当前位置:9136范文网>教育范文>教案>平行四边形教案

平行四边形教案

时间:2023-05-18 12:49:49 教案 我要投稿

【精华】平行四边形教案4篇

  作为一位无私奉献的人民教师,就有可能用到教案,教案是教学蓝图,可以有效提高教学效率。那么优秀的教案是什么样的呢?下面是小编为大家收集的平行四边形教案4篇,欢迎阅读,希望大家能够喜欢。

【精华】平行四边形教案4篇

平行四边形教案 篇1

  教学目标:

  1、认识平行四边形和梯形,探索平行四边形和梯形的特征及平行四边形的易变特征;

  2、在实际操作、想象验证中培养学生的空间想象能力;

  3、了解平行四边形、梯形、长方形、正方形之间关系,渗透事物间是互相联系着的辩证唯物主义观点。

  教学重点:理解平行四边形与梯形的特征。

  教学难点:四边形内各种图形间的关系。

  课前准备:自制课件1个、平行线胶片。

  板书设计:

  平行四边形梯形

  两组对边分别平行只有一组对边平行

  教学过程:

  一、准备

  师:前面我们学习了平行线,现在同学们动手在投影片上画一组平行线,好吗?

  提醒:线可以画得长一点,流畅一些!

  二、操作、反思

  1.操作(一)

  (1)想象。

  师:老师课前也画了一组平行线。如果把两组平行线相交,围成的会是一个怎样的图形,大家能先来想象一下吗?把你想到的图形画在纸上。

  [学生作图,教师有意识的巡视学生的作品]

  (2)交流。我们来交流一下,可以吗?

  要求学生介绍一下图形的明显特征。

  (3)验证。

  师:那么两组平行线相交,真能搭成这些图形吗?我们来验证一下,同桌合作,动手搭一搭,看看能不能成功?

  2、操作(二)

  (1)想象。

  师:接下来我们换换材料,好吗?还是两组线,一组仍是平行线,另一组是不平行的线,它们相交,围成的又会是什么图形呢?你能来画画吗?

  (学生想象作图)

  (2)交流。

  教师选择学生所作[看看能不能找到一个类似的作代表],同时出示与之对应的彩色图形,贴在磁板上。

  ……

  (3)验证。

  师:又有了各种各样的。我们请个同学上来搭一搭,帮我们验证一下!

  三、展开:

  1、分类

  (1)师:全面欣赏一下我们的成果。这么多图形,大家它们有没有相同的地方或不同的地方?

  (2)我们四人为一组,一起来找一找,看看哪个组发现得最多!

  ①(都有四条边,四个角,都是四边形,至少有一组对边平行)板书:四边形

  ②有直角和没直角的;

  ③有些是由两组平行线搭成的,有些是由一组平行线和一组不平行的线搭成的!能听明白吗?谁来给们解释一下!

  (3)根据这个特点,谁能上来把这些图形分分类。

  2、取名,进一步了解特征

  (1)师:(手指分类后平行四边形一列)这些四边形有什么特点?还有谁想说?(板书:两组对边分别平行)

  (2)谁能给这类图形取一个符合它特点名字吗?

  (板书:有两组对边分别平行的四边形叫做平行四边形)

  (3)师:(手指另一列)它们能叫平行四边形吗?为什么?

  师:这种特点的四边形,我们该叫它什么呢?

  3、生活应用

  (1)师:为什么有同学要称它们为梯形呢?

  (2)生活中你还在哪些东西上看到过平行四边形和梯形?

  学生举例后,教师投影相应的图片:比较美观、上窄下宽,非常稳定

  (3)出示实物图:这是校园的铁栅门。我们从上面能找到[平行四边形],用这样的'形状制造,有什么好处吗?老师这里有几个木架,我们来玩一玩,看能不能发现点什么?

  校园铁栅栏材料招标工作现在开始:各路图形,争先恐后,争相竞标。其中三角形和平行四边形的争夺尤其激烈。如果你是总务主任,会选择哪种材料呢?为什么?

