当前位置:9136范文网>教育范文>教案>五年级数学下册教案优秀

五年级数学下册教案优秀

时间:2024-03-12 07:06:10 教案 我要投稿
  • 相关推荐

五年级数学下册教案优秀

  作为一名教学工作者,就不得不需要编写教案,教案是教学活动的依据,有着重要的地位。那么你有了解过教案吗?以下是小编帮大家整理的五年级数学下册教案优秀,欢迎阅读与收藏。

五年级数学下册教案优秀

五年级数学下册教案优秀1

  教学内容:

  苏教版义务教育教科书《数学》五年级下册第41~42页例9、例10和“练一练’’,第45页练习七第1~2题。

  教学目标:

  1.使学生理解和认识公因数和最大公因数,能用列举的方法求100以内两个数的公因数和最大公因数,能通过直观图理解两个数的因数及公因数之间的关系。

  2.使学生借助直观认识公因数,理解公因数的特征;通过列举探索求公因数和最大公因数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。

  3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心。

  教学重点:

  求两个数的公因数和最大公因数。

  教学难点:

  理解求公因数和最大公因数的方法。

  教学准备:

  小黑板

  教学过程:

  一、铺垫准备

  1.直观演示,作好铺垫。

  出示边长6厘米和边长5厘米的两个正方形。

  提问:观察这两个正方形,哪一个能正好分成边长都是2厘米的小正方形?

  2.引入新课。

  谈话:根据上面我们看到的,如果一个长度是原来边长的因数,就能正好全部分割成小正方形。现在就利用这样的认识,学习与因数有密切联系的新内容,认识新知识,学会新方法。

  二、学习新知

  1.认识公因数。

  (1)出示例9,了解题意。

  启发:观察正方形纸片的边长和长方形的长、宽,哪种纸片能把长方形正好铺满,哪种不能正好铺满?先在小组讨论,说说你的理由。

  交流:哪种纸片能把长方形正好铺满,哪种不能?你是怎样想的?

  结合交流进行演示,引导观察用正方形纸片铺的结果,理解边长6是长方形两边12和18的因数,能正好铺满;(板书:12÷6=2 18÷6=3)边长4是12的因数,但不是18的因数,就不能正好铺满。(板书:12÷4=3 18÷4=4......2)

  (2)启发:想一想,还有哪些边长是整厘米数的正方形,也能把这个长方形正好铺满?为什么?先独立思考,再和同桌说一说,并说说你的理由。

  交流:还有哪些边长整厘米数的正方形也能正好铺满?你是怎样想的.? 你发现正方形边长的厘米数符合什么条件,就能把这个长方形正好铺满?

  (3)引导:现在你发现,哪些数既是12的因数,又是18的因数?

  指出:大家发现,1、2、3、6这几个数,既是12的因数,又是18的因数,也就是12和18公有的因数,我们称它们是1 2和18的公因数。(板书)

  追问:4是1 2和18的公因数吗?为什么不是?

  2.求公因数。

  (1)出示问题。

  引导:我们已经知道,两个数公有的因数,是它们的公因数。那如果已知两个数,你能不能找出它们所有的公因数呢?接着看一个问题。

  出示例10,让学生明确要找出8和1 2的所有公因数,并找出其中最大的一个。

  (2)探索方法。

  引导:先想想怎样的数是8和12的公因数;再想怎样可以找到8和12的公因数。和同桌商量商量,找出它们的公因数,并找出最大的一个。

  学生思考、尝试,教师巡视、指导。

  交流:你是怎样找8和12的公因数和最大的公因数的?

  结合交流,引导学生理解不同思考方法:(在交流中板书过程)

  ① 分别找出8和12的因数,再找公因数,并确定最大的一个。

  ②先找出8的因数,再从8的因数里找1 2的因数,并确定最大的一个。 提问:为什么可以这样找8和12的公因数?

  ③先找1 2的因数,再从1 2的因数里找8的因数,并确定最大的一个。 追问:这种方法是怎样想的?

  小结

  3.用集合图表示公因数。

  出示两个圈:8的因数 12的因数(图略) 让学生分别说出8和12的因数,教师板书。

  引导:如果要在图里既看出8的因数和12的因数,又能把公有的因数写在共同的部分,这两个圈怎样合并到一起比较合适?小组里讨论讨论。

  4.回顾内容。

  提问:回顾今天的学习,我们认识了哪些内容?(板书课题) 什么是公因数和最大公因数?

  三、巩固深化

  1.做“练一练”第1题。

  2.做“练一练”第2题。

  3.做练习七第1题。

  学生练习,指名板演。检查板演过程,说明最大公因数;有错订正。

  4.做练习七第2题。 让学生直接写出得数。

  提问:能根据算式说说哪个数是哪个数的因数或倍数吗?

  四、小结收获

  提问:今天这节课你收获了什么?在学习过程中你还有哪些体会?<

五年级数学下册教案优秀2

  教学目标:使学生掌握分数与除法之间的关系,并能进行简单的应用;培养学生

  动手操作的能力和抽象,概括,归纳的能力.

  教学重点:分数的数感培养,以及与除法的联系.

  教学难点:抽象思维的培养.

  教学过程:

  一,铺垫复习,导入新知 [课件1]

  1,提问:A,7/8是什么数 它表示什么

  B,7÷8是什么运算 它又表示什么

  C,你发现7/8和7÷8之间有联系吗

  2,揭示课题.

  述:它们之间究竟有怎样的关系呢 这节课我们就来研究"分数与除法的关系".

  板书课题:分数与除法的关系

  二,探索新知,发展智能

  1,教学P90 .例2:把1米长的钢管平均截成3段,每段长多少

  提问:A,试一试,你有办法解决这个问题吗

  板书:用除法计算:1÷3=0.333……(米)

  用分数表示:根据分数的意义,把1米平均分成3份,每份是1米的1/3,就

  是1/3米.

  B,这两种解法有什么联系吗

  (从上面的解法中可以看出,它们表示的是同一段钢管的长度,所以1÷3和 1/3是相等的关系.)

  板书: 1÷3= 1/3

  C,从这个等式中,我们发现:当1÷3所得的商除不尽时,可以用什么数来

  表示 也就是说整数除法的.商也可以用谁来表示

  2,教学P90 .例3: 把3块饼平均分给4个孩子,每个孩子分得多少块 [课件3]

  (1)分析:A,想想:若是把1块饼平均分给4个孩子,每个孩子分得多少 怎么列式

  B,同理,把3块饼平均分给4个孩子,每个孩子分得多少 怎么列式 3÷4的商能不能用分数来表示呢

  板书: 3÷4= 3/4

  (2)操作检验(分组进行)

  ① 把3个同样大小的圆看作3块饼,分一分,看每个孩子究竟能分得多少块饼

  ② 反馈分法.

