- 相关推荐
《三角形内角和》数学教学反思(精选29篇)
在快速变化和不断变革的新时代,我们要在课堂教学中快速成长,反思过去,是为了以后。那么你有了解过反思吗?下面是小编为大家整理的《三角形内角和》数学教学反思,欢迎阅读,希望大家能够喜欢。
《三角形内角和》数学教学反思 篇1
背景:
最近,张店区教研室举行了“青年教师优质课”评选,我们学校有位刚毕业一年的年轻教师参加。经过大家共同选教材、研究商量后,确定参评课题为“三角形的内角和”。这是新实验教材四年级下册的内容,从教材上看,教学内容比较简单,就是让学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180°,会应用这一规律进行计算。很显然,许多学生肯定有这样的知识经验,每个班都有部分学生已经能说出这一知识点。根据这样的现状我们让年轻教师根据自己的理解先备课、设计教学思路,随后我们进行了跟踪听课。
试讲教学片断:
创设情境,引入新知:
教师先出示色彩鲜艳,用卡纸制作的学具:钝角三角形、锐角三角形、直角三角形等,让学生分辨,复习上节课的内容。学生回答的轻车熟路,感觉非常简单。继而教师拿出直角三角形,说道:“请大家画出一个直角三角形。”很快,学生便大功告成,举起画完的作品让老师看。
老师边点头边露出赞许的微笑。接着提出第二个问题:“聪明的同学们,能不能画出有‘两个’直角的三角形呢?画画试试。”没出5秒钟,反应快的学生便脱口而出:“老师,画不出来!”老师紧接追问:“为什么呢?”学生:“因为三角形的内角和是180°,两个直角就是180°了,画不出第三个角了。所以画不成三角形。”学生说得太好了,老师赶紧接过了话题:“这位同学说三角形的内角和是180°,你们知道吗?”其他学生似乎还没明白怎么回事,只好连忙点头说知道。教师肯定的说:“是的,三角形的内角和就是180°,我们怎么想办法验证一下呢?请大家想想办法。”学生经过很长时间的合作、探究,得出了三种办法,全班交流汇报。练习分为基本练习和综合练习两个层次。学生计算的没多大问题。最后一题是思维拓展练习:研究一下四边形的内角和?五边形、六边形的内角和呢?多边形呢?因时间的关系,无一人能够想出策略。
反思:
教师创设情境采用的是给学生制造思维障碍的方法,让学生画出有“两个”直角的三角形,欲擒故纵,有其果,学生肯定会究其因,同时,还能让学生在体验中,寻找数学的真谛,此创设情境的方法真是妙哉。听课时,我也为他这样的设计感到高兴,心想,一定能产生好的教学效果,但事实却不是如此,学生一堂课显得比较沉闷,只有部分好学生在迎合老师,学生并没有充分的参与到数学学习中来。课后,我反复的思考,为什么会这样呢?后来发现原因有以下几点:
一是因为教师在出示问题时,没有把“两个”直角三角形的“两个”强调清楚,有许多学生没有听清要求;
二是因为教师没有留给学生充分的思考的时间,好学生反应快,答案脱口而出,其他学生思维还没产生任何的碰撞,更没经历实验的过程。
三是我们现在教育体制下的学生大都缺少质疑权威的意识和习惯,显得顺从,没有主张和个性。在好学生说出三角形的内角和是180°后,其他学生对于这一知识点真正知道的有多少?但正因为是好学生的回答,在其他学生眼中,这是学习的权威啊,他说的肯定是对的`,结果大家只有稀里糊涂的点头附和,是的,三角形的内角和是180度。
在这一环节的教学中,很多学生就吃了夹生饭,根本没有透彻的理解和掌握。看似精彩的情境创设,如果得不到教师适度的调控和把握,也焕发不出它应有的光彩。
新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。深刻的思考、仔细的推敲以上情境的创设,也不难发现,它尽管有它的闪光点,但也有不足的地方,就是它的设计引入没有从大部分学生的知识经验出发,没有照顾到全体,知道三角形内角和是180°的学生毕竟是少数,这也就是它没能激发起学生学习欲望的原因所在。因此,在数学课堂教学中,我们要时刻注意发掘教材孕伏的智力因素,审时度势,把握时机,因势利导地为学生创造良好的教学情境,激发学生的兴趣,让学生在学习数学中愉快地探索。
再者,最后一题,是在学习了三角形内角和基础上的拓展,任何多边形都可以转化为多个三角形来计算内角和,学生无一人能够想出办法,仔细想想,是我们的题目出的太难,还是学生太笨呢?都不是,是我们教师的引导作用没发挥出来,没能激发起学生学习的内部活力,也就无谈学生的动手实验、猜想、验证。当然,学生的实验、猜想、验证能力的培养并不是一堂课的问题,而是朝朝夕夕,无声无息的渗透。作为任何一个站在教学前沿的教师,我们都应有这样的教学理念,让自己的学生在数学学习中通过观察、实验、归纳、类比、推断获得数学猜想,体验数学活动丰富的探索性和创造性,感受证明的必要性、证明过程的严谨性以及结论的确定性。
再次实践:
经过大家的共同评课和授课教师自己的反思,我们重新改变了创设情境的方法。
师出示一正方形纸,问:这是一张(正方形)的纸,它有(4)个角,这4个角在数学里,我们给它一个名称,把它叫做正方形的(内角),而且每个内角都是(直角),那么它的内角和是多少度呢?为什么?
生1:正方形的内角和是360°,因为每个内角都是90°,有4个内角,就是4个90°,也就是360°。
师:现在,我们把这个正方形纸沿着对角线剪开后会怎样呢?
(师演示,并指导生拿出正方形纸折一折、剪一剪)
生3:通过刚才的观察与操作,我发现这样沿对角线剪开后,得到了2个三角形,都是等腰直角三角形。
师:谁来猜想一下其中的1个三角形的内角和是多少度?
生:通过刚才的观察与操作,我发现三角形的内角和是180°。因为正方形的内角和是360°,沿对角线剪开后,等于把正方形平均分成了两份,也就是把360°平均分成两份,每份是180°,所以这个三角形的内角和是180°。
生:我发现三角形的内角和是180°。因为沿正方形对角线剪开后,等于把正方形原来的直角平均分成了两份,每份是45°,两个45°加上90°就得到180°,所以我知道三角形的内角和是180°。……
师:同学们猜的对不对呢?用什么办法可以知道?