  4、两组练习。下面我们做几个练习来巩固一下:

  (1)下图中哪些是平行四边形,哪些是梯形?同学们有没有问题?

  (2)我们曾经学过正方形是特殊的长方形。它们的关系可以这样表示!

  那么正方形、长方形和平行四边形这种特殊的关系又该怎么表示呢?

  可以用文字表达的!如果我们画图呢?

  四边形

  梯形

  平行四边形

  长方形

  正方形

  (3)判断下面的说法对吗?

  l一组对边平行的四边形,叫做梯形;

  l有两组对边平行的图形,都叫平行四边形;

  5、拓展:了解图形转换的内在联系[机动]

  师:让我们一起来做个数学游戏,进一步了解图形间的关系。

  (1)你能用撕一撕、拼一拼的方法把一个平行四边形转化成一个大小相等的长方形吗?

  (2)用撕一撕的方法,你能把一个平行四边形撕成两个完全相等的图形吗?

  ……

  投影学生的各种图形:

  小结:图形确实可以千变万化,再进一步深入研究我们能够发现它们之间还有着十分丰富的联系,有兴趣的话同学们可以在课后继续研究。

平行四边形教案 篇2

  一、实验目的

  验证互成角度的两个力合成时的平行四边形定则.

  二、实验原理

  如果使F1、F2的共同作用效果与另一个力F′的作用效果相同(橡皮条在某一方向伸长一定的长度),那么根据F1、F2用平行四边形定则求出的合力F,应与F′在实验误差允许范围内大小相等、方向相同.

  实验器材

  方木板一块、白纸、弹簧测力计(两只)、橡皮条、细绳套(两个)、三角板、刻度尺、图钉(几个)、细芯铅笔.

  三、实验步骤

  (一)、仪器的安装

  1.用图钉把白纸钉在水平桌面上的方木板上.并用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套.

  (二)、操作与记录

  2. 用两只弹簧测力计分别钩住细绳套,互成角度地 拉橡皮条,使橡皮条伸长到某一位置O,如图所示,记录两弹簧测力计的读数,用铅笔描下O点的位置及此时两细绳套的方向.

  3.只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下弹簧测力计的读数和细绳套的方向.

  (三)、作图及分析

  4.改变两个力F1与F2的大小和夹角,再重复实验两次.

  5.用铅笔和刻度尺从结点O沿两条细绳套方向画直线,按选定的标度作出这两只弹簧测力计的读数F1和F2的图示,并以F1和F2为邻边用刻度尺作平行四边形,过O点画平行四边形的对角线,此对角线即为合力F的图示.

  6.用刻度尺从O点按同样的标度沿记录的方向作出这只弹簧测力计的拉力F′的图示.

  7.比较一下,力F′与用平行四边形定则求出的合力F在误差范围内大小和方向上是否相同.

  四、注意事项

  1.位置不变:在同一次实验中,使橡皮条拉长时结点的位置一定要相同.

  2.角度合适:用两个弹簧测力计钩住细绳套互成角度地拉橡皮条时,其夹角不宜太小,也不宜太大,以60°~100°之间为宜.

  3.尽量减少误差

  (1)在合力不超出量程及在橡皮条弹性限度内的前提下,测量数据应尽量大一些.

  (2)细绳套应适当长一些,便于确定力的方向.不要直接沿细绳套方向画直线,应在细绳套两端画个投影点,去掉细绳套后,连直线确定力的方向.

  4.统一标度:在同一次实验中,画力的图示选定的标度要相同,并且要恰当选定标度,使力的图示稍大一些.

  五、误差分析

  本实验的误差除弹簧测力计本身的误差外,还主要来源于以下两个方面:

  1.读数误差

  减小读数误差的方法:弹簧测力计数据在允许的情况下,尽量大一些.读数时眼睛一定要正视,要按有效数字正确读数和记录.