  提问:A,请介绍一下你们是怎么分的

  (第一种分法:把3块饼一块一块地分,每个孩子分得每个饼的1/4,共得3个1/4 块,也就是3/4块.)

  (第二种分法:把三块饼叠在一起分,每个孩子分得3块饼1/4的 ,拼起来相当于一块饼的3/4 ,也就是3/4 块.)

  B,比较这两种分法,哪种简便些

  ※ 把5块饼平均分给8个孩子,每个孩子分得多少 说一说自己的分法和想法.

  3,小结提问:A,观察上面的学习,你获得了哪些知识

  板书: 被除数 ÷ 除数 = 除数 / 被除数

  B,你能举几个用分数表示整数除法的商的例子吗

  C,能不能用一个含有字母算式来表示所有的例子

  板书: a÷b=b/a (b≠0)

  D,b为什么不能等于0

  4, 看书P91 深化.

  反馈:说一说分数和除法之间和什么联系 又有什么区别

  板书:分数是一个数,除法是一种运算.

  三,巩固练习 [课件5]

  1,用分数表示下面各式的商.

  5÷8 24÷25 16÷49 7÷13 9÷9 c÷d

  2,口算.

  7÷13=( )÷9= 1/2=( )÷( ) 8/13=( )÷( )

  3, 7/10表示把单位"1"平均分成( )份,表示这样的( )份的数.1÷21表示两个数( ),还可以表示把( )平均分成( )份,表示这样的一份的数.

  四,全课小结

  当两个自然数相除不能整除时,它门的商可以用分数表示,由于除法是一种运算,而分数是一种数,因此,我们只能说被除数相当于分数的分子,除数相当于分数的分母.故此,分数与除法既有联系,又有区别.

  在整数除法中零不能作除数,那么,分数的分母也不能是零.

  五,家作

  P93 .1,2,3

  板书设计: 分数与除法的关系

  例2:1÷3=0.333……(米)=1/3(米) 例3:3÷4= 3/4

  被除数 ÷ 除数 = 除数 / 被除数

  a÷b=b/a (b≠0)

  分数是一个数,除法是一种运算

五年级数学下册教案优秀3

  教学目标和要求

  1.经历从时间问题中抽象出百分数的过程,理解百分数的意义,会正确读百分数。

  2.在具体情境中,解释百分数的意义,体会百分数与日常生活的密切联系。

  教学重点

  1.理解百分数的意义

  2.体会百分数的必要性

  教学难点

  理解百分数的意义

  教学准备

  1.让学生客气课前收集百分数的资料。

  2.计算机课件

  教学时数

  1课时

  教学过程

  一、联系实际、引入课题

  1.教师结合自己学校的足球对的数据呈现问题,激发学生学习兴趣。

  2.让学生自己解决“比一比”中让学生罚点球问题,接着讨论“哪个品种发芽情况好”的问题。学生讨论后汇报。

  教师引导学生两个问题的解决过程,让学生体会百分数的.比要性,从而引入百分数,(教师板书)

  二、 教学百分数的读写

  写作22%读作:百分之二十二

  三、介绍百分数的意义

  1.教师通过让学生举出生活中常见的百分数,比如各种酒类的浓度表示,让学生体会百分数只表示两个数的相比关系,不表示一个数的值,所以百分数也叫百分比或者百分率。

  2.练一练

  让学生结合百分数的意义进一步说明上面题目中百分数所代表

  的具体意义。“罚点球”其实就是求一个人的进球率,“哪个品种发芽情况好”指的是发芽率。

  三、教“读一读说一说”

  1.让学生看课本插图,然后根据自己的理解说说每个情境百分数的意义。

  2.教师鼓励学生自己“找一找生活中的百分数”并在全班交流。

  四、练习

  让学生自己完成,全班讲评。

  五、总结

  提问:这节课你有什么收获?

五年级数学下册教案优秀4

  第一课时 用“倒过来推想”的策略解决问题(一)

  教学目标:

  1.使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2.使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

  3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心

  教学过程:

  一、学习例1

  1.呈现问题。

  (1)出示“原来的”两杯果汁,并出示条件“两杯果汁共400毫升”。

  提问:如果把甲杯中的40毫升果汁倒人乙杯,这两杯果汁的数量分别会发生怎样的变化?

  (2)学生回答上述问题后进行实际的操作演示,让学生发现不仅甲杯减少了.乙杯增加了,而且甲杯和乙杯正好同样多。

  (3)回顾操作过程,出示例题中条件部分的完整示意图,提出问题:原来两杯果汁各有多少毫升?

  2.解决问题。

  (1)提问:把甲杯中的40毫升果汁倒人乙杯后,两个杯子里的果汁总量有没有变化?一共还是多少毫升?那么现在每个杯子里各有多少毫升果汁?

  (2)小组讨论:知道了现在两个杯中的果汁数量,可以怎样求原来两个杯中的果汁数量?可以用怎样的方法来解决?

  (3)在学生提出“再倒回去看一看”时,追问:如果把乙杯中的40毫升果汁再倒回甲杯,两个杯中的果汁数量又会发生怎样的变化?

  (4)学生画图后,组织展示、交流,并相机呈现教材提供的第二组示意图。

  引导学生认识到“再倒回去”后,甲杯在200毫升的基础上,增加了40毫升;乙杯在200毫升的基础上,减少了40毫升。

  (5)小结:看来“再倒回去”是个好办法,用这个办法我们很容易就能想到原来两个杯子里各有多少毫升果汁。

  3.填表回顾,加深对“倒过来推想”的体验。

  (I)回想一下,我们刚才是怎样解决这个问题的?你能按照解题的过程将教材中的表格填写完整吗?要求边填边想表中的每个数据各是怎样推算出来的。

  (2)提问:在解决这个问题的过程中我们运用了哪些策略?你认为“倒过来推想”的策略有什么特点?

  学生讨论后,揭示课题并板书:解决问题的策略。

  二、学习例2

  1.出示例2,让学生读题后,再要求说说题目的大意。提问:用什么方法可以将题目的意思更清楚地表示出来?

  2.在学生讨论后,指出:可以按题意摘录条件进行整理。出示下图:

  原有?张一—→又收集了24张一—→送给小军30张一—→还剩52张

  提问:你能根据上图再说说题目的大意吗?要求小明原来有多少张邮票,你准备用什么策略来解决?