生:验证。
师:对,需要经过验证。
(分小组对三角形进行验证。看它的内角和是不是180°)
组织学生汇报(测量的同学边汇报边板书,剪拼的同学利用投影汇报。)
生1:我们用量角器对3个角进行了测量,再分别把3个角的度数相加,得出了内角和为360°。
生2:我们将这个直角三角形的两个锐角用量角器测量,把两个锐角相加是90°,再加上直角的度数,这样我们知道直角三角形的内角和是180°。
生3:我们小组将三角形的两个锐角剪下来,然后拼在一起组成了一个直角,再把另一个直角拿来拼在一起,这样组成了平角,证实直角三角形的内角和是180°。
生4:我们是先将一个角折过来,使它顶点落在底边上,再把另外两个角也折过来,这样三个角正好拼成一个平角,所以我们知道这个钝角三角形的内角和是180°。
《三角形内角和》数学教学反思 篇2
今天教学《三角形的内角和》,对于三角板,学生是不陌生的,所以我们从一副三角板入手,让学生算出一副三角板的内角和是180°,于是抛出问题,在其他三角形中三个内角的和是不是也是180°呢?学生当然会猜是。我觉得今天孩子不仅学到了三角形的内角和,还学到了对待一个猜想就要想办法来验证的数学思想。当我要求孩子们来验证的时候,有的'孩子想到了量,有的孩子想到了折,这里我先让孩子们都去量,量了以后,因为有的同学量的不精确,所以我建议更精确的验证方法,孩子又想到了折,我又让孩子们去折。事后想想,如果我一开始就让孩子们尝试用自己喜欢的方法去验证一下,说不定碰撞的火花会跟激烈些。我这样一步一步来的话,就有些按部就班,没有那种水到渠成的感觉了。后来,校长提出,一开始有个孩子说到他量到175°,比较接近180°的时候,我只是强调要精确,却没有很好的利用这一资源,如果我这时候让孩子把他画的这个三角形撕下来,折一折来验证的话,学生的印象会更加深刻。这点我没想到,看来我还不够智慧啊!
杨教导也提出,后面的习题三,正方形内角和是360°,而把它对折变成三角形,就变成了180°,把三角形对折还是180°,这道题我没有深入,这是教材没把握好啊!
以后要注意,但是这节课上孩子的表现还是比较令我满意的,比平时好!呵呵!
《三角形内角和》数学教学反思 篇3
本节课的重点是引导学生探究三角形的内角和,同时还要使学生学会用三角形的内角和是180°来解决有关计算问题。
课程开始前,我让学生计算三角尺的3个内角的和,很自然地引出了“其它三角形的内角和是否也是180°吗?”的猜想。当时有同学说不是,又有同学说是的。我告诉学生:任何一项科学研究或发明创造都要经历从猜想到验证的过程。那么这个猜想可以用什么方法来证明呢?大部分同学首先想到先任意画一个三角形,再用量角器量一量的.方法,我让学生去画去量了,结果有些学生量出的内角和的度数要高于180°或低于180°,我让学生讨论一下有哪些因素会影响到研究结果的准确性。过后,我引导学生:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示学生想到把三个角剪下来拼成一个平角,还有学生想到折的方法。学生在操作过程中受到了启发,最后学生得出:任意三角形的内角和都是180°。学生在动手操作中享受到了学习数学的乐趣。后面通过一系列的练习活动,学生进一步明确三角形的内角和与三角形的大小无关,并体会到求直角三角形的一个锐角可以直接用90°减另一个锐角的度数来计算,培养了学生思维的灵活性,对三角形的内角和也有了更清晰的认识了。
第二次课我从学生常用的一副三角板出发,让学生说说每个角的度数,以及三个内角的度数和,有学生说出三角形的内角和是180度,我就接着问:为什么三角形的内角和是180度?是不是所有的三角形的内角和都是180度呢?学生无语。接下来,我就让学生将课前准备好的三角形拿出来进行研究,可以增强学生的主体意识与参与意识。当学生通过折一折、拼一拼、撕一撕、画一画之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。在此过程中,我关注的重点除了学生最后论证的结果,更重要的是关注了学生思维的过程。
《三角形内角和》数学教学反思 篇4
在教学中我关注到学生的情绪状态,想法设法调动学生的积极性,维持他们学习的兴趣和注意力,环节设计松紧有度。看来,要上好一节课,教育心理学方面的知识是不可缺少的。自己在教学理念上的转变。以前自上课总不放心让学生自主探索,总希望在有限的时间内多灌输一点,提高课堂“效率”。课堂中,我成了“职业灌输器”,学生充当了“专业接收站”,造成了老师累,学生烦的局面。这次我思想开放了,课堂上做到了“三活”——“学生活中的”,“在活动中学”,“灵活地学”,总之“活”贯穿于整个课堂。整节课,学生是在老师的引导下,以小组为单位自主探索、自主总结归纳。比以前的满堂灌强多了。所以说,放心让学生探索,精心引导学生是成功的关键。
在练习的时候,由于形式多样,所以学生的兴趣非常高涨,效果很好。总体来说这节课还有不足之处。学生在折纸验证三角形的内角和后汇报时,我引导小结不够。在练习时基本练习题太少。
1.在学生小组合作学习的时候,老师应该干什么?
我们经常会看到,学生小组合作学习时,老师会边走边不停地提示学生应该干什么、怎么干。其实,这个时候老师的提示对学生而言往往是没有任何价值的,不仅影响学生的思路,还会干扰学生的思维。我想,这个时候教师应该做的是快速浏览每个小组,看看每个小组的问题所在,帮助每个小组排除学习的障碍。然后找到最需要帮助的'小组,介入到这个小组的学习中,了解学生的状态,为后面的交流做好准备。因为在几分钟的交流时间内,老师不可能每个小组都照顾到,但是一定要做到心中有数,帮助每个小组找到解决问题的思路。
2.当学生的认知和原有的经验发生冲突时怎么办?