  2.作图误差

  减小作图误差的方法:作图时两力的对边一定要平行,两个分力F1、F2间的夹角越大,用平行四边形作出的合力F的误差ΔF就越大,所以实验中不要把F1、F2间的夹角取得太大。

  例1、对实验原理误差分析及读数能力的考查:(1)某实验小组在探究合力的方法时,先将橡皮条的一端固定在水平木板上,另一端系上带有绳套的两根细绳.实验时,需要两次拉伸橡皮条,一次是通过两细绳用两个弹簧秤互成角度地拉橡皮条,另一次是用一个弹簧秤通过细绳拉橡皮条.实验对两次拉伸橡皮条的要求中,下列哪些说法是正确的_BD_______.(填字母代号)

  A.将橡皮条拉伸相同长度即可

  B.将橡皮条沿相同方向拉到相同长度

  C.将弹簧秤都拉伸到相同刻度

  D.将橡皮条和细绳的结点拉到相同位置

  (2)同学们在操作过程中有如下议论,其中对减小实验误差有益的说法是__AD______.(填字母代号)

  A.弹簧秤、细绳、橡皮条都应与木板平行

  B.两细绳之间的夹角越大越好

  C.用两弹簧秤同时拉细绳时两弹簧秤示数之差应尽可能大

  D.拉橡皮条的细绳要长些,标记同一细绳方向的两点要远些

  (3)弹簧测力计的指针如图所示,由图可知拉力的大小为__4.00____N.

  例2对实验操作过程的考察: 某同学在家中尝试验证平行四边形定则,他找到三条相同的橡皮筋(遵循胡克定律)和若干小重物,以及刻度尺、三角板、铅笔、细绳、白纸、钉子,设计了如下实验:将两条橡皮筋的一端分别挂在墙上的两个钉子A、B上,另一端与第三条橡皮筋连接,结点为O,将第三条橡皮筋的另一端通过细绳挂一重物,如图所示

  (1)为完成该实验,下述操作中必需的是___bcd _____.

  a.测量细绳的长度

  b.测量橡皮筋的原长

  c.测量悬挂重物后橡皮筋的长度

  d.记录悬挂重物后结点O的位置

  (2)钉子位置固定,欲利用现有器材,改变条件再次验证,可采用的方法是________改变重物质量______.

  例3:有同学利用如图2-3-4所示的装置来验证力的平行四边形定则:在竖直木板上铺有白纸,固定两个光滑的滑轮A和B,将绳子打一个结点O,每个钩码的重量相等,当系统达到平衡时,根据钩码个数读出三根绳子的拉力F1、F2和F3,回答下列问题:

  (1)改变钩码个数,实验能完成的是 (BCD )

  A.钩码的个数N1=N2=2,N3=4

  B.钩码的个数N1=N3=3,N2=4

  C.钩码的个数N1=N2=N3=4

  D.钩码的个数N1=3,N2=4,N3=5

  (2)在拆下钩码和绳子前,最重要的一个步骤是 ( A )

  A.标记结点O的位置,并记录OA、OB、OC三段绳子的方向

  B.量出OA、OB、OC三段绳子的长度

  C.用量角器量出三段绳子之间的夹角

  D.用天平测出钩码的质量

  (3)在作图时,你认为图中____甲____是正确的..(填“甲”或“乙”)

  当堂反馈:

  1、“验证力的平行四边形定则”的实验情况如图甲所示,其中A为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳.图乙是在白纸上根据实验结果画出的图.

  (1)如果没有操作失误,图乙中的F与F′两力中,方向一定沿AO方向的是___ F′_____.

  (2)本实验采用的科学方法是__B______.