  3.明确可以用“倒过来推想”的策略解决问题后,提出:你能仿照上图的样子,表示出“倒过来推想”的过程吗?

  学生尝试画出倒推的示意图后,出示下图:

  原有?张←一一 去掉收集的24张←一一 跟小军要回30张←一一 还剩52张

  要求根据上图写出倒推后每一步的.结果,再让学生综合“倒过来推想”的过程列式解答。

  4.要求学生根据答案和“小明邮票张数”的变化情况顺推过去,看看剩下的是不是52张。

  5.引导反思:解决上面这个问题时,是怎样运用“倒过来推想”的策略的?你认为适合用“倒过来推想”的策略来解决的问题有什么特点?

  三、应用巩固

  出示“练一练”,学生各自读题。

  提问:你打算运用什么样的策略解决这个问题?“拿出画片的一半还多1张送给小明”是什么意思?你能换种说法表示这样的意思吗?

  学生解题后,组织交流,重点让学生说说推想的过程。

  四、课堂作业

  做练习十六的第1、2题。

  五、全课小结

  第二课时 用“倒过来推想”的策略解决问题(二)

  教学目标:

  1、使学生进一步熟练运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2、进一步培养学生“逆推”的思维意识和推理能力。

  教学过程:

  一、复习导入

  上一节课你们学会了什么本领?“倒过来想”解决问题的关健在哪里?

  二、练习

  1、练习十六第3题:

  (1)读题理解题意:你从题中知道什么?

  (2)整理信息:你能把这些信息整理出来吗?{大门——(向北走2格)熊猫馆——(向西北走1格)百鸟园——(向东走4格)猴山)——(向南走2格)蛇馆}

  (3)寻找策略:你准备用什么方法解决这个问题?

  (4)学生独立完成

  (5)展示交流

  2、练习十六第4题:

  (1)读题后独立思考,全班交流。

  (2)小组交流:从你家到学校要经过哪些地方?那么从学校回到呢?

  3、练习十六第5题:

  (1)确定方法:你认为应该从左往右考虑呢?还是从右往左考虑?

  (2)学生独立完成。

  (3)交流:在填空时,你觉得应该注意些什么问题?

  4、练习十六第6题:

  (1)观察图片理清题意。

  (2)题目中告诉我们哪些信息?

  (3)学生独立完成?

  (4)交流:你用的什么方法解决这个问题?应该注意些什么?

  5、练习十六第7题:

  (1)看图理解题意:

  (2)你从第3幅图开始倒过来说一说题意吗?编一道应用题。

  (3)学生独立完成。

  (4)交流订正。

  6、练习十六第8题

  (1)学生独立完成。

  (2)小组交流方法。

  7、练习十六第9题。

  (1)看表理解:说说收支情况。

  (2)学生估计第一问,说一说,你是怎样想的。

  (3)独立完成第二问,交流,你是用什么方法解决这个问题的。有没有别的方法?

  8、练习十六第10题。

  (1)游戏:拿出牌来,根据题意玩一玩、想一想。

  (2)同桌玩,你还能根据第10题想出别的玩法吗?

  9、思考题:

  读一读,整理题意,再想一想。

  三、总结:

  “倒过来想”也是解决数学问题的一决策略,其实也是解决生活问题的一种策略,遇到问题时,如果你也能倒过来想想或站在他人立场上想想,也许就有了解决问题的方法了。

五年级数学下册教案优秀5

  教学内容:

  苏教版义务教育教科书《数学>五年级下册第43~44页例1 1、例1 2和“练一练’’,第46练习七第9~10题。

  教学目标:

  1.使学生理解和认识公倍数和最小公倍数,能用列举的方法求两个自然数的公倍数和最小公倍数,能通过直观图理解两个数的倍数及公倍数之间的关系。

  2.使学生借助直观认识公倍数,理解公倍数的特征;通过列举探索求公倍数和最小公倍数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。

  3.使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心;培养与同伴合作、交流的意识和良好品质。

  教学重点:

  求两个数的公倍数和最小公倍数。

  教学难点:

  理解求公倍数和最小公倍数的方法。

  教学准备:

  小黑板

  教学过程:

  一、揭示课题

  揭题:我们已经学习了公因数和最大公因数,今天这节课学习公倍数和最小公倍数。(板书课题)

  提问:看了这个课题,你有什么想法? 你对公倍数有哪些想法?对最小公倍数呢?

  引导:大家交流的想法,实际上是联系公因数和最大公因数进行联想,提出自己的想法。这样的学习方法可以帮助我们学好数学。那刚才大家的想法是不是正确呢?现在,我们一起来研究公倍数和最小公倍数。(板书课题)

  二、学习新知

  1.认识公倍数。

  (1)出示例11,让学生说说知道了些什么,提出的什么问题。

  引导:用长3厘米、宽2厘米的长方形铺两个正方形,哪个正好铺满,哪个不能铺满?看图想一想是为什么,你能不能根据自己的想法写出算式来说明理由,并和同桌互相说一说?

  交流:哪个正方形能正好铺满,哪个不能铺满?

  提问:联系铺满长方形的图形,观察列出的算式,你觉得6和3、2这两个数有怎样的关系?

  说明:6既是3的倍数,又是2的倍数,是3和2公有的倍数。

  (2)引导:想一想,这个长方形纸片还能正好铺满边长多少厘米的正方形?为什么?和同桌说说你的想法。

  交流:还能正好铺满边长多少厘米的正方形?你是怎样想的?(明确可以正好铺满边长12厘米、18厘米的正方形)

  你发现正方形的边长厘米数只要满足什么条件,就能用这个长方形正好铺满? 像这样能被正好铺满的正方形有多少个,能找得完吗?

  (3) 引导:现在你发现,6、12、18、24这些数和2、3都有什么关系?说说你的想法。 指出:同学们的理解还真不错!大家发现6、12、18、24这样的数,既是2的倍数,又是3的倍数,也就是2和3公有的倍数,我们称它们是2和3的公倍数。(板书:公倍数)

  追问:8是2和3的公倍数吗?为什么不是?

  那哪些数是2和3的公倍数呢?(板书:6,12 ,18,24是2和3的公倍数)为什么公倍数里要用省略号?你还能任意再说几个2和3的公倍数吗?

  2.求公倍数。

  出示例12,明确要找6和9的公倍数和最小的公倍数。

  让学生独立找出6和9的公倍数和最小的公倍数,与同桌交流自己的 方法。 交流:你是怎样找出6和9的公倍数和最小的公倍数的?