在新课程理念下,就是让学生去研究和探索,然后获得结论。但是,在实际的课堂情境中往往会有很多情况出现。如果我这样做了,我的教学任务就完不成了;如果我那样做了,就可能会偏离我的教学设计,学生的问题可能会让我不知所措。其实,在课堂中,这是进行探究性教学的最好契机,抓住学生最核心的问题,重组我们的课堂思路,留给学生思考的空间,让学生去探讨问题。我想,课堂教学是为学生的学习和成长服务的,教师要勇于放手,给学生更大的思维空间。
《三角形内角和》数学教学反思 篇5
1、课堂教学要有预见性,更重视课堂生成性。
教师对学生在课堂上可能出现的问题有一定的预见,教师才能设计出最适合本班学生的教案,才能更好地把握课堂动态。在这节课上,我让学生猜三角形的内角和,结果学生非常肯定的说是180度。还说不论什么样的三角形内角和都是180度。这时候与老师的预见是不同的。原本以为学生会猜出不同的结论的。但是付老师表现出了教学机智,他问,究竟是不是180度呢?你怎么证明呢?这进一步的提问一下子把学生的思考的引向了课堂的中心所在。
2、找准教师“导”与学生“行”的平衡点,关键词是相信学生是能行的。
满堂灌的课堂教学模式在新的教育理念的一轮轮冲击下,逐渐被广大教师在思想上摒弃,但是要真正实现教师变满堂讲为适时导,学生变“听”为多方面“行”的课堂局面,还需要教师找准“导”与“行”的平衡点。
本节课中,三角形的内角和是180度这个结论很多同学早就知道了,但是这节课的目的很显然不在于只教给学生结论,而是要通过学习活动,培养学生的动手能力,遇到问题努力求证的科学精神,和同学合作交流的能力,归纳推理判断的能力。我认为这节课还可以放手更多一些,采取小组合作学习的方式,让学生去实验求证结论。在相互的争辩中明晰概念。
新的课程标准要求教师要根据孩子已经具有的知识和生活经验,对受教育者进行有目的'启发和引导,把学生的好奇心转化为求知欲,逐步形成稳定的学习数学的兴趣。教师要在课堂上以与生活密切联系的素材来激起学生对数学本身的浓厚兴趣,通过学生自主探索活动,让学生获得成功的体验,增进学生学好数学会用数学的信心。通过课堂上学生的表现,我们看出,学生有独立探索的精神,也有去证明求知的能力,我们要的只是信任他们,设计好实验方案,做好组织,让学生的操作、讨论、练习等活动有条有理。真正让学生成为学习的主人。
《三角形内角和》数学教学反思 篇6
本节课的内容一般作为讲授内容,只要告诉学生三角形的内角和是180度,学生记住结论教学即可完成。问题是通过这个内容的教学,我们要达到什么样的教学目标?为了达到更高的目标我把本节课定为活动课,让学生在玩中学,并从中学会学习知识的科学方法。
课的一开始我就由两个大小不同的三角形在争论谁的内角和大入手。在学生的认知结构中,对于这场争论的结果是什么已经没有悬念了,但这样的争论会引发他们思考,为什么不同的三角形内角和会一样?是不是所有的三角形内角和都一样?这也正是我本节课要与学生共同研究的问题。这时学生想说为什么又不知怎么说,又因不知道怎么说而感情特别激动。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我让他们将课前准备好的三角形拿出来进行研究,体现学生的主体意识与参与意识。当学生通过折一折、拼一拼、撕一撕、画一画之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。有的学生将三角形的三个角都撕下来拼接到一起,有的同学将三角形的三个角沿着三角形的中位线拼在一起。当孩子们正愉悦于自己的发现时,我适时提出:四边形的内角和是多少呢?五边形的内角和是多少呢?……N边形的内角和是多少呢?孩子们求知的欲望再一次被激发,专注的研究着……当我进行提问时,还没有研究出方法的小组成员是那么用心的倾听其他同学的发言。当有的同学说要将多边形分割成学过的三角形进行研究时,他们发出赞叹的声音。于是我们进一步研究求多边形内角和的方法,他们从中体会到了探索的乐趣与成功的兴奋;于是孩子们又发现多边形外角和的`奇妙之处,真是万种变化定在其中。
这节课下课后我自己都有一点兴奋,因为我的孩子给了我意外的惊喜。但试想一下,如果我上课之初,就告诉孩子三角形的内角和为180°,并且告诉孩子我的验证方法,即便告诉的方法再多,再详细,他们学到的也只是我的有限的方法,而且是老师的方法,不是自己发现的方法。但换一种教学方式,孩子们不但找到了所有我知道的方法,也找到了我意想不到的方法,我们大家在研究中都是受益者。也许没有什么比这更让人兴奋的了。
《三角形内角和》数学教学反思 篇7
在学习本节课之前,几乎每个同学都知道三角形的内角和是180°。所以,本节课的重点我放在:证实三角形的内角和是180°以及运用三角形内角和的知识解决基本的实际问题。
在教学过程中,我依然重视学生之间和小组之间的合作、交流,让学生们都去折一折,剪一剪,拼一拼,自己动手感受三个角拼在一起可以形成一个平角,进而证实任何三角形的内角和都是180°。这个过程非常重要,学生们在实际的操作过程中,可以进一步加深对三角形内角和180°的理解和认知。让学生自主的实验、探索,调动学生的主动性,参与到数学的活动中去!
并且,在剪的过程中,我演示了三种不同三角形的拼凑结果,进一步证实,无论任何的三角形,部分形状和大小,内角和都是180°。
现在反思一下,课堂中自然有很多好的地方,学生学习的积极性也很高,但是也有一些不如意的地方,比如在剪一剪的`过程中,有的同学因为没有剪刀,没有真诚的去操作,还有一两个个别的学生在演示的时候没有演示好。
还有的同学,在剪之前,没有做好标记,导致剪完之后,找不到哪个是原来三角形的角,这个是我没有预见到的,因此我在第二个班级上课的时候,就提前让学生们在三个角上面做了标注,这样就不会再出现那样的混乱。
另外,学生在反馈学习效果时,没有做到我想象中那样好的顺序,以及很好的语言表达能力,不过,我做到了不慌不忙,让学生对学生进行纠正和帮助,课堂的气氛和交流还是很好的。
因为学生基本的互相交流、讨论和总结的能力有了一定的提高,接下来,我会进一步的放手,把课堂一步步的再去还给学生,给学生更多的独立学习和独立思考的时间和空间,充分的调动学生自学的能动性!
