当前位置:9136范文网>教育范文>教案>平行四边形教案

平行四边形教案

时间:2023-05-22 12:02:00 教案 我要投稿

有关平行四边形教案范文集合九篇

  作为一名辛苦耕耘的教育工作者,通常需要用到教案来辅助教学,教案是保证教学取得成功、提高教学质量的基本条件。那么什么样的教案才是好的呢?下面是小编帮大家整理的平行四边形教案9篇,欢迎大家借鉴与参考,希望对大家有所帮助。

有关平行四边形教案范文集合九篇

平行四边形教案 篇1

  教材分析

  “平行四边形的面积”是本册书第五单元“多边形的面积的计算”第一小节的内容。前面学过了长方形和正方形的面积计算,平行四边形和三角形的特征及底和高的概念,几何图形的认识贯穿在整个小学数学教学中,并且是按照从易到难的顺序呈现的。所以,要使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,而且这部分知识的学习运用会为学生学习后面的三角形、梯形等平面图形的面积奠定良好的基础

  学情分析

  1. 学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。

  2. 但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

  教学目标

  1.知识与技能目标:了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。

  2.过程与方法目标:

  (1)通过操作、观察、讨论、比较活动,让学生初步认识图形转化来计算平行四边形面积的过程。

  (2)通过平行四边形面积公式推导过程的讲解,培养学生在动手操作、探索的过程中形成观察、分析、概括、推导能力,发展学生的空间观念。

  3.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。

  教学重点和难点

  重点:理解掌握平行四边形的面积计算公式,并能正确运用。

  难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

  教学过程

  (一)情境引入,以旧探新

  这是一幅街区图,上部是住宅小区,中部是街道,下部是学校的大门内外,图上的学校将是我们城关一小未来的面貌。为了使我们的学校变得更美丽,学校准备在大门前修建两个花坛,那要考虑什么实际问题呢?(修多大的花坛,也就是要计算它们的面积有多大)。(课件依次出现)

  这块花坛既不是长方形也不是正方形,如何求出这块地的面积?

  为了解决上面的问题我们必须知道如何计算一个平行四边形的面积,今天我们就来一起学习平行四边形的面积。(板书:平行四边形的面积)

  (二)自主探究

  方法一:用数方格的方法求平行四边形的面积

  以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(出示课前准备好的方格纸,每个方格按1㎡)

  1.用方格纸制作成的平行四边形放在边长是1米的方格中,数一数占几个方格(不满一格按半格计算)平行四边形的面积就是几平方米。这块空地的`面积是24平方米。

  根据这个例子,让同学将书本80页下面的表格补充完整,也会发现上面的规律!

  2.填表并讨论:用数方格的方法可以得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。

  (1)观察上表你发现了什么?(观察得出长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,它们的面积也相等,)

  (2)根据你的发现你能想到什么?(平行四边形的面积就等于底乘高)

  (三)动手操作,验证猜想,得出结论

  方法二:“割补”法:通过数方格我们发现这个平行四边形的面积等于底乘高,是不是所有平行四边形的面积都可以用底乘高来进行计算呢?这就是我们这节课要研究的中心内容:平行四边形面积的计算。

  1.提出假设:能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

  2.动手实验:(1)提出要求:请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。那样的话我们就能不用方格就可以算出平行四边形的面积了。(在操作过程中教会学生运用了一种重要的数学方法“转化”,就是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。)

  (2)学生实验操作,教师巡视指导。

  3.小组讨论:观察拼出来的长方形和原来的平行四边形你发现了什么?

  (1)平行四边形剪拼成长方形后,什么变了?什么没变?(形状变了,面积没变)

  (2)剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?(长与原来平行四边形的底相等,宽与原来平行四边形的高相等。)

  (3)剪拼成的长方形面积怎样计算?得出:(面积=长×宽)

  (4)平行四边形的面积公式怎样表示?为什么?(平行四边形的面积=底×高)

  4.全班交流推导公式:

  (1)谁愿意把你的转化方法说给大家听呢?请上台来交流!

  (2)有没有不同的剪拼方法?(继续请同学演示)。

  研究得出:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。

  (3)板书平行四边形面积推导过程

  (4)字母公式:在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,那么平行四边形的面积计算公式用字母表示出来就是S=ah

  三、运用公式,解决实际问题

  知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。

  1.出示书上82页的1题,请大家做一做。

  2.汇报交流:谁来说一说你是怎么做的?