  结合学生交流,教师板书用不同方法找的过程和结论,使学生领会。

  小结:大家用不同的方法找出了6和9的'公倍数有18,36,54其中’最小的是18。 18是6和9的最小公倍数。

  追问:有没有最大的公倍数?为什么?

  说明:两个数的公倍数有无数个,没有最大的公倍数。两个数的公倍数里最小的一个,就是这两个数的最小公倍数。(板书:最小公倍数——公倍数中最小的一个)

  3.用集合图表示公倍数。

  引导:你也能用圆圈图表示6的倍数、9的倍数和公倍数的关系吗?自己画一画。 学生交流,呈现集合相交的图,(图见教材,略)分别标注出“6的倍数”“9的倍数”“6和9的公倍数”,并强调三个部分都有无数个数,都要用省略号表示。

  让学生看直观图说说,哪些数是6的倍数,哪些数是9的倍数,哪些数是6和9的公倍数,最小公倍数是几。

  指出:从图上可以直接看出,6和9公有的倍数,是它们的公倍数,其中最小的一个,是它们的最小公倍数。

  三、巩固深化

  1.做“练一练”第1题。

  2.做“练一练”第2题。

  3.做练习七第9题。

  4.做练习七第10题。

  四、总结提升

  引导:今今天学习的是什么内容?什么是两个数的公倍数和最小公倍数? 可以怎样找两个数的公倍数和最小公倍数?写公倍数时要注意什么?

五年级数学下册教案优秀6

  一、说教材

  《体积与容积》是北师大版五年级下册第41-42页的内容,是在学生已经认识了长方体和正方体的特点的基础上,学习了长方体和正方体的表面积计算之后的教学内容,《体积与容积》是学生进一步学习体积的计算方法等知识的基础,也是发展学生空间观念的重要载体。

  二、说教法:在教学中,我积极引导学生通过观察、操作,让学生手、眼、脑、口并用,调动多种感官参与学习,丰富学生的感性认识。建立有关体积和容积的正确表象,从而切实掌握所学的知识,为以后的进一步学习作好铺垫。

  三、说学法:

  学生自主探索、发现,小组交流

  四、说教学目标:

  1.知识与技能

  通过具体的实验活动,了解体积和容积的实际意义,初步理解体积和容积的概念。

  2过程与方法.

  在操作、交流中,感受物体体积的大小、发展空间观念。

  3.情感、态度与价值观

  增强学生的合作精神和喜爱数学的情感。

  五、说教学重点、难点

  重点:初步理解体积和容积的概念,以及它们的联系和区别。

  难点:建立体积和容积的表象。

  突破方法:通过演示,引导学生观察,使体积和容积的意义变得直观,容易理解。通过直观的比较使学生理解体积与容积的区别与联系。

  六、说教具

  两个量杯、两个大小不同的水杯、形状不同的石块、小正方体、水。有关课件、茶叶罐,可乐瓶等容器。

  七、说教学过程

  (一)质疑导入

  出示课件乌鸦喝水动画视频。

  师:看完了动画片,谁能说说乌鸦为什么能喝到水呢?水面为什么会上涨呢?是不是原来的水增加了?

  根据学生的回答引导学生概括出:小石子占了一定的空间。

  (二)探究新知

  1、初步感知,物体所占空间有大小。

  师: 我们周围所有的物体都占有一定的空间,只不过有的占的空间大,有的占的空间小。例如,课桌占的空间大,墨水瓶占得空间小;我占的空间大,粉笔头占的空间小;教室占的空间大,黑板擦占的空间小。你能这样的对比着举几个例子说一说吗?(同桌互说)

  (设计意图:让学生利用已有的生活经验,初步感知物体的大小,为下面的探索活动做好铺垫。)

  2、提出问题,讨论解决方法。

  出示两块形状不同的石块,(一块扁状,一块球形的)谁占的空间大呢?,(1)学生观察并独立思考。

  (2)指名说说看法。

  师:看来,只凭观察我们无法判断谁占的空间大,谁占的空间小了。那你能不能想想办法,看看究竟谁占的空间大呢?

  (设计意图:提出问题,让学生寻找解决问题的办法,把学习的主动权交还给学生,不仅增强了学生探索的兴趣,而且还培养了学生解决问题的策略意识和能力。)

  3、观察实验,感知体积的意义。

  演示:将两块石头放入两个装有同样多水的杯子里。

  师:说说你有什么发现?

  生口答后,师追问:

  师:水面为什么会升高呢?上升的高度一样吗?说明了什么问题?

  学生自由发表意见

  引导生理解:两块石块在量杯中都会占一定的空间。所占的空间大,水面上升的就高;所占空间小,水面上升的就少。

  从而揭示课题:物体所占空间的大小,叫作物体的体积。(同时出示课件)

  现在你能用“体积”这个词来分别说说课桌、墨水瓶、教室和黑板擦吗?如:课桌墨水瓶比,课桌的体积大,墨水瓶的体积小。。。。。。

  (设计意图:在活动中,学生深刻地感受到物体占有一定的空间,而且所占有空间的'大小不同。学生经历了实验、观察、交流等探究过程,感知了体积的实际含义。)

  4、认识容积。

  师:今天老师带来了这么多的物品,都可以用来装东西。如:可乐瓶,茶叶罐,水杯,胶水瓶,

  像量杯、纸箱、可乐瓶,茶叶罐这样能装其它东西的物体叫容器。你还知道哪些容器?哪些容器装的东西多,哪些容器装的东西少?(学生例举生活中的容器。)

  出示两个大小不同的装满水的水杯,问:哪个水杯装的水多?

  引导学生认识:两个杯子所能容纳物体的大小是不同的。

  揭示:容器所容纳物体的体积,叫作这个容器的容积。

  师:杯子里装满水,水的体积就是这个杯子的容积,茶叶罐装满茶叶,茶叶的体积就是这罐子的容积。

  5、区别体积和容积。

  出示:用来装小正方体的塑料盒和正方体教具。

  师:谁能指出这两个物体的体积和容积呢?

  交流中使学生明白:这两物体体积相同,但正方体教具没有容积。只有能够装东西的物体,才具有容积。引导学生发现:一般情况下,物体的容积比体积小。

  。

  出示课件:体积与容积的区别

  (设计意图:通过比较让学生感知“容积”和“体积”的联系和区别,理解知识间的内在联系,形成比较完整的认知结构。)

  (三)解决问题,巩固应用

  1、试一试(P42)

  出示两个相同小正方体让学生比较大小,然后用4个相同的小正方体,摆出形状不同的物体,让学生判断它们体积的大小。

  师:通过观察,你们发现什么规律?