  A.理想实验法 B.等效替代法 C.控制变量法 D.建立物理模型法

  2、某同学做“验证力的平行四边形定则”实验时,主要步骤是:

  A.在桌上放一块方木板,在方木板上铺一张白纸,用图钉把白纸钉在方木板上;

  B.用图钉把橡皮条的一端固定在板上的A点,在橡皮条的另一端拴上两条细绳,细绳的另一端系着绳套;

  C.用两个弹簧测力计分别钩住绳套,互成角度地拉橡皮条,使橡皮条伸长,结点到达某一位置O.记录下O点的位置,读出两个弹簧测力计的示数;

  D.按选好的标度,用铅笔和刻度尺作出两只弹簧测力计的拉力F1和F2的图示,并用平行四边形定则求出合力F;

  E.只用一只弹簧测力计,通过细绳套拉橡皮条使其伸长,读出弹簧测力计的示数,记下细绳的方向,按同一标度作出这个力F′的图示;

  F.比较F′和F的大小和方向,看它们是否相同,得出结论.

  上述步骤中:(1)有重要遗漏的步骤的序号是__C______和____E____;

  (2)遗漏的内容分别是________________________________________________________________________

平行四边形教案 篇3

  教学目标:

  (1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算平行四边形面积。

  (2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。

  (3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。

  教学重点:

  理解并掌握平行四边形的面积计算公式,并能用公式解决实际问题。

  教学难点:

  理解平行四边形的面积公式的推导过程。

  教具、学具准备:

  课件、长方形和平行四边形图片、剪刀、平行四边形框架等。

  教学过程:

  一、创设情境、导入新课。

  大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为平行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)

  你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那平行四边形的面积我们怎样求呢?这节课,我们就共同来探讨平行四边形的面积。(板书课题)

  出示长方形和平行四边形教具,引导学生观察后说一说长方形和平行四边形的各部分名称。长方形与平行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的.方式求平行四边形的面积呢?(课件演示)

  二、自主探究,合作验证

  探究一:用数方格的的方法探究平行四边形的面积。

  请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求平行四边形的面积,认真按提示填表。出示温馨提示:

  ①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。

  ② 填完表后,同学们相互议一议,并谈一谈发现。

  你是怎么数的?你有什么发现吗?能猜测一下平行四边形的面积公式是什么吗?(学生汇报)

  探究二:用割补的方法来验证猜测。

  小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出平行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)

  我们已经会求哪几种图形的面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把平行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)

  (1)用剪刀将平行四边形转化成我们学过的其他图形。(剪的次数越少越好。)

  (2)剪完后试一试能拼成什么图形?

  师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和平行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):

  回顾发现过程:

  1、把平行四边形转化成长方形后,( )没变。因为长方形的长等于平行四边形的( ),宽等于平行四边形的( ),所以平行四边形的面积=( ),用字母表示是( )

  2、求平行四边形的面积必须知道平行四边形的( ) 和( )。

  探究过程小结(板书)

  师:小刚和小明马上到校门前测量了长方形和平行四边形。得出:长方形的长是6米,宽是4米,平行四边形的底是6米,高是4米。

  然后他们手拉手找到老师说了一些话。你知道他们说了什么?

  生:长方形和平行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演)

  三、运用新知,练中发现

  1、基本练习

  (1)口算下面各平行四边形的面积

  A、底12米,高3米:

  B、高 4米,底9米;

  C、底36米,高1米

  通过这组练习,你有什么发现吗?(教学课件)

  发现一:发现面积相等的平行四边形,不一定等底等高。

  (2)画平行四边形比赛(大屏幕出示比赛规则)

  比赛规则:

  1、拿出百宝箱中的方格纸。在方格纸上的两条平行线间,画底为六个格(底固定),看能画出多少个平行四边形。

  2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)

  发现二:1.发现只要等底等高,平行四边形面积就一定相等。

  2.等底等高的平行四边形,形状不一定完全相同。

  四、总结收获,拓展延伸

  1、通过这节课的学习,你知道了什么?

  2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?

