇10-14
实用的可能性教案4篇09-05
有关可能性教案三篇07-29