  引导学生得出结论:体积的大小与物体所占空间的大小有关,与物体的形状无关。(同时出示课件)

  2、课件出示:(第42页“练一练”的第4题)

  (1)搭出两个物体,使它们的体积相同。

  (2)搭出两个物体,使其中一个物体的体积是另一个的2倍。

  (学生先独立按要求操作,然后同桌交流,最后全班交流。学生搭出的图形可能会不一样,这是教师可以引导学生发现体积相等,形状可能不一样,这样可以为下一题的练习打下基础。)

  3、说一说。(第42页“练一练”的第1、2题)

  (课件出示插图,让学生独立思考,再指名回答,说出理由。)

  4、想一想。(第42页“练一练”的第3题)

  (设计意图:练习的设计体现了层次性、科学性和趣味性。学生利用所学知识解释生活中的问题,是所学知识的拓展和延伸。)

  (四)评价体验

  今天这节课我们学习了什么内容?你有什么收获?对体积和容积的知识,你还想知道什么?你对自己这节课的表现满意吗?

五年级数学下册教案优秀7

  学习内容:

  长方体和正方体的表面积练习(教材26页第11~13题)

  学习目标:

  1.使学生熟练地掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题。

  2.培养学生分析、解决问题的能力,以及良好的思维品质。

  教学重点:

  掌握长方体和正方体表面积的计算方法,能灵活地解决一些实际问题

  教学难点:

  能灵活地解决一些实际问题

  教具运用:

  课件

  教学过程:

  一、复习导入

  1.如果告诉了长方体的长、宽、高,怎样求它的表面积?

  2. 如果要求正方体的表面积,需要知道什么?怎样求?

  3. 一个长4分米、宽3分米、高2分米的长方体,它占地面积最大是多少平方米?表面积是多少平方米?

  4.一只无盖的.长方形鱼缸,长0.4米,宽0.25米,深0.3米,做这只鱼缸至少要用玻璃多少平方米?

  二、课堂作业

  完成教材第26页第11~13题。

  1.第11题

  (1)分析题目的已知条件和问题。

  (2)粉刷教室要粉刷几个面?哪一个面不要粉刷?还要注意什么?

  (3)列式解答

  4[86+(83+63)2-11.4]

  =4[48+422-11.4]

  =4120.6=482.4(元)

  答:粉刷这个教室需要花费482.4元。

  2.第12题

  这是一道计算组合图形的表面积的题,提醒学生:两个图形重叠部分的面积不能算在表面积里。

  分析:前后面的面积是相等的,就是把3个长方体前面的面相加即可。

  左右两面也相等,实际上就是求中间这个长方体左右的两个面即可。

  解:涂黄油漆[40(65-10)+4065+4040]2

  =(2200+2600+1600)2=12800(cm2)

  涂红油漆40652+40403=5200+4800=10000(cm2)

  答:涂黄油漆的总面积为12800cm2,涂红油漆的面积为10000cm2。

  3.第13题

  提示:把一个长方体从中间截断,就可以分成两个正方体。

  让学生分别计算出长方体的表面积和切后的两个正方体的表面积和,再比较它们的表面积,看有没有发生变化。

  小结:截完后,增加了两个截面。所以,两个正方体的表面积大于原来长方体的表面积。

  三、课堂小结

  通过这节课的学习,你有什么收获?还有什么问题?

  四、课后作业

  完成练习册中本课时练习。

  板书设计:

  长方体和正方体的表面积(3)

  长方体的表面积(长宽+长高+宽高) 2

  正方体的表面积边长边长6

五年级数学下册教案优秀8

  教学目标:

  1、利用学生熟悉的生活情境,通过画图的方式,使学生找到打电话的最优方法。

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、进一步体会数学与生活的密切联系以及优化思想在生活中的应用。

  4、感受猜想与验证的重要性。体会理论上的最优与实践中的最优的区别。

  教学重点:

  理解打电话的各个方案并从中优化出最好的方案。

  教学难点:

  让学生通过画图的方式发现事物隐含的规律。

  一、谈话引入

  1、六一儿童节快到了,为了庆祝我们的节日,学校组织了一个15个人的合唱队。星期天,李老师接到学校紧急通知,要合唱队的15人去参加演出,怎么可以尽快地通知到这15个队员呢?”同学们帮忙想想办法吧!

  2、学生汇报想法。(师引导)

  3、小结入题,板书课题。

  为了更好地研究今天的这个问题,我们假设每一次通话要一分钟,每个学生都在家。那么你估计一下你最少要几分钟?(学生可自由猜测)

  二、探究新知

  先让学生想想都有哪些通知的方法?这里有必要引导学生说出两大种方法:平均分组和不平均分组。

  猜一猜:哪种方法快?比如平均分成3组和平均分成5组比,哪种快。是不是分的组数越多就越快?我们怎样才能比较出哪种方法最快?

  1、每个同学独立思考,把你所知道的方法都列出来,并比较一下,哪种方法最好,想一想,从刚才的比较中,你领悟到什么了没有?

  2、教师巡视,参与讨论,了解情况。

  3、反馈。学生分别说出自己找到的最好的方法。你刚才比较了几种方法?(设计意图:让学生把各种方法都列出来,再作比较,经历优化的过程)

  方案1要15分钟。这样肯定太慢了。那么用分组的方法怎么样呢?请用分组的同学说说你们的方案。

  方案2(1):5组,每组3人(要7分钟)

  方案2(2):3组,每组5人(要7分钟)这两种方案与之前你猜想的结果怎么样?是不是组分得越多就越快?有什么想说的吗?所以在猜想上,我们要大胆,要想出你尽可能的答案,然后再验证。如果每组分的人数不同呢,结果会怎样?

  方案2(3):4组(4、4、4、3)(要6分钟)

  方案2(4):3组(6、5、4)(要6分钟)

  这两种方法与前两种方法有什么不同?为什么时间会缩短?(每个组长都不会闲了)方案2(5):5组(5、4、3、2、1)(要5分钟)

  老师、组长和组员都不闲着,应该怎样设计方案呢?

  方案3:相互转告

  小组讨论,汇报结果。(设计意图:第二种方案的帮忙转告。汇报时,让学生说说自己都列举并比较了哪几种方案,认为哪种方案最好。只有让学生亲自去比较才能体会到优化的过程,使学生体验到优化是怎么一回事。让学生去比较了各种方案,学生也更容易得出各种方案优化的原因,从组长不空闲到老师、组长不空闲,再到老师、组长和组员接到通知的组员都不闲。

  三、发现规律

  这的确是个好办法,这个方案,你们发现有什么规律吗?