《三角形内角和》数学教学反思 篇8
1、情境的创设
课伊开始让学生猜角游戏,这时学生对三角形的三个角的关系产生好奇。引发他们探究的`欲望。再从他们熟悉的三角板出发,联系他们以有的知识说说,感觉一下。从而很快的进入新课。
2、引导独立思考和合作交流
独立思考是合作交流的前提,经过独立思考的合作才是有效的合作。在想办法求三角形内角和这一核心问题时,先给学生独立思考的时间,再通过小组合作,剪一剪,折一折,拼一拼等方法去探求三角形内角和的秘密。这样学生在动手,动脑,动口的过程中全员参与学习过程,经历知识形成的过程。
《三角形内角和》数学教学反思 篇9
本着新课程标准所提倡的:“经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。”的学习理念,我设计了《三角形内角和》的教学设计。
一、激发了学生探究知识的欲望。
根据教学内容和学生实际,我精心设计开头导语,不仅复习了三角形的相关知识,为接下来的学习做好准备,而且创设情境让学生感觉三角形就是自己的朋友,由此来激发学生的学习兴趣,让学生主动地投入学习。在了解了内角,内角和的概念之后,鼓励学生对内角和大胆质疑,猜想内角和是多少度,这些环节的设计都极大的激发了学生探究的欲望,学生以浓厚的兴趣投入到接下来的探究之中。
二、动手操作,自主探究。
任何一项科学研究都要经历从猜想到验证的过程。“是否任何三角形内角和都是180°”,这个猜想如何验证?教学中我引导学生通过量一量、拼一拼、折一折等操作活动,通过小组合作交流,让学生自主完成从特殊到一般的研究过程,学生自然获得成功的.体验。
三、教师的语言具有激励性。
整堂课中,教师始终以饱满的激情投入,语言具有鼓励性,充分肯定了学生探索的点滴成果,让学生充分感受到学习的乐趣。
四、多媒体课件的使用比较成功。
本节课的多媒体课件直观形象的展示了验证过程,突出了教学重点。相关链接环节中多媒体的运用则进一步提升了学生学数学的兴趣,激发了学生热爱科学,探究科学的欲望。全课结束时,学生有意犹未尽之感。
不足之处:
各环节与教材的安排基本同步,按部就班也暴露了教师统得过死,导的过死的缺点,给人牵着学生鼻子走的感觉。整堂课没有完全交给学生,学生的自主性体现的不是特别充分。如,在学生猜想之后应该马上放手让学生用自己的方法验证,或量,或折,或撕......从而体现学生自己的创见性。以后的课中要引以为戒。
《三角形内角和》数学教学反思 篇10
“三角形内角和”是北师大版数学四年级下册第二单元认识图形的一节探索与发现课,使学生在学习了三角形的特征、高以及三角形分类的基础上,进一步研究三角形三个角的关系。根据教学目标和学生掌握知识的情况,课堂上我围绕以下几点去完成教学目标:
一、创设情境,营造研究氛围。
怎样提供一个良好的研究平台,使学生有兴趣去研究三角形内角的和呢?为此我抛出大、小两个三角形争吵的情境,让学生评判谁说的对?为什么争吵?导入课引出研究问题。“三角形的内角指的是什么?”“三角形的内角和是多少?”激发学生求知的欲望,引起探究活动。我在导入“研究三角形内角和”时,没有按课前设计的进行,学生直接说出“三角形的内角和是180°”。而我本身却没有顺势进行引导,直接抛出“研究三角形内角和”这一任务,更巧妙的是借此机会鼓励学生,以“验证三角形内角和是不是1800”入手。这一处成为本节课最大的失误。
二、小组合作,自主探究。
“是否任何三角形内角和都是180°”,如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。例如,有些小组的学生量出内角和的度数要高于180°或低于180°,先让学生说一下有哪些因素会影响到研究结果的准确性。
三、练习设计,由易到难。
研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形两个内角的度数,求另一个角。第二层练习是判断题,让学生应用结论检验语言的严密性。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的'内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。
四、教学中存在不足。
在教学中,由于我对学生了解的不够充分,没有很好的电动学生发言的积极性,另外的原因是教师本身语言枯燥,过渡语设计的不够精彩,也影响了学生的学习兴趣,以后应引起重视。在设计教案时要了解学生,深入教材,精心设计。
《三角形内角和》数学教学反思 篇11
本节课我通过生动活泼的多媒体课件和学生们一起探讨三角形的内角和是180°这一规律并运用这一规律解决实际问题。课件中不仅有动画而且插入音频,激发学生的学习兴趣,开阔学生的眼界,调动他们学习的激情。
首先课件演示三种不同的三角形在争吵,(学生录音,把每个三角形说的话录下放入课件中)让学生判断他们在争吵什么,引入本节课内容。这样可以使学生的眼睛一亮,耳朵受到刺激,吸引珠学生们的注意力,很巧妙就把学生带到课堂上,激发他们的学习兴趣。
再次让学生观察每把三角尺的内角和内角和,以及用两个一样的三角尺拼成一大三角形,它的内角和内角和是多少,利用身边的学具材料猜想是不是所有的三角形内角和都是180°呢?提出问题,提出质疑,学生带着问题和质疑进行小组合作探究。合作探究时同桌两人一组测量三角形的内角以及计算三角形的内角和,并抽查小组上台把合作探究结果输入电脑表格一便统计和观察。但是由于需要帮助学生输入电脑,不能对每组学生的测量进行指导及询问,很多学生是运用180度这个结论来量的,不过还是有一组学生测量后得出结论是189°,有了误差。下面我就引导学生哪个角是180°,以致学生提出把三角形的三个内角撕下来看看能否拼成一平角,,师生共同撕拼一个任意的三角形,撕拼过程中学生不知如何下手我对学生进行辅导。但是有时间的有限,不能让所学生都亲自感受一下这一撕拼的过程。但是课件上我运用动画演示,学生可以亲眼看到这一过程。
课堂练习我是通过一个游戏“挑战不可能”巩固三角形的内角和是180°这一规律,运用课件展示了练习题的多样化,层次化,有易到难,并运用一些可爱的图片吸引学生的注意力。会后有主角“三角形”(音频)出题带到“荣誉殿堂”。游戏是孩子都喜欢,在课堂上设计一些游戏环节可以激起孩子的活力,调动他们高涨的情趣。但是我觉得这节课我设计的这个游戏只激起部分孩子的兴趣,如果把这个游戏设计成小组比赛或者男女比赛,看谁最终进入“荣誉殿堂”更激发学生的激情。
总之,本节课我和学生完成的教学目标,学生也能感受到课件不仅能播放图片,而且可以播放音频、动画。通过这节课我深刻体会到运用多媒体教学的.优势,可以开阔学生眼界,刺激学生的各种感官,激发他们的学习兴趣,同时也使教学重点难点可以清晰的展示给学生,可以增大课堂的容量。在今后的教学中,我会是自己不断提升自己的教学水平,多学习和运用信息技术手段改善自己的教学方式,以致提高学生课堂上的学习效率!