  3.强化认识:那请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?(底和高,强调高是底边上的高)

  四、巩固练习

  1、试一试

  计算下列平行四边形的面积,与同学说说你的方法。

  35cm 20dm 4.8m

  26cm 28dm 5m

  公式: 公式: 公式:

  列式: 列式: 列式:

  2、我能填得准。

  (1)平行四边形的面积公式用字母表示为( )。

  (2)一个平行四边形的底是9cm,对应的高是4cm,面积是( )。

  五、课堂总结

  反思一下刚才我们的学习过程,你有什么收获?

平行四边形教案 篇2

  【学习目标】

  1、平行四边形性质(对角线互相平分)

  2、平行线之间的距离定义及性质

  【新课探究】

  活动一:

  如图,□ABCD的两条对角线AC、BD相交于点O.

  (1)图中有哪些三角形是全等的?有哪些线段是相等的?

  (2)想办法验证你的猜想?

  (3)平行四边形的性质:平行四边形的对角线

  几何语言:∵四边形ABCD是平行四边形(已知)

  ∴AO==AC,BO==BD()

  活动二:如图,直线∥,过直线上任意两点A,B分别向直线做垂线,交直线与点C,点D.

  (1)线段AC,BD有怎样的位置关系?

  (2)比较线段AC,BD的长短.

  (3)若两条直线互相平行,,则其中一条直线上任意一点到另一条直线的距离,这个距离称为平行线之间的距离。平行线之间的垂线段处处.

  【知识应用】

  1.已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=

  2.如图,四边形ABCD是平行四边形,DB⊥AD,求BC,CD及OB,OA的长.

  3.已知□ABCD中,AB=12,BC=6,对边AD和BC的距离是4,则对边AB和CD间的距离是

  【当堂反馈(小测)】:

  1、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。

  2、如图,在□ABCD中,,已知∠ODA=90°,OA=6cm,OB=3cm,求AD、AC的长

  3、如图,在□ABCD中,已知AB、BC、CD三条边的长度分别为(x+3)cm,(x-4)cm,16cm,这个平行四边形的周长是多少?

  【巩固提升】

  1.平行四边形的两条对角线

  2、已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=

  3、已知□ABCD中,AB=8,BC=6,对边AD和BC的距离是2,则对边AB和CD间的距离是

  4、下列性质中,平行四边形不一定具备的是()

  A、对角互补B、邻角互补C、对角相等D、内角和是360°

  5、下列说法中,不正确的`是()

  A、平行四边形的对角线相等B、平行四边形的对边相等

  C、平行四边形的对角线互相平分D、平行四边形的对角相等

  6、如图,在□ABCD中,,已知∠BAC=90°,OB=8cm,OA=4cm,求AB、BC的长

  7、如图,已知□ABCD中,对角线AC与BD相交于点O,△AOD的周长是80cm,已知AD的长是35cm,求AC+BD的长。

  8、如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F。

  (1)写出图中每一对你认为全等的三角形;

  (2)选择(1)中的任意一对进行证明。

  9.对角线可以将平行四边形分成全等的两部分,这样的直线还有很多。

  (1)多做几条这样的直线,看看它们有什么共同的特征

  (2)试着用旋转的有关知识解释你的发现。

平行四边形教案 篇3

  导学目标:

  1、经历并了解平行四边形的判别方法探索过程,使学生逐步掌握说理的基本方法。

  2、探索并了解平行四边形的判别方法:两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。能根据判别方法进行有关的应用。

  3、在探索过程中发展学生的合理推理意识、主动探究的习惯。

  4、体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。

  导学重点:平行四边形的判别方法。

  导学难点:根据判别方法进行有关的应用

  导学准备:多媒体课件

  导学过程:

  一、快速反应

  1.如图,四边形ABCD,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是__________,根据是_____________________

  2.如图,四边形ABCD中,AB//CD,且AB=CD,则四边形ABCD是___________,理由是__________________________

  3.小明拼成的四边形如图所示,图中的四边形ABCD是平行四边形吗?

  结论:______________________________________

  符号表示:

  4. 如图:在四边形ABCD中,2,4.四边形ABCD是平行四边形吗?为什么?

  在图中,AC=BD=16, AB=CD=EF=15,

  CE=DF=9。

  图中有哪些互相平行的线段?

  二、议一议

  1.一组对边平行,另一组对边相等的四边形一定是平行四边形吗?