  1、仔细观察示意图,第一分钟时,有几人打电话?打完电话后接到通知的队员和老师共有多少人?除去教师,通知到几名学生?第二分钟呢?第三分钟呢?你发现了什么?每增加1分钟,新接到通知的队员人数有什么规律?

  2、你能找你的方法向大家介绍一下吗?

  发现一:每增加一分钟新接到通知的`队员数正好是前面所有接到通知的队员和老师的总数,也就是第n分钟新接到通知的队员数等于前(n-1)分钟内接到通知的队员和老师的总数。

  发现二:第n分钟所有接到通知的队员和老师的总数就是一个等比数列,通项公式为an=2n,发现三:第n分钟所有接到通知的队员总数就是(2n-1)人。

  四、应用规律

  1、既然大家都发现了这一规律,那么5分钟可以通知多少人?6分钟、7分钟呢?

  组织学生在小组中进行交流探讨,然后汇报。

  2、老师要通知50位学生来学校举行活动,如果用打电话的方式,最少需要多少分钟?

  五、联系生活,拓展延伸

  有人说“将一张足够大的纸连续对折二十五次,这摞纸的高度将超过南岳衡山的海拔高度”,他说的是真的吗?你能用本堂课学习的知识尝试解决吗?

  想想生活中还有哪些事物的数量是成倍增长的呢?

  板书设计:打电话

  教学后记:提醒学生在具体实施中还有个问题要解决,那就是要设计好打电话的顺序,也就是说每个队员要清楚他接到电话后,后面要怎样继续通知其他队员。因此这个方案还需要事先制定好一个打电话的流程示意图,让老师和每个队员都明确接到通知后,按照怎样的顺序通知后面的队员。只有严格按照事先制定好的方案执行,才能达到节省时间的目的。

五年级数学下册教案优秀9

  教材与学情分析:

  “观察物体”属于“图形与几何”领域的知识,本单元的主要学习内容是在前面经历了从不同角度观察实物和单个立体图形以及集合组合体的学习基础上,进一步学习根据从一个或多个方向观察到的图形拼搭出相应的几何组合体,借助操作,实现从二维到三维空间的转化,培养学生的空间观念。例1是根据给出的从一个方向看到的形状图,用给定数量的小正方体摆出相应的几何组合体。例2是根据给出的从三个方向看到的形状图,用小正方体摆出相应的几何组合图。

  学生经过二年级下册从不同角度观察实物,从不同角度观察单个立体图形的学习,以及四年级下册从3个不同的位置观察同一个几何组合体的学习。已经掌握了一些观察的方法、培养了一些操作的能力,积累了较丰富的数学基本活动经验。本节课的学习,旨在引导学生通过用小正方体拼搭几何组合体的活动,经历观察、操作、想象、猜测、分析和推理等过程,进一步积累活动经验,同时侧重积累学生的数学思维活动经验,提高学生的空间想象和推理能力,进一步发展空间观念。

  教学目标:

  1.根据从一个方向看到的平面图形,用小正方体摆出相应的几何组合体,体会摆法的多样性。

  2.进一步体会从三个方向观察就可以确定立体图形的形状,并还原立体图形。

  3.经历观察、操作、想象、猜测、分析和推理等过程,积累活动经验,提高学生的空间想象和推理能力,进一步发展空间观念。

  教学重点:

  根据看到的平面图形按要求摆出相应的立体图形。

  教学难点:

  借助空间想象还原立体图形。

  教学准备:

  课件、正方体教具、小正方体学具

  过程设计:

  一、创设情境,揭示课题

  师:同学们,我们先一起来看一个新闻:郑州(播放“纸片楼”新闻视频)

  师:在刚才的视频中,为什么有人会看到“纸片楼”呢?(学生答,教师随机点评。)

  师:看来我们观察一个物体,只从一个方向去看,是不能看到完整的形状的。那我们要从几个方位去看呢?今天我们就继续来观察物体。(课件出示,再板书贴)

  (设计意图:“纸片楼”新闻导入,激发兴趣,唤醒学生观察经验,为后续学习做准备。)

  二、自主活动,探究新知

  1.根据一个面摆放,体会摆法多样性。

  (1)出示探究内容

  师:请同学们看大屏幕,你们看到了什么?(出示正面观察图)

  师:如果这三个正方形是老师用正方体摆出来的,你知道我是怎么摆的吗?你能想象一下吗?

  学生想象,说可能性。

  师:现在老师要再告诉你们一个信息,其实我是用四个小正方体摆起来的,现在你们能确定我是怎么摆的吗?

  (2)龚婷婷《观察物体三》教学设计公开课学生操作探究:用4个小正方体,摆出从正面看是

  的图形。

  (3)全班汇报交流。

  小结:从正面看到这样三个小正方形的图形,用四个小正方体有很多种不同的摆法。

  (4)拓展空间想象。

  师:如果现在再增加一个5号小正方体,要求从正面看到的图形仍然是三个小正方形,可以怎么摆呢?(请生上台演示)

  小结:看来从一个方向观察,我们不能确定物体的.形状,因为会有很多很多种情况出现。【板书:一个方向,有很多很多种情况】

  2.根据两个面,依然不能确定摆法。

  师:那现在怎么办?(引导学生说出从其他方向看)

  小结:看来从两个方向观察,虽然可以缩小一些范围,但仍然不能确定物体的形状。因为它还是存有多种情况。【板书:两个方向,仍存有多种情况】

  3. 根据三个面,确定摆法。

  (1)三个方向,确定摆法。

  师:现在老师再告诉你从上面看到的图片,你能确定是哪个立体图形了吗?说说看,你们是怎么确定用4个小正方体摆出的图形的?请生上来摆一摆,并说想法 。

  师:为什么现在你们摆的都是一样呢?(出示确认4号位置的PPT)小结:看来,我们通过对三个面的逐次观察,就能确定老师摆出的立体图形。

  (2)应用体验。

  师:老师直接给大家三张图,你能还原出这个立体图形吗?(先让几个学生说一说自己想象出来的图形,再动手摆一摆。)

  师:能说说你是怎么想的吗? (请生上台演示)

  预设:先根据正面看到的图形摆出1号和2号,再根据侧面的图形确定3号可能的位置。

  小结有序观察的方法:“先”从正面看,“再”从左面看,“最后”从上面看。

  (设计意图:通过操作、想象与交流活动,让学生充分经历动手实践、动脑思考的过程,企图实现让学生由依赖几何直观逐步过渡到空间想象。并在活动过程中,培养学生观察发现、联系比较、分析推理、归纳概括的能力,获得基本的数学活动经验。)

  三、实践应用,拓展提升

  1. 哪些立体图形符合要求?