《三角形内角和》数学教学反思 篇12
一、设计思路:
这节课是上“三角形内角和”,因为学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出一块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°,再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。
二、教学反思
这篇教学设计通过施教,符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的'三角形的内角和是不是也是180,过渡自然且有吸引力。
但在学习活动的过程中,首先我觉得语言不够生动、连贯,声音也很小。其次,学生在进行操作活动前,我也没有明确说明操作方法,使学生不理解操作的用意,也没有让学生在操作中真正证实“三角形的内角和是180°”的结论。最后,对三角形内角和的归纳也没有完整,等等
总之,在这节课中存在着很多不足,今后我将花更多的时间在课堂教学方法、策略的研究上,使自己不断进步。
《三角形内角和》数学教学反思 篇13
有许多内容我们教过多次,但如何教教学效果更好,值得我们不断地去探索。
学习了《三角形的内角和》一课,回想一下,有许多想法:三角形的内角和为180°这一结论学生在小学就已经知道,只不过那时是通过度量得出来的。因此这一结论的证明思路和方法成为本节课的重点。
如何证明这一结论,是小组合作学习的契机。在上新课之前,我事先让每个学生剪好了一个三角形,这样,就可以让学生通过小组合作交流的方式来验证。教学中,让学生把三角形的任意两个角剪下来,把三个内角拼合在一起,会得到一个180°的角。在这一过程中,学生很快进入状态,积极性较高。并且有的小组整出了多种拼合方法,还有一个小组通过折叠的方式来验证,我都及时给予肯定。接下来让学生把得到的图形画在练习本上,从中有没有受到启发,探索出证明思路。这一过程中,有些同学能拼出但画不出图形,导致了找不出证明的方法。下一步在证明的时候,有的.同学能说出理由,但写的时候无从下手。说明学生不论是在逻辑思维方面还是几何语言方面的表达上都存在着相当大的困难。在后续的学习中需要慢慢培养学生这方面的能力。
教学有法,教无定法,学生能学会的方法就是好方法。
《三角形内角和》数学教学反思 篇14
我所讲的课题是“三角形内角和定理的证明”。我认为本节的重点是通过证明三角形的内角定理让学生感悟出辅助线的做法。
我的导入市让学生感受一些动手操作实验中误差,从而进一步认识到证明的必要性,引出本节所要研究的课题“三角形的内角和定理”,这个定理我们在初一的时候就已经学会运用了,但是这个定理到底如何证明呢?这时,本节的目标就已经明确下来了——三角形内角和定了的证明。证明的过程中,我通过课前准备好的三角形道具,让我的学生通过撕撕拼拼的方法,把三角形的.三个内角拼成我们所熟悉的平角或者是同旁内角的关系,那么这个定理的证明过程就完全展示出来了,然后师生共同把我们自己的做法转化成准确的数学语言加以证明,在证明的过程之中,辅助线就自然而然的运用到其中。这时,本节的重点和难点也就自然而然地被突破,要让学生感觉辅助线不是由老师强加告之而明白证明的方法,而是由学生自己在拼图的过程中亲身感悟出来的知识。
课后我认为本节中的成功之处有以下几点
1、引入简单精炼,给了全体学生的自信心,能使所以学生的注意力迅速地集中到课堂上来;
2、利用拼图的方法来找到“三角形内角和定理”的证明方法的过程中,学生充分地配合,学生的思维得到了最大限度的发挥,而且采用此种方法来引出辅助线在几何中应用,巧妙地分散了本节的重点和难点,事实也证明学生的接受程度很好;
3、教师在多媒体上展示每个三角形都是用三种不同颜色的彩纸拼成的,学生在学习的过程中看起来会更加的清晰、醒目;
4、在本节“三角形内角和定理”的应用阶段,我设置了“你来讲”题目,而且此类题目的要求是哪位同学想尝试一下,等学生站起来准备好之后,教师再把题目投影出来,不仅要锻炼学生的思维速度,而且也间接地培养了学生的临考能力,同时得到结果后要为同学们讲解本题的解法。我个人认为,给同学们讲题目的过程中收获是更多的。
5、在本节课的整个流程中,师生之间的配合非常地默契,教师能够关注每一个学生,学生的思维也在短短的45分钟内得到了充分地发散和发挥,通堂的气氛活跃、轻松。
课后我认为本节课中的不足之处:
1、在学生拼图寻求“三角形内角和定理”证明之前的铺垫,有些过快,导致个别学生不太明白这些铺垫对于利用拼图来证明定理时有什么用途;
2、不完全相信学生的能力,比如在学生讨论拼图方法后,让学生到黑板上来展示作品的时候,我似乎不敢距离学生太远,恐怕中间会出现什么差错。而实践证明学生完全是通过自己来完成作品的展示的;
3、还是没有改掉急躁的毛病,一些问题还是急于说出答案,没有给学生们足够的思考时间,这是其一。其二,教师讲得过多,没有给学生充足的自主权,没有把课堂还给学生。针对自己的优点和缺点,在以后的教学工作中要注意积累和进步。
《三角形内角和》数学教学反思 篇15
《课程标准》倡导探究性学习,力图改变学生的学习方式,引导学生主动参与、乐于探究、勤于动手,逐步培养学生收集和处理科学信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流与合作的能力等,突出创新精神和实践能力的培养。探究三角形内角和的过程的时候,我注意鼓励学生通过动手操作、小组合作的方法去探究,并利用多媒体去验证学生的结论,最终得到三角形的内角和都是180°。
给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。“为什么不能画出有两个直角的三角形?三角形的内角度数有何奥秘?”这正是小组合作的契机。通过小组内交流,让学生在小组内完成从特殊到一般的研究过程。教师引导学生通过测量、剪拼、折拼等实际操作,建立解决问题的目标意识,形成学习的氛围,给学生更多的自主学习、合作学习的机会,促进学生的主体参与意识。在此基础上,教师通过多媒体动画演示,让学生更直观、更清晰地观察到剪拼、折拼的过程,进一步验证探究结论。同学们通过自主实践、合作探究完成了本节课的教学任务。
整节课的练习设计,由易到难。在应用“三角形内角和是180°”这一结论时,第一、二层练习是已知三角形两个内角的'度数,求另一个角和简单的判断题。第三层练习是求特殊三角形内角的度数,真正做到了三角形内角和知识与三角形特点的有机结合。
在实际教学中,我多次利用超级画板、flash动画,从开始的激趣引入、观察猜想,到后来的数据验证,多媒体在整个教学中起到了不可忽视的辅助作用。另外,参与学生的探究活动是我教学的一大特点,询问、点拨、交流,使学生都能积极参与到合作学习之中,更好地完成教学任务。同时我也发现,学生在合作探究中的组织如合理分工、有效合作等方面不够科学合理,还需更具体的指导,以使每位学生都能真正参与,让合作探究更有效。
《三角形内角和》数学教学反思 篇16
本节课的教学目标是:
1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重、难点是
让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
本节课教学设计符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的'探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,学生思维活跃,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。
在学习活动的过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,最后的游戏也很有趣味性,调动所有学生的积极性。让学生在游戏中除疲倦激发兴趣,拓展学生思维。
本课的不足之处是习题的设计受课本资源的限制,没有大胆突破教材,充分利用生活资源。让学生利用学过的知识解决生活中常出现的问题,更能使学生体会到数学不仅来源于生活,学习数学的目的更是为了解决生活中的问题,体会到学习数学的重要意义。
在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。
《三角形内角和》数学教学反思 篇17
新课标提出“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。
要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法、学习水平和情感态度,促使学生向着预定的目标发展的作用”。
根据这一教学理念来设计这堂课。引导学生小组合作,出示不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的`三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。
总之,在上课的过程中,给了我学习的机会,在今后教学过程中该如何预设好每一环节,如何说好每一句话,让自己的课堂效率更高。
《三角形内角和》数学教学反思 篇18
课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程中进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。
这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。
这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。让学生“量一量”、“剪—拼”、贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。