  三、平行四边形的判别方法:

  (1)两组对边分别平行的四边形是平行四边形。

  (2)两组对边分别相等的四边形是平行四边形。

  (3)一组对边平行且相等的.四边形是平行四边形。

  (4)两条对角线互相平分的四边形是平行四边形。

  四、练一练:

  1.判断下列说法是否正确

  (1)一组对边平行且另一组对边相等的四边形是平行四边形 ( )

  (2)两组对角都相等的四边形是平行四边形 ( )

  (3)一组对边平行且一组对角相等的四边形是平行四边形 ( )

  (4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )

  2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?

  3.比一比:如图,四个全等三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由。

  五、师生共同小结,主要围绕下列几个问题:

  (1)判定一个四边形是平行四边形的方法有哪几种?

  (2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

  (3)平行四边形判定的应用

  六、课后巩固:课本P107习题4.4第1题和第2题

  七、课后反思:

平行四边形教案 篇4

  一、教学内容:P72

  二、教学目标:

  1、引导学生直观地认识平行四边形。

  2、培养学生动手操作和实践能力。

  三、教学准备:

  长方形框架、七巧板

  四、教学过程:

  (一)复习导入

  (二)探索新知

  1、做一做

  (1)教师演示:出示长方形框架

  这是什么图形,然后拉动,变成新形状。提示学生认真观察。

  (2)学生动手操作,做一做。

  (3)认识平行四边形

  A、认识平行四边形实物(观察新图形)

  B、认识平行四边形平面图

  2、想一想

  平行四边形与长方形的联系:对边相等,四个角不是直角,有的是锐角,有的`是直角。

  3、说一说

  说一说平时见到的平行四边形

  4、画一画

  5、拼一拼(用七巧板)

  (三)全课

  今天我们学习了什么知识,用什么方法认识平行四边形。

  (四)作业

  在现实中寻找平行四边形

平行四边形教案 篇5

  教学要求:

  1.使学生在理解的基础上掌握平行四边形、三角形和梯形的面积计算公式,能够计算它的面积。

  2.使学生初步学会使用简单的测量工具测定直线和沿着直线测量指定的距离;了解步测和目测的方法,能够计算常见的规则形状的土地面积。

  教学重点:

  1.引导学生运用转化的方法;在动手操作的基础上掌握三角形、平行四边形和梯形面积的计算公式;能正确地应用各种图形面积的计算公式,求它们的面积和解决有关面积的实际问题。

  2.使学生认识常用的测量工具及其用途;掌握测定直线和沿直线测量指定距离的步骤和方法;初步学会测定直线和沿着直线测量指定的距离;了解步测和目测的方法,初步学会步测和目测。

  3.使学生能够正确计算常见的规则形状的土地面积,并会解决有关土地面积的实际问题。

  教学难点:

  1.使学生知道三角形、平行四边形和梯形面积公式的推导过程;掌握各图形面积的计算公式并能灵活地应用它们解决有关面积的实际问题。

  1.使学生初步掌握用简单的测量工具测定直线和沿着直线,测量指定距离的方法。

  1.平行四边形面积的计算

  第一课时

  教学内容:平行四边形面积的计算(例题和做一做,练习十七第13题。)

  教学要求:

  1.使学生理解并掌握平行四边形面积的计算公式,能正确地计算平行四边形的面积。

  2.通过操作,进一步发展学生思维能力。培养学生运用转化的方法解决实际问题的能力发展学生的空间观念。

  3 . 引导学生运用转化的思想探索规律。

  教学重点:理解并掌握平行四边形面积的计算公式。

  教学难点:理解平行四边形面积计算公式的推导过程。

  教学过程

  一、激发

  1.提问:怎样计算长方形面积?

  板书:长方形面积=长宽

  2.口算出下面各长方形的面积。

  (1)长1。2厘米,宽3厘米。

  (2)长0。5米,宽0。4米。

  3.出示方格纸上画的平行四边形,提问:这是什么图形?什么叫平行四边形?指出它的底和高。

  4.揭题:我们已经学会了长方形面积的计算,平行四边形的面积该怎样计算呢?这节课我们就学习平行四边形面积的计算(板书课题:平行四边形面积的计算)

  二、尝试

  1.用数方格的方法计算平行四边形面积。

  (1)请大家打开书64页(指名读第2段)。

  (2)指名到投影上数。边数边讲解:我先数,它是平方厘米;再数,它是平方厘米;两部分合起来是平方厘米。

  (3)投影出示长方形。提问:数一数,这个长方形的长是多少?宽是多少?怎样计算它的面积。

  (4)观察比较两个图形的关系,提问:你发现了什么?