  大屏幕出示(教学课件演示)

  平行四边形,特点记心中。

  面积同样大,形状可不同。

  等底又等高,面积准相同。

  要是求面积,底高来相乘。

  (齐读) 希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。

  拓展延伸

  请大家看老师的演示。(用平行四边形框架演示由长方形拉成平行四边形)。如果把长方形拉成平行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。

  五、板书设计:

平行四边形教案 篇4

  【学习目标】

  1.能运用勾股定理解决生活中与直角三角形有关的问题;

  2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。

  3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值

  【学习重、难点】

  重点:勾股定理的应用

  难点:将实际问题转化为数学问题

  【新知预习】

  1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.

  【导学过程】

  一、情境创设

  欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?

  二、探索活动

  活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.

  活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?

  活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的'厂门?

  三、例题讲解:

  1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?

  2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?

  【反馈练习】

  1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;

  (2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;

  (3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.

  2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )

  A.20cm B.10cm C.14cm D.无法确定

  3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?

  【课后作业】P67 习题2.7 1、4题

  八年级数学竞赛辅导教案:由中点想到什么

  第十八讲 由中点想到什么

  线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:

  1.中线倍长;

  2.作直角三角形斜边中线;

  3.构造中位线;

  4.构造中心对称全等三角形等.

  熟悉以下基本图形,基本结论:

  例题求解

  【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .

  (“希望杯”邀请赛试题)

  思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.

  注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:

  (1)利用直角三角斜边中线定理;

  (2)运用中位线定理;

  (3)倍长(或折半)法.

  【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )

  A.AB=MN B.AB>MN C.AB

  (20xx年河北省初中数学创新与知识应用竞赛试题)

  思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点.

  【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC.

  (浙江省宁波市中考题)

  思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线.

  【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC).

  若(1)BD、CF分别是△ABC的内角平分线(如图2);

  (2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明.

  (20xx年黑龙江省中考题)

  思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础.

  注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用.

  【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE.

  (20xx年天津赛区试题)

  思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口.

  注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一.

  学历训练

  1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= .

  (20xx年广西中考题)

  2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数).

  (200l年山东省济南市中考题)

  3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 .

  4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm.

  (20xx年天津市中考题)

  5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( )

  A.40 B.48 C 50 D.56

  6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( )

  A.8cm D.7cm C. 6cm D.5cm

  7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( )

  A.不能确定 B.2 C. D. +1

  (20xx年浙江省宁波市中考题)

  8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题:

  ①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形;

  ②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形;

  ③若所得四边形MNPQ为矩形,则AC⊥BD;

  ④若所得四边形MNPQ为菱形,则AC=BD;

  ⑤若所得四边形MNPQ为矩形,则∠BAD=90°;

  ⑥若所得四边形MNPQ为菱形,则AB=AD.

  以上命题中,正确的是( )

  A.①② B.③④ C.③④⑤⑥ D.①②③④

  (20xx年江苏省苏州市中考题)

  9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE.

  (20xx年上海市中考题)

  10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点.

  11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F.

  (1)求证:EF=FB;

  (2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系.

  12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 .

  (20xx年四川省竞赛题)

  13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= .

  (重庆市竞赛题)

  1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号)

  15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( )

  A. B. C. D.

  16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( )

  A.1 D.2 C.3 D.

  17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( )

  A. B. C. D.

  18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF.

  (20xx年全国初中数学联赛试题)

  19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论.

  (山东省竞赛题)

  20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点.

  (1)求证:MB=MC;

  (2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论.

  (江苏省竞赛题)

  21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1.

  (1)求证AA1+ CCl = BB1 +DDl;

  (2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系?

【平行四边形教案】相关文章:

《平行四边形的判定》教案06-03

平行四边形的认识教案03-09

认识平行四边形教案03-05

平行四边形教案4篇05-13

《平行四边形面积的计算》教案09-14

精选平行四边形教案4篇05-16

精选平行四边形教案3篇05-18

《平行四边形的面积》教案(精选15篇)08-10

平行四边形面积计算的练习教案04-02

平行四边形教案合集10篇05-15