在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;
第二,经过操作得到什么结论。学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。
本节课不足之处:
1、学生在还没学习三角形的特性和三角形三边的关系及三角形的内角和的.基础上进行学习三角形内角和。就无法复习三角形的有关知识。
2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我改成这样,先让两个学生说,说完让一个学生指出来,让他用黑色水笔画出来。为验证三角形内是180度做铺垫。
3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。
4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。
5、练习设计是有分层次,但是学生说的较少,我比较急地去分析,留给学生的时间不足,这是我今后要特别注意的一个方面。
本节课我引导学生用测量或剪拼的方法探究三角形的内角和。并会运用三角形的内角和解决实际问题,但整堂课引导的比较急躁,今后我要朝着更加完美的方向努力,我愿意锻炼和改变自己。
《三角形内角和》数学教学反思 篇19
《三角形的内角和》在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。让学生猜测-质疑-验证得出“三角形的内角和等于180°”,引导学生观察、实验、猜测,逐步培养学生的逻辑推理能力。
爱因斯坦说过:“问题的提出往往比解答问题更重要”,上课开始,我通过观察长方形的内角和连接对角线把它分成两个直角三角形让学生猜测三角形的内角和是180°,然后质疑:那是不是所有的三角形的内角和都是180°呢?这个问题一抛出去马上激发学生的学习
热情。接着就让学生来验证三角形的.内角和。验证过程分两部分来进行,先通过量一量、算一算的方法让学生验证各类三角形的内角和,一是加深对三角形内角和的理解就是三个内角的度数之和,二是让学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,没有以小组的形式展示,给学生交流的空间太小没有达到小组合作的真正目的。再让学生通过拼一拼、折一折的方法来发现各类三角形的三
个内角都可以拼成一个平角,从而得出三角形的内角和的确是180°的结论。汇报展示这个环节只是口头叙述的形式描述验证的结果,若先还原原图,再展示验证过程与结果效果更佳。
探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。第一层练习是已知三角形两个内角度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层是解决多种类型三角形的内角问题,有等边三角形、等腰三角形、直角三角形,根据自身特点来解决问题。
本节课我采用逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
《三角形内角和》数学教学反思 篇20
在学校教学示范课上,讲了《三角形的内角和》一课。整节课还算比较顺利,在课堂是完成了教学目标,并且体现了小组合作学习的探究的过程。现在总结一下课堂上的几点不足:
1、学生小组合作学习的能力还有待于进一步培养
在课堂教学的重点过程中,我设计的是小组合作探究,“先讨论有几种验证方法,再分别选择不同的方法验证,验证后在小组内交流”这样的目的是为了在尽量短的时间内使学生通过不同的验证方法得出共同的的结论,在交流的.过程中学生能够清晰的观察到不同的验证方法,这样一个人的验证过程就成了几个人人学习成果。既节省了时间,又能让学生接受到尽量多的信息。但是学生们的表现却不令人满意,也许是公开课学生放不开的原因,他们只是各自验证完了和同桌交流一下,完全没有以往在班级里那种热烈讨论的气氛。虽然我在后面的学习汇报过程中使用了投影仪展示,但还是不如学生小组内交流更直接。因此,我这一设计的目的效果不理想。
2、我本身驾驭课堂的能力还有待于提高
由于在试讲的过程中我设计的最后一个练习题没有完成,而这一道题又是这堂课教学内容一个升华,因此我想尽量完成。在课堂教学的过程中我尽量控制时间,由于过于注意时间,导致了在学生用投影仪演示完后,为了更清晰的演示折、拼的过程的动画忘了播放,影响了又一个给学生直观展示的机会。这一问题的出现我觉得是我自身驾驭课堂的能力还不够,有待于进一步提高。
《三角形内角和》数学教学反思 篇21
我执教的《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《多边形的内角和》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习和掌握三角形的内角和是180°这一规律具有重要意义。
一、创设情境,营造探究氛围。
怎样提供一个良好的探究平台,使学生有兴趣去研究三角形内角的和呢?爱因斯坦说过:“问题的提出往往比解答问题更重要”,因此这节课在复习旧知“三角形的特征”后,我引出了研究问题“三角形的内角指的是什么?”“三角形的内角和是多少?”“你猜三角形的内角和是多少度?你是怎么猜的'?这个问题一抛出去马上激发学生的学习热情。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。
二、操作验证,突破重难点,积累数学活动经验。
《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我觉得本课的重点就是要让他们知道“知其所以然”,因此接着就让学生分组讨论:有什么办法可以验证得出这样的结论。学生会提出度量、折一折的方法,然后让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法或者用折一折的方法,通过小组合作交流,让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的合作探究精神,有意识地培养学生逻辑推理能力,增强了语言表达能力,并潜移默化中渗透了一个重要数学思想―――转化思想。
在猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。
三、练习设计,由易到难
研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是基础练习题:已知三角形中两个内角的度数,求另一个角;已知一个角的度数(等腰三角形中顶角或底角的度数),让学生应用结论求另外的一个内角的度数;一个角的度数都不交代,给出三角形的特征(等边三角形),求这个三角形每个角的度数。第二层练习是让学生用学过的知识解决生活中实际问题的内角度数。第三层练习是拓展深化练习,让学生运用已有经验去判断思索,如:“大三角形的内角和比小三角的内角和大”对吗?“你能画出两个直角三角形吗?为什么?等问题。体现习题设计的坡度性与层次性,让不同的学生都各有所收获,关注了学生差异问题。
四、教学中存在不足
在教学中,由于我对学生了解的不够充分,让学生自己想其它的验证方法,难度较大,浪费了大量时间,拖课了。因此在设计教案时要深入了解学生,反复研究切合实际的教学设计,这是我在以后的备课中要注重的地方。
《三角形内角和》数学教学反思 篇22
《三角形的内角和》是青岛版数学四年级下册第四单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
一、创设情境,营造探究氛围。
怎样提供一个良好的探究平台,使学生有兴趣去研究三角形内角的和呢?这节课在复习旧知“三角形的特征”后,我引出了研究问题“三角形的内角指的是什么?”“三角形的内角和是多少?”。而画一个有两个内角是直角的.三角形却无法画出这一问题的出现,使学生萌生了想了解其中奥秘的想法,激发了学生探究新知的欲望。由于学生对三角尺上每个角的度数比较熟悉,新知的探究就从这里入手。我先让学生分别算出每块三角尺三个内角的和都是180°,由此引发学生的猜想:其它三角形的内角和也是180°吗?
二、小组合作,自主探究。
“是否任何三角形的内角和都是180°呢?”,我趁势引导学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折、算一算。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。
三、练习设计,由易到难。
探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角或一个内角的度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决四边形、六边形的内角和,使学生的思维得到拓展。这些练习顾及到了智力水平不同的学生,形式上具有趣味性,激发了学生主动解题的积极性。
这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。
《三角形内角和》数学教学反思 篇23
《三角形的内角和》教材是先让学生通过计算三角尺得个内角的度数和,激发学生好奇心,进而引发学生猜想:其他三角形的内角和也是180度吗?再通过组织操作活动验证猜想,得出结论。根据这样的教材安排,本课的重点也就应放在“三角形内角和是180度”的探索上,让学生在探索中深入理解得出过程。针对教材的如此安排,我也设计了如下的开放的`课堂预设:
验证过程
1、要知道我们猜测的是否正确,你有什么办法验证呢?