  引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。

  2.通过操作,将平行四边形转化成长方形。

  (1)自由剪、拼,进一步感知。

  ①每个平行四边形只准剪一下,试一试被剪下的两部分能拼成已学过的什么图形?学生自己剪、拼。

  ②互相讨论。提问:你发现了什么规律?

  通过操作讨论得出:只有沿着平行四边形的高剪开,才能拼成一个我们会计算的图形长方形。这种剪法最简便。

  (2)揭示转化规律

  任何一个平行四边形都可以转化成一个长方形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述)

  ①沿着平行四边形的高剪下左边的直角三角形。(出示剪刀,闪动被剪掉的部分)。

  ②左手按住右手的梯形,右手抽拉剪下的直角三角形,沿着底边慢慢向右移动,直到两斜边重合为止。这样就得到一个长方形。

  ③学生根据刚才的演示模仿操作,体会平移的过程。

  3.归纳总结公式

  (1)比较变化前的两个图形,提问:你发现了什么?互相讨论,汇报讨论结果。根据讨论结果完成填空。

  引导学生明确:你发现了什么?互相讨论,汇报讨论结果。

  ①平行四边形转化为长方形后,面积没有改变。即长方形面积等于平行四边形面积。(同时板书)

  ②这个长方形的长、宽分别与平行四边形的底、高相等。(同时板书)

  (2)根据这些关系,你认为平行四边形的面积计算公式怎样推导出来?强化理解推导过程。

  板书:平行四边形的面积=底高

  4.教学字母公式

  (1)介绍每个字母所表示的意义及读法。板书S=ah

  (2)说明在含有字母的式子里,字母和字母中间的乘号可以记作,也可以省略不写。所以平行四边形面积的计算公式可以写成S=ah或S=ah。(同时板书)

  (3)提问:计算平行四边形面积,需要知道哪些条件?

  三、应用

  1.P66页例题:一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)

  3.5厘米

  4.8厘米

  ①读题,理解题意。

  ②学生试做,指名板演。提醒学生注意得数保留整数。

  ③订正。提问:根据什么这样列式?

  2.完成P.72页做一做第1、2题。

  订正时提问:计算时注意哪些问题?

  3.填空

  任意一个平行四边形都可以转化成一个,它的面积与原平行四边形的面积。这个长方形的长与原平行四边形的相等。这个长方形的与原平行四边形的相等。因为长方形的面积等于,所以平行四边形的面积等于。

  4.判断,并说明理由。

  (1)两个平行四边形的`高相等,它们的面积就相等

  (2)平行四边形底越长,它的面积就越大

  5.你能求出下列图形的面积吗?如果能,请计算出面积。(单位:厘米)

  162015

  20

  6.练习十七第3题

  四、体验

  今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

  五、作业

  练习十六节第2题。

  第二课时

  教学内容:平行四边形面积计算的练习(P。74~75页练习十七第4~9题。)

  教学要求:

  1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。2.养成良好的审题习惯。

  教学重点:运用所学知识解答有关平行四边形面积的应用题。

  教学过程:

  一、基本练习

  1.口算。(练习十六第4题)

  4。90。75。4+2。640。250。87-0。49

  530+2703。50。2542-98612

  2.平行四边形的面积是什么?它是怎样推导出来的?

  3.口算下面各平行四边形的面积。

  ⑴底12米,高7米;

  ⑵高13分米,第6分米;

  ⑶底2。5厘米,高4厘米

  二、指导练习

  1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?

  ⑴生独立列式解答,集体订正。

  ⑵如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件?

  ②生独立列式,集体讲评:

  先求这块地的面积:25078010000=1。95公顷,

  再求共收小麦多少千克:70001。95=13650千克

  ⑶如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?

  与⑵比较,从数量关系上看,什么相同?什么不同?

  讨论归纳后,生自己列式解答:58500(250781000)

  ⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。

  2.练习十七第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?

  1.6厘米

  2.5厘米

  ⑴你能找出图中的两个平行四边形吗?

  ⑵他们的面积相等吗?为什么?