  师:刚才我们一直在借助小正方体还原立体图形,这一次我们不摆了,只在脑子里思考?看能不能还原出原来的立体图形!来看图。哪些立体图形符合要求?【出示课件】

  学生回答,教师再结合图示再次强调从三个面观察才能确定物体的形状。

  2. 把9个棱长是1厘米的小正方体拼摆在一起,如果从正面和后面看,所看到的图形面积之和是( )平方厘米。

  3. 小组合作还原出较复杂立体图形。

  (1)出示题目及合作要求

  (2)学生活动:先观察、想象,再摆放交流。

  (3)拓展:看来根据从三个方向看到的形状图来摆放立体图形,有时候还原的形状也不是唯一的,下节课我们在深入研究。

  (设计意图:通过3道练习题,进一步加深学生对知识与方法的应用,培养学生应用意识,发展空间观念。)

  四、课堂总结:

  这节课你有什么收获?还有什么问题吗?

  作业设计:(见学习单)

五年级数学下册教案优秀10

  教学目标:

  1、能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  2、学习整数乘以分数的计算方法,让学生亲自经历探究整数乘以分数的计算原理,学生能够熟练准确的计算整数乘以分数。

  3、使学生感受到分数乘法与生活的密切联系,培养学习数学的.良好兴趣。

  教学重点、难点:

  学生能够熟练的计算整数乘以分数

  教学方法:

  师生共同归纳和推理

  教学过程:

  一、复习导入:

  教师出示教学板书,请学生计算下列分数加减运算题。

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

  教师提问学生回答问题。(先通分,再进行分子与分子相加减;分母不变…)并注意更正学生的错误和表扬回答问题的同学。

  二、讲授新课

  同学们我们学习一种新的运算:分数乘法,让学生想一想什么是分数乘法?

  学生同桌之间讨论,教师提问学生回答问题。

  教师板书例题,让学生想一想如何计算?

  学生列出算式3×15=,学生同桌之间相互讨论,如何计算整数乘以分数?

  教师提问学生说一说自己是怎样计算的?

  教师和学生总结整数乘以分数的计算方法,整数乘以分数,只把整数乘以分子,分母不变。)

  三、巩固练习:

  做课本2页涂一涂,算一算,2个37的和是多少?

  让学生熟练计算,教师及时纠正学生错误的计算方法。

  做课本试一试1、2题。

  四、课堂小结 :

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  分数乘以整数的计算方法:整数乘以分数,用整数乘以分子的积做分子,分母不变。

  教学反思:

  设计,小学,五年级数学,北师大,教学

五年级数学下册教案优秀11

  一 教学内容

  众数

  教材第122 、123 页的内容及第124 、125 页练习二十四的第1-3题。

  二 教学目标

  1 .使学生理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。

  2 .能根据数据的具体情况,选择适当的统计量表示数据的不同特征。

  3 .体会统计在生活中的广泛应用,从而明确学习目的,培养学习的兴趣。

  三 重点难点

  1 .重点:理解众数的含义,会求一组数据的众数。

  2 .弄清平均数、中位数与众数的区别,能根据统计量进行简单的预测或作出决策。

  四 教具准备

  投影。

  五 教学过程

  (一)导入

  提问:在统计中,我们已学习过哪些统计量?(学生回忆)指出:前面,我们已经对平均数、中位数等一些统计量有了一定的认识。今天,我们继续研究统计的有关知识。

  (二)教学实施

  1 .出示教材第122 页的例1 。

  提问:你认为参赛队员身高是多少比较合适?

  学生分组进行讨论,然后派代表发言,进行汇报。

  学生会出现以下几种结论:

  ( l )算出平均数是1 . 475 ,认为身高接近1 . 475m的比较合适。

  ( 2 )算出这组数据的中位数是1 . 485 ,身高接近1 .485m比较合适。

  ( 3 )身高是1 .52m的人最多,所以身高是1 .52m左右比较合适。

  2 .老师指出:上面这组数据中,1 . 52 出现的次数最多,是这组数的众数。众数能够反映一组数据的集中情况。

  3 .提问:平均数、中位数和众数有什么联系与区别?

  学生比较,并用自己的语言进行概括,交流。

  老师总结并指出:描述一组数据的集中趋势,可以用平均数、中位数和众数,它们描述的角度和范围有所不同,在具体问题中,究竟采用哪种统计量来描述一组数据的集中趋势,要根据数据的特点及我们所关心的问题来确定。

  4 .指导学生完成教材第123 页的“做一做”。

  学生独立完成,并结合生活经验谈一谈自己的建议。

  5 .完成教材第124 页练习二十四的第1 、2 、3 题。

  学生独立计算平均数、中位数和众数,集体交流。

  (三)思维训练

  小军对居民楼中8 户居民在一个星期内使用塑料袋的数量进行了抽样调查,情况如下表。

  住户

  1 号

  2 号

  3 号

  4 号

  5 号

  6 号

  7 号

  8 号

  数量/个

  l5

  29

  l6

  2O

  22

  16

  18

  16

  ( 1 )计算出8 户居民在一个星期内使用塑料袋数量的平均数、中位数和众数。(可以使用计算器)

  ( 2 )根据他们使用塑料袋数量的情况,对楼中居民(共72 户)一个月内使用塑料袋的数量作出预测。

  第二课时

  一 教学内容

  众数

  教材第125 页练习二十四的第5、6 题。

  二 教学目标

  1 .能根据数据的具体情况,选择适当的统计量表示数据的不同特征。

  2 .体会统计在生活中的广泛应用,从而明确学习目的,培养学习的兴趣。

  三 重点难点

  1 .重点:理解众数的含义,会求一组数据的众数。

  2 .弄清平均数、中位数与众数的区别,能根据统计量进行简单的预测或作出决策。

  四 教具准备

  投影。

  五 练习过程

  (一)完成教材第125 页练习二十四的第4 题。

  学生先独立完成,说一说你发现了什么?