先独立思考,有想法了在小组里交流。
学生交流想法:
生一:我们组根据刚才三角板的内角和是三个角的度数加起来得出的,所以,我们就用量角器量出了三个角的度数,再加起来。
学生说出了测量的度数相加,虽然不是很精确180度,量的过程中有点误差,得到了在180度左右。
生二:我们组是把锐角三角形的三个角跟书上一样去折,折在一起发现正好是个平角,所以我们发现锐角三角形内角和也是180度。(及时表扬了能主动预习的好习惯。)
生三:我们组把钝角三角形跟刚才一组一样,折在一起,发现也能拼成一个平角,所以钝角三角形的内角和也是180度。
生四:我们组研究的是直角三角形,跟上面两组的同学一样折在一起,三个角拼起来也是一个平角,所以直角三角形的内角和也是180度。
生五:我们也是折的,但我们没有把三个角折在一起,而是把两个小的角折到直角那里发现两个锐角合起来正好与直角三角形的直角重合,图形也就成了一个长方形,两个锐角的和是90度再加个直角也就是180度。
也有同学提出了采用了减下角再拼的方法。
以上这个小片段,虽然在孩子们表述中没这么流利,完整,但却是他们最真实的发现,这堂课上下来,感觉收获很大。
自己感觉这节课的设计上把握了学生学习起点与心理,遵循了教材让学生先猜想再验证的思路,从学生已有的知识背景出发,为他们提供了重复粉从事数学活动的时间和交流机会。学生思考着,讨论着,交流着,感悟着,在这一过程中,学生不仅掌握了知识,寻求到了解决问题的方法,更重要的是在交流中,学生的语言表达能力也得到了很大的增强。
《三角形内角和》数学教学反思 篇24
今天讲解的《三角形内角和》一课,是在四年级上学期《角》的单元教学基础上进行教学的,在《角》的单元教学中就已经涉及到了三角形内角和,学生对其有了初步的了解,这学期在原有的基础上进一步继续学习有关知识。
首先,在教学中我对三角形的分类进行了复习,通过让学生们对原有认知的回忆,为新课的学习做好铺垫。进而讲解内角和内角和的定义,再复习平角的概念,在此基础上,先出示长方形和正方形,让学生算它们的内角和,接着出示一个长方形,用剪刀沿一条对角线剪开,把平行四边形分成两个三角形,再让学生们讨论三角形的内角和又是多少?根据刚才的计算,学生很快反应过来说,是180度,因为360o÷2=180o。通过这一设计,使学生对三角形的内角和有了初步的认识,随后我就跟着提出问题:是不是所有的三角形的三个内角和一定是180呢?从而给学生指出了本节课探究学习的目标。
然后让学生先测量计算自己手中三角板的内角和,再一次初步得出三角形的内角和是180度这一结论。这时引导学生思考,这一结论是否具有普遍性,有的学生会提出结论不具有普遍性,因为三角板很特殊,不能代表所有的三角形,结论还不能成立,这样就让课堂教学到达了最关键的阶段。我给每个小组任意分发了一个锐角三角形、直角三角形和钝角三角形,让学生们自己动手测量计算,然后再总结结论。虽然这一教学环节中有个别学生对量角器的使用方法有遗忘或测量有差错,对教学的时间和效率有一定的影响,但多数同学的测量计算结果是正确的,同时通过教师的纠正点拨使全体同学都掌握了正确的测量方法,培养了学生的实际动手操作能力,激发了学生的学习兴趣。
在测量时,同学们气氛活跃都争先恐后的进行测量计算,所有学生都特别积极,他们有的为了测量的误差而争论的面红耳赤,有的同学也为自己精确测量而兴高采烈,在测量过程中,学生们不仅复习了用量角器量角的方法,更是验证总结出了三角形的内角和等于180度。在愉悦的教学过程中,使教学一气呵成,分散了教学难点,突出了教学重点,加深了学生对本节课知识的掌握和理解,取得了较好的教学效果。
想不到我设计的一个小小的动手操作教学,竟然调动了学生的学习积极性,激发了学生的学习兴趣,对本节课的教学产生了不可估计的效果,不仅点燃了他们求知的欲望,更激发了他们特有的童趣,让整个数学课堂散发着一种催人奋进的`热情,使数学课活了起来,知识动了起来,学生们的脑筋更是转了起来,课堂效率也升了起来。通过这节课的教学,不仅让我感受了教学中创造的“意外”精彩,同时也引起了我深深地思考,作为四年级的学生,他们活泼好动,天真可爱,求知欲强,如果在课堂教学中让他们多多的参与一些动手操作,既培养了学生的实际动手操作能力,又调动了学生的学习积极性,让学生在活跃的课堂氛围中学习知识,利于加深学生的记忆,更好的掌握和理解所学知识。
通过这节课的教学,让我有了新的发现,相同的知识,不同的教法,效果也不相同。同时也使我认识到在学生的身上隐藏着许多“宝藏”,只要我们善于寻找和发现,这些“宝藏”将会给我们带来无限的财富。
《三角形内角和》数学教学反思 篇25
三角形内角和等于180,对于大多数同学来说并不是新知识。因为在此之前同学们已经运用过这一知识。因此,我觉得这一堂课的重点不是让学生记住这一知识点,也不是怎样运用它去解决问题,而是让学生证明这一结论,即要让学生亲历探索过程并在探索中验证。
1、以疑激思
古人云:学起于思,思源于疑。因此,要激发学生的思维,让学生主动探索。学生的积极思维往往是由问题开始的,在解决问题中得到发展。因此,在课一开始,我便通过拟人化的对话情境:大三角形说我的内角和比你大!小三角形很不服气的说我的内角和比你大!接着抛出一个问题:到底哪个三角形的内角和大呢?为什么?你能证明吗?引起了学生的积极思考,并探索解决问题的方法。
2、以动启思
在教学中,通过丰富的材料让学生动手操作,通过量、撕拼、折拼等实验活动,让学生得到的'不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。
虽然,在教学中也还有一些不顺利的地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂可采用这样的方式展开教学是学生喜欢的也是有成效的。
《三角形内角和》数学教学反思 篇26
“合作探究,实验论证”生动地诠释了新教育的基本理念,本课新知识传授很好的把握三个环节。
一是学生独立思考,教师引导学生讨论验证方法,掌握要领。上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角的和是多少?初步让学生感知直角三角形的内角和是180,然后质疑:,这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180°呢?这个问题一提出去就激发学生的探究学习的热情。因此接着就让学生讨论:有什么办法可以验证得出这样的结论。学生提出度量、折一折、拼一拼等方法。
二是动手操作验证猜想。让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法或者用折一折的方法或者拼一拼的方法等等,通过小组合作交流,印证猜想,得出任意三角形的内角和是180°的结论。
三是进行总结强化了学生对结论的理解与记忆,激发学生探索知识的热情。科学验证了结果,让学生用简洁的语言总结结论:三角形的内角和是180°。
《三角形的内角和》是九年制义务教育人教版四年级下册第五章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一些活动得出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、猜测、实验,总结。逐步培养学生的逻辑推理能力.