  ⑶生计算每个平行四边形的面积。

  ⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)

  3.练习十七第10题:已知一个平行四边形的面积和底,(如图),求高。

  28平方米

  7米

  分析与解:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。

  三、课堂练习

  练习十六第7题。

  四、作业

  练习十六第5、8、9、11题。

平行四边形教案 篇6

  一、创设情境,呈现真实

  师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)

  师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)

  生活动后汇报如下:

  长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米

  (1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米

  (2)平行四边形底6厘米,高3厘米,它的面积=6×3=18平方厘米

  二、否定错误猜想

  1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。

  你觉得哪种更合理?能不能举个例子,证明哪种是错误的。

  生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。

  师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?

  生:老师,我不同意这样的想法,按照他的说法,如果把这个平行四边形压扁,它的面积难道还是24平方厘米吗?

  2、师:(演示平行四边形变形的过程)请同学们仔细观察,平行四边形在变形过程中,什么发生了变化?什么始终没变?

  生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。

  师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)

  生:(兴奋地)高!

  师:现在,你觉得平行四边形的面积与它的什么有关?

  生:我觉得平行四边形的面积与它的高有很大的关系。

  3、师:用什么办法可以比较它们的面积大小呢?

  生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。

  师:变成长方形后,面积大小变了没有?

  生:没有

  师:那么要计算平行四边形的面积,应该怎么办?

  生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。

  生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。

  师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。

  三、归纳计算方法

  师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。

  根据学生反馈情况进行课件演示,出现几种拼法(略)

  师:这几种剪拼方法有什么相同之处?

  生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。

  生:在剪拼过程中,图形的`形状变了,面积不变。

  师:为什么平行四边形的面积可以用“底乘高”来计算?

  生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。

  师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?

  生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。

  师:我们用S表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为S=ah。

  四、反思探究过程

  师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?

平行四边形教案 篇7

  教学目标:

  1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。

  2、能力目标:在剪一剪、拼一拼中发展空间观念;在想一想、看一看中初步感知“转化”的数学思想和方法。

  3、过程与方法:通过观察、操作、测量、思考、讨论交流等数学活动,体会转化等数学方法,发展推理能力。

  4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感

  教学重点:

  让学生充分利用手中的学具,在动手操作推导平行四边形面积公式的过程中,理解并掌握平行四边形面积的计算方法,能正确计算平行四边形的面积。

  教学难点:

  让学生在推导和验证平行四边形面积公式的过程中,充分体验转化的数学思想,形成一定探究意识和能力,发展空间观念。

  教学准备:

  平行四边形卡片、剪刀、三角板

  教学过程:

  一、课前复习,回顾旧知

  1、 长方形面积公式是什么?(勾起学生对已有知识的回顾,为学习平行四边形面积公式做铺垫)

  2、 生:长方形面积=长×宽。

  二、提出问题,导入新课

  1、出示主题图:(看课本第86页的图)

  (1)、发现了哪些图形?你会求哪些图形的面积?

  (2)、故事引入

  学校门前有两个大花坛,左边的是长方形的,右边的是平行四边形的。现在准备把花坛里面的草换成美丽的蝴蝶花,这个分别交给五(1)班和五(2)班负责。这时同学们争论开了,有的同学说长方形的面积大,有的说平行四边形的面积大,又有的同学说“还不是一样大嘛?”同学们,今天就让我们来帮帮他们判断一下哪个花坛的面积大。

  师:我把花坛缩小成我手上的图形(出示缩小的两个图形,让学生比较)

  比较方法:

  1、叠起来比;(比不了,形状不一样)

  2、数方格比。

  师:平行四边形的面积还有其它数法吗?(引出转化成长方形的方法)在实际问题上,这种方法行吗?不行,麻烦而且不实际,能不能像计算长方形面积那样计算出来呢?今天,就让我们来探讨平行四边形的面积的计算方法。(板书课题)

  三、探索发现、推导公式

  1、猜想:平行四边形的面积跟什么有关系呢?(板书:底和高;两条边)

  2、验证:科学是从猜想到验证的一个过程,现在就让我们用事实来说话吧。

  课本中的同学们也忙开了,让我们来看看他们在干什么?打开88页,看看课本上半页的图。他们在干什么呢?(把平行四边形剪拼成长方形)

  现在,同学们也用剪拼的办法,把平行四边形转化成长方形,每个学习小组长的手上都有一个平行四边形,每个小组的同学合作,剪一剪,拼一拼,看看那组的同学合作最好,先来看看我们的导学提纲。

  小组根据导学提纲进行合作学习

  (1)怎样把平行四边形纸片剪一刀,拼成一个长方形呢?(剪前,小组要先讨论出怎样剪,拼成的才一定是长方形。)

  (2)讨论:平行四边形转化成长方形后面积变了吗?