  指出:五(1 )班参赛选手的成绩有两个众数,88 和87 ,意味着在这次竞赛中得88 分和87 分的人同样多。而五(2 )班没有众数,则表示这次竞赛中没有集中的分数。在一组数据中,众数可能不止一个,也可能没有众数。

  (二)完成教材第125 页练习二十四的第5 题。

  学生先独立计算出平均数、中位数和众数,然后说一说用哪个数代表公司员工工资的一般水平比较合适?为什么?

  8 .完成教材第125 页练习二十四的'第6 题。

  学生以小组为单位,合作完成。先在课前调查本班学生所穿鞋子号码,然后填在统计表中,再进行分析。

  (三)课堂作业新设计

  1 .小明对本班15 名同学拥有课外书的情况进行了调查,结果如下:拥有2 本的有1 人,拥有3 本的有2 人,拥有4 本的有4 人,拥有5 本的有3 人,拥有6 本的有5 人。根据以上调查的情况,把下面的统计表填写完整。

  小明的同学拥有课外书的情况统计表

  20xx 年9 月人数

  人数

  平均每人拥有本数

  ( 1 )估算一下,这15 名同学平均拥有课外读物大约有几本?你估算的理由是什么?

  ( 2 )估算出这15 名同学拥有课外读物的平均数、中位数和众数。

  2 .小力对本单元10 户居民订报刊情况进行了调查,结果如下:没订任何报刊的有2 户,订1 份的有3 户,订2 份的有4 户,订3 份的有1 户。根据以上调查情况,把下面的统计表填写完整。

  本单元居民订报刊情况统计表20xx 年5 月

  户数

  每户订报刊份数

  ( 1 )想一想,平均每户订报份数是在1 ? 2 之间吗?为什么?

  ( 2 )计算出这10 户居民订报刊份数的平均数、中位数和众数。

  (五)课堂小结

  通过本节课的学习,我们认识了众数这一统计量,并且通过练习理解了平均数、中位数和众数这三个统计量的联系与区别,根据我们分析数据的不同需要,可以正确选择合适的统计量。

五年级数学下册教案优秀12

  一、教学目标

  通过这个综合应用,让学生进一步体会数学与生活的密 切联系以及优化思想在生活中的应用,培养学生应用数学知识解决实际问题的能力,同时通过画图的方式发现事物隐含的规律,培养学生归纳推理的思维能力。

  二、编排思想

  1.探索最优方案(每个人都不空闲)。

  2.发现规律(第n分钟接到电话的人数是前n-1分钟接到电话的`学生总数加1(老师),前n分钟接到电话的学生总数是2的n次方减1)。

  3.应用规律。

  三、教学建议

  1.小组合作学习,教师指导,全班汇报交流。

  2.提示学生利用画图表的直观形式解决问题。

  3.数学模型是一种理想化的理论,要事先设计好具体通知方案(包括每人的通知对象)和流程图。

五年级数学下册教案优秀13

  设计说明

  复习课既不像新授课那样有“新鲜感”,又不像练习课那样有“成就感”,还担负着查缺补漏、系统整理和巩固发展的任务。为了让每个学生都积极参与复习,在组织教学时,应该营造一个轻松、平等、和谐的学习氛围。让学生在独立思考、合作交流的过程中“温故而知新”。

  1.创造性地使用教材。

  在教学设计中,灵活地运用教材,既不要夸大它的作用,又不要削弱它的功能,要创造性地发挥它应有的功能。作为复习课,设计要有新意,要创造性地使用教材,因此本节课的教学设计进行了适当的处理,这样更符合本地区学生的实际需求。

  2.重视对学生解决问题能力的培养。

  教学中,把所学的知识进行回顾,然后利用这些知识来解决问题,结合教材习题逐一练习。通过练习,将学生所学的知识整理成知识网络,提高学生解决问题的能力。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙导入新课

  1.同学们,这节课我们结合教材习题,复习分数加减法这一单元的内容。想一想,这一单元我们都学习了哪些内容?

  2.学生独立思考后,在小组内交流。

  (异分母分数加减法的计算方法、分数加减混合运算的运算顺序及简算、分数与小数的互化三部分内容)

  3.小组汇报,全班交流,互相评价,呈现知识结构图。

  分数加减法

  设计意图:引导学生回顾分数加减法的相关知识,复习本节课中的知识点,在教师的引导下画出知识结构图,帮助学生建立这部分知识内容的知识网络,便于学生整理和记忆相关知识。

  ⊙整理复习

  1.复习异分母分数加减法的计算方法。

  (1)复习异分母分数加减法应注意什么?结合具体实例说一说。

  (2)先想一想异分母分数加减法应该怎样计算,再计算下面各题。

  + -

  结合上面的算式复习异分母分数加减法的计算方法:①异分母分数相加减:先通分,然后按同分母分数加减法的`计算方法进行计算;②分数加减法对计算结果的要求:能约分的要约成最简分数。

  (3)完成教材94页1题前两个小题的计算。

  + -

  解答: + -

  =+=-

  ==

  =

  2.复习分数加减混合运算的运算顺序。

  (1)先想一想分数加减混合运算应该怎样计算,再计算下面各题。

  +- -+

  1-- 1-

  ①复习分数加减混合运算的计算方法。

  在计算分数加减混合算式时,主要有以下两种方法:一是先将所有的分数全部通分,再进行计算;二是先通分需要进行通分的部分,再进行计算。

  ②复习分数加减混合运算的运算顺序。

  分数加减混合运算的运算顺序和整数加减混合运算的运算顺序相同。没有括号的,要按照从左到右的顺序依次进行计算;有括号的,要先算括号里面的,再算括号外面的。

  ③学生在小组内讨论、计算后交流结果。

  (2)完成教材94页3题最后一竖排两个小题。

  +- -

  =+-=-

  =- =-

  == =

  ①引导学生观察第2个小题,课件出示学生的不同解法。

  --

  =-- =--

  =- =-

  = =-

  =-

  =

  ②从上面的解法中,你发现了什么?

  学生讨论、交流后小结:整数加减法的运算定律对分数加减法同样适用。

  3.复习分数与小数的互化。

  先想一想分数、小数是怎样互化的,再计算下面各题。

  0.75=( ) =( )

  2.12=( ) 4=( )

【五年级数学下册教案优秀】相关文章:

数学下册教案02-02

五年级数学下册教案07-07

五年级下册数学教案03-28

苏教版小学数学五年级下册教案11-08

青岛版五年级数学下册教案07-28

小学五年级下册数学教案02-15

五年级数学下册教案15篇07-22

青岛版五年级数学下册教案01-06

(优选)五年级下册数学教案01-27

五年级下册《杨氏之子》优秀教案01-26