“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。
本课的重点就是要让学生知道“知其然还要知其所以然”,所以在第二环节里。鼓励学生亲自动手操作验证猜想。为此,我设计了大量的操作活动:画一画、量一量、剪一剪、折一折、拼一拼、撕一撕等,我没有限定了具体的操作环节,但为了节省时间,让学生分组活动,感觉更利于我的目标落实。但在分组活动中,我更注意解决学生活动中遇到了问题的解决,比如说画,老师走入学生中指导要领,因此学生交上来画的作品也非常的漂亮。学生观察能力得到了培养。再比如说折,有的学生就是折不好,因为那第一折有一定的难度,它不仅要顶点和边的重合,其实还要折痕和边的平行,这个认识并不是每个学生都能达到的。教师也要走上前去点拨一下。再比如撕,如果事先没有标好具体的角,撕后就找不到要拼的角了……所以在限定的操作活动中,既体现了老师的“扶”又体现了老师的“放”。做到了“扶”而不死,“伴”而有度,“放”而不乱。我还制作了动画课件,更直观的'展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。在此环节增加了学生的合作探究精神培养。
在归纳总结环节,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力。
最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,我除了设计了一些基本的已知三角形二个内角求第三个角的练习题外,还设计了几道习题,第一道是已知一个三角形有二个锐角,你能判断出是什么三角形吗?通过这一问题的思考,使学生明白,任意三角形都有二个锐角,因此直角三角形的定义是有一个角是直角的三角形叫直角三角形;钝角三角形的定义是有一个钝角的三角形叫钝角三角形;而锐角三角形则必须是三个角都是锐角的三角形才是锐角三角形的道理。这道题有助于帮助学生解决三角形按角分的定义的理解。第二道题是一个三角形最大角是60°,它是什么三角形?通过对此题的研究,使学生发现判断是什么三角形主要看最大角的大小,如果最大角是锐角,也可以判断是锐角三角形。同时加深了学生对等边三角形的特点的认识和理解。第三题我拓展延伸到三角形外角,第四题我设计了多边形的内角和的探究。
《三角形内角和》数学教学反思 篇27
在课间我有意问了一下学生你们知不知道三角形的内角和是几度,发现有一些学生已经知道三角形三个内角的和是180°,因此在导入环节中插入了一个猜角游戏中,请量出自己准备的三角形的三个角的度数,只要你们说出其中两个角的度数,我能猜出第3个角的`度数,让生说我猜,要求用自己准备的三角形进行操作。有一部分学生已经能跟着我说出第三个角的度数。当时我并没有批评这些学生,而是采用了表扬的方式,学生很开心。
在接下来的实验验证环节中,那些知道三角形内角和是180°的学生就猜度数,而没有进行真正的实验验证,反倒是刚学到的学生真正做到用实验去验证“三角形的内角和中180°”。因此我一直在想,是不是能设计一些新的方式让已经知道三角形内角和是180°的学生也能真正参与到实验验证的环节中来。于是让学生请观察自己手中的三角板,问它们是什么三角形?你知道三角板三个内角的和是多少度吗?问学生发现了什么?
三角尺的三个内角和是180°。然后让学生撕下三角形的三个内角并把它们拼在一起和折三角形的三个内角,使它们正好折在一起,都能拼成一个平角,
最后拿出课前准备好的长方形、正方形,让学生自己想办法验证三角形内角和是180°。我个人认为学生通过亲自动手操作实验得出三角形内角和是180°,这样使他们大胆地想,学生课上注意力比较集中。教师也能在教学活动中从一个知识的传播者自觉转变为与学生一起发现问题、探讨问题、解决问题的组织者、引导者、合作者。
在“想想做做”第2题中,学生在还没有拼的时候先看了书,就猜拼出来的大三角形的内角和是360°,经过提醒“内角”的含义,学生才真正体会到“任何一个三角形的内角和都是180°”,不管这个三角形是大还是小。
《三角形内角和》数学教学反思 篇28
在教学《三角形的内角和》这一课时,为了达到本节的教学目标,我在教学中根据学生的认知特点,放开手让学生去自己验证三角形的内角和是多少。
上课前学生就已经知道三角形的内角和是180°,为了让学明白为什么是180°,激发了学生的学习兴趣。在讲“三角形的内角和”时,开始就由大小不同的三个角(锐角、直角、钝角)争论谁的角大入手,导出锐角三角形、直角三角形、钝角三角形争论谁的内角和大。对于这场争论的'结果是什么,会引发学生的思考,究竟哪个三角形的内角和大?这也正是我本节课要与学生共同研究的问题。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我及时揭示课题,提出学习目标,引导学生讨论学习方法。当学生通过量一量、拼一拼、折一折之后得出自己的结论时,他们体验了成功,也学会了学习。在这节课中师生互动交流,共同找到了几种验证三角形内角和是180°方法,很好地体现了师生的双边活动。试想,如果上课之初,我自己一味的的去告诉他们三角形的内角和为什么是180°,并且告诉他们探究方法,我想即便告诉的方法再多,再详细,他们学到的也只是有限的方法,而且是老师的方法,不是自己发现的方法。但换一种教学方式,孩子们不但找到了所有我知道的方法,也找到了我意想不到的方法,我们大家在研究中都是受益者。
为学生营造了探究的情境。学习知识的最佳途径是由学生自己去发现,因为通过学生自己发现的知识,学生理解的最深刻,最容易掌握。因此,在数学教学中,教师应提供给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。
《三角形内角和》数学教学反思 篇29
整节课通过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体现在以下几个方面:
1、精心设计学习活动,让每一个学生经历知识形成的过程。
为学生提供了丰富的结构化的学习材料,有各类的.三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作能力、推理归纳能力,实现学生对知识的主动建构。
2、立足长远,注重长效,不仅关注知识和能力目标的落实,更注重数学思想方法的渗透。
在验证三角形内角和是180度的过程中,有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习态度和探究精神。
3、遵循教材,不唯教材。
本节课上,延伸了教材,拓宽了学生的知识面,把学生的学习置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生积极向上的学习情感。
4、不足之处:
学生在折纸验证三角形的内角和后汇报时,学生的表达不够清楚,老师的引导不能及时跟进。再次教学中,要充分发挥学生的主体作用,适时地引导好学生思考,注重学生的实际操作,同时培养学生的语言表达能力。
【《三角形内角和》数学教学反思】相关文章:
三角形的内角和教学反思12-02
《三角形的内角和》教学反思03-03
三角形的内角和教学反思优秀03-03
《三角形的内角和》教学反思(15篇)03-11
《三角形的内角和》教学反思15篇03-11
《三角形的内角和》教学反思(集锦15篇)03-22
《三角形的内角和》教学反思(集合15篇)04-04
三角形内角和教学设计01-10
《三角形的内角和》教学设计09-02