  (3)讨论:转化成的长方形的长和平行四边形的底是否相等?

  (4)讨论:转化成的长方形的宽和平行四边形的高是否相等?

  3、学生操作验证

  师:这个剪拼的任务就交给你们了。

  4、交流汇报

  (1)生1:先在平行四边形上画一条高,沿着高剪开,把平行四边形分成了一个三角形,一个梯形,然后把三角形向右平移,拼成了长方形。

  生2:在平行四边形上画一条高,然后沿高剪开,分成了两个梯形,然后把左边的梯形向右平移,拼成了长方形。

  师:这样的变化过程在数学上叫做“转化”,平行四边形转化成长方形。

  (2)面积没变,只是形状变了。

  (3)长方形的`长和平行四边形的底相等。

  (4)长方形的宽和平行四边形的高相等。

  (5)平行四边形的面积怎样算?

  5、集体推导

  齐看演示剪拼的过程,学生自己口头作答,再齐读。(老师边讲解边板书)

  一个平行四边形沿着任意一条高剪开,都可以拼成一个(长方形),它的面积与平行四边形的面积(相等),这个长方形的长与平行四边形的(底)相等,这个长方形的宽与平行四边形的(高)相等,因为长方形的面积=(长 X 宽),所以平行四边形的面积=(底 X 高)。

  板书:长方形的面积 = 长 X 宽

  ↓ ↓ ↓

  平行四边形的面积 = 底 X 高

  6、字母表示公式

  师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a×h(师板书)(在课本划出公式,读公式)

  7、回到学生们的猜想,平行四边形的面积是跟底和高有关系。我们也可以用计算的方法来求出平行四边形的面积了。

  师:同学们多了不起啊,自己实践得出了真理,科学就是这样一步步的向前推进的。

  8、运用公式:学习88页例1

  师:让我们回到学校门前的花坛吧。

  出示题目,学生读题,学生口答,老师板书过程。

  9、回到同学们的争论,两个花坛的面积是一样大的,科学实践还是解决争论的最好办法。

  三、巩固拓展

  1、课本89:第1题。(学生在练习本中解答)

  2、口答:下面的平行四边形的面积是多少平方厘米?

  3、选择题:(区分对应的底和高)

  4、实际应用:课本89:第4题第1个图(先量出底和高,再计算) 求楼梯扶手的面积。

  5、口答

  (1)平行四边形的底不变,高扩大2倍,面积就( )。

  (2)平行四边形的高不变,底缩小2倍,面积就( )。

  (3)平行四边形的底扩大2倍,高也扩大2倍,面积( )。

  四、总结全课,提高认识

  1、通过今天的学习,你有那些收获?还有那些遗憾的地方?

  2、今天,我们用转化割补法学习了平行四边形面积计算,希望同学们把它运用到今后的学习生活中去,真正做到学以致用。

  板书设计:

  平行四边形的面积

  长方形的面积 = 长×宽

  ↓ ↓ ↓

  平行四边形的面积= 底×高

  S = a×h

平行四边形教案 篇8

  教学内容:

  人教版《义务教育课程标准实验教科书数学》四年级上册70页至71页。

  教学目标:

  1。通过操作和讨论掌握平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。

  2。培养分分析观察能力、动手操作能力和有序思考的能力,培养学生的空间观念和想像力。

  3。体会数学学习的乐趣,树立学习信心,感受数学价值。

  教学重点:

  通过操作和讨论掌握平行四边形和梯形的特征。

  教学难点:

  了解平行四边形与长方形和正方形的关系。

  教学准备

  教具:正方形、长方形、平行四边形和梯形图各一;多媒体课件。

  学具:直尺,三角板,练习纸一张。

  教学过程:

  一、回顾旧知,引入新课。

  师:孩子们,在我们三年级时已经学过并认识了许多的四边形,那怎样的图形叫四边形呢?

  师:今天四边形之家要邀请它的家族成员来开联欢会,看,它们来了。(课件出示)你还认识它们吗?请你说一说你认识的图形的名称。(生说名称,教师相应的课件出示名称)

  师:你能把它们分分类吗?

  师:长方形和正方形是我们的老朋友了,你们能介绍它们的边与角各有什么特征吗?

  师:这两个图形(出示和,并粘贴在黑板上)你能试着说一说它的特征吗?

  师:长方形和正方形我们已经很熟悉了,所以大家描述得既准确又充分,(拿下长方形和正方形),指着平行四边形和梯形说:这两个图形我们不熟悉,所以描述的信息不够准确,没关系,通过本节课的学习,会让你清楚的认识平行四边形和梯形。

  二、探索发现,掌握特征。

  1。联系生活,建构概念

  师:其实生活中就有许多物体的表面是平行四边形或梯形。(课件出示一组图片)找一找,有平行四边形吗?梯形呢?说说看!

  师:你们真会观察啊!除了这些,你能举出生活中的哪些物体的表面是平行四边形和梯形呢?(生举例)

  师:看来平行四边形和梯形在生活中应用很广泛,既然他们的应用如此广泛,我们就来研究什么叫做平行四边形,什么叫做梯形。(板书课题:平行四边形和梯形)

  2。观察图形,直观感知

  师:好了孩子们,先来看看平行四边形有什么特征?梯形有什么特征呢?

  生说:平行四边形左右的边是平行的,平行四边形的上下的边也是平行的。师指图比划,梯形的上下边是平行的。

  师:刚才这位同学说平行四边形的两组对边分别平行,梯形的一组边平行(老师说时带动作),这是我们通过观察得到的信息,真的是这样吗?下面我们就来验证。

  3。验证猜想。

  师:现在在你们的练习纸上有一个平行四边形和一个梯形,请你拿出工具检查平行四边形和梯形对边是否平行。

  学生活动:验证。

  活动结束师让学生在实物投影上就图说明。

  师:通过刚才的验证他们组有这样的发现,其他组和他的发现一样的请举手,哦,大家都有这样的发现。是不是其他的平行四边形和梯形也具有这样的特点呢?

  4。整体呈现,确定概念。

  (1)平行四边形。

  师:我们首先来看平行四边形。请看屏幕:课件出示三个不同的平行四边形并验证。

  师:验证之后可以证实我们刚才的发现是正确的,是吗?谁再来说一说我们刚才的发现?

  引导学生得出:两组对边分别平行的四边形叫做平行四边形。

  学生读。

  师:闭上眼睛想一想,你的脑子中的平行四边形是什么样的?

  (2)梯形

  师:我们知道了什么叫平行四边形。现在我们来看梯形。请看屏幕:课件出示三个不同的梯形并验证。

  师:现在我们又证实了刚才梯形的发现是正确的,谁再来说一说刚才的发现?

  引导学生得出:只有一组对边平行的四边形叫做梯形。

  师:刚才这个同学发言中有一个特别重要的词,谁发现了?你能解释什么是“只有”吗?

  学生读概念,闭上眼睛想一想梯形的'样子。

  5。对比概念,上升理解。

  师:(指板贴平行四边形和梯形图)同学们,既然我们知道了平行四边形和梯形的概念了,谁说说它们的共同点是什么?

  师:但也有不同,谁来说说哪里不同?

  师:加着重号“分别”是什么意思?“只有”是什么意思?能不能不要这两个字?

  三、巩固知识,加深理解

  师:既然大家已经知道了什么叫做平行四边形、什么叫做梯形,那么,请你迅速的判断一下。

  课件出示:下面的图形中.是平行四边形的画“○”,是梯形的画“√”。

  (在完成此题的过程中,如果出现争议,则让学生议一议;无争议则提问:为什么在长方形下面画“○”?为什么说它是特殊的平行四边形?)

  四、探讨四边形间的关系

  师:到现在为止,我们学过了长方形、正方形、平行四边形和梯形,如果分别用一个集合圈来表示一种图形,这几种图形在四边形这个大家庭中应该站什么位置呢?(课件出示集合圈)

  师:你会选择哪一个?为什么?(放大正确集合图)

  师:谁能根据这个图说说它们的关系?(生说)

  五、灵活应用,解决问题

  师:看来,同学们对于各种四边形之间的关系已经很了解了,说到四边形,看。老师这里有一个(课件出示:)可它被数学书挡住了,猜一猜,它可能是什么图形呢?

  继续演示:不可能是……?可能是……?

  不可能是……?可能是……?

  一定是……?为什么?

  师:其实谜底早在我们的意料之中!

  师:通过一次次的猜想,我能感觉对于平行四边形和梯形的了解越来越深入,想挑战吗?

  2.分图形。

  呈现题目:如果在平行四边形里画一条线段,把它分成两部分,这两部分可能是什么图形?画画看吧。

平行四边形教案 篇9

  教学目标

  知识技能目标

  1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.

  2.理解平行四 边形的这两种判定方法,并学会简单运用.

  过程与方法目标

  1.经历平行四边行判别条的探索过程,在有关活动中发展学生的合情推理意识.

  2 .在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.

  情感态度价值观目标

  通过平行四边形判别条的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.

  教学重点:

  平行四边形判定方法的探究、运用.

  教学难点:

  对平行四边形判定方法的探究以及平行四边形的'性质和判定的综合运用.

  教学过程

  第一环节 复习引入:

  ( 3分钟, 教师提出问题1,2,由学生独立思考,并口答得出定义正反两方面的作用,出平行四边形的其他几条性质.)

  问题1(多媒体展 示问题)

  1.平行四边形的定义是什么?它有什么作用?

  2.平 行四边形还有哪些性质?

  问题2

  有一块平行四边形的玻璃块,假如不小心碰碎了一部分,聪明的技师拿着细绳很快将原的平行四边形画了出,你知道他用的是什么方法吗?

  第二环节 探索活动(12分钟,学生动手探究,小组合作)

  活动1:

  工具:两根长度相等的笔,

  两条平行线(可利用横格线).

  动手:请利用两根长度相等的笔和两条平行线,摆出以笔顶端为顶点的平行四边形吗?

  思考1.1:你能说明你所摆出的四边形是平行四边形吗?

  思考1.2:以上活动事实,能用字语言表达吗?

  目的:

  得出平行四边形 的一个性质:一组对边平行且相等的四边形是平行四边形.

  活动2

  工具:两根不同长度的细纸条.

  动手:能否用这两根细纸条在平面上

  摆出平行四边形?

  思考2.1:你能说明你们摆出的四边形是平行四边形吗?

  思考2.2:以上活动事实,能用字语言表达吗?

  目的:

  得出平行四边形的性质:对角线互相平分的四边形是平行四边形

  第三环节 巩固练习(20分钟,学生思考讨论再各自画图,画好后互相交流画法,教师巡回检查.对个别学生稍加点拨)

  随堂练习:

  1.已知:在平行四边形ABCD 中,点E、F在对角线AC上,并且OE=OF.

  (1)OA与OC,OB与OD相等吗?

  (2)四边形BFDE是平行四边形吗?

  (3)若点E,F在OA,OC的中点上,你能解决上述问题吗?

  2.再回到前问题:同学们想想看,有没有办法把原的平行四边形重新画出?

  (让学生思考讨论,再各自画图,画好后互相 交流画法,教师巡回检查.对个别 学生稍加点拨,最后请学生回答画图方法)

  学生想到的画法有:

  (1)分别过A,C作BC,BA的平行线,两平行线相交于D;

  (2)分别以A,C为圆心,以BC, BA的长为半径画弧,两弧相交于D,连接AD,CD;

  (3)这一种方法学生不易想到,即为平行四边形对角线的特性,引导学生得出连线AC,取AC的中点O,再连接BO,并延长BO到D,使BO=DO,连接AD,CD.

  第四环节 小结:(4分钟,学生回答问题)

  师生共同小结,主要围绕下列几个问题:

  (1)判定一个四边形是平行四边形的方法有哪几种?这些方法是从什么角度去考虑的?

  (2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?

  (3)类比、观察、拼图、实验等都是学习数学、发现结论的常用方法.

  第五环节 布置 作业:

  B、C组(中等生和后三分之一生)本104页习题4.3第1题、第2题

  A组(优等生):① 对于随堂练习题,若将G,H分别在OB ,OD上移动至与B,D重合,E,F分别在OA,OC上移动,使AE=CF(如图),则结论还成立吗?

  ② 对于随堂练习题,若E,F继续移动至OA,OC的延长线上,仍使AE=CF(如图),则结论还成立吗?

【平行四边形教案】相关文章:

《平行四边形的判定》教案06-03

平行四边形的认识教案03-09

认识平行四边形教案03-05

《平行四边形面积的计算》教案09-14

精选平行四边形教案四篇05-19

平行四边形教案4篇05-13

精选平行四边形教案3篇05-18

精选平行四边形教案4篇05-16

平行四边形教案四篇05-21

《平行四边形的面积》教案(精选15篇)08-10