当前位置:9136范文网>教育范文>教案>高二数学优秀教案

高二数学优秀教案

时间:2024-12-17 09:48:11 教案 我要投稿

高二数学优秀教案

  作为一名人民教师,常常要写一份优秀的教案,教案是保证教学取得成功、提高教学质量的基本条件。如何把教案做到重点突出呢?以下是小编精心整理的高二数学优秀教案,希望对大家有所帮助。

高二数学优秀教案

高二数学优秀教案1

  一、教学目标

  1、知识与技能

  (1)理解流程图的顺序结构和选择结构。

  (2)能用文字语言表示算法,并能将算法用顺序结构和选择结构表示简单的流程图

  2、过程与方法

  学生通过模仿、操作、探索、经历设计流程图表达解决问题的过程,理解流程图的结构。

  3情感、态度与价值观

  学生通过动手作图。用自然语言表示算法,用图表示算法。进一步体会算法的基本思想程序化思想,在归纳概括中培养学生的逻辑思维能力。

  二、教学重点、难点

  重点:算法的顺序结构与选择结构。

  难点:用含有选择结构的`流程图表示算法。

  三、学法与教学用具

  学法:学生通过动手作图。用自然语言表示算法,用图表示算法,体会到用流程图表示算法,简洁、清晰、直观、便于检查,经历设计流程图表达解决问题的过程。进而学习顺序结构和选择结构表示简单的流程图。

  教学用具:尺规作图工具,多媒体。

  四、教学思路

  (一)、问题引入揭示课题

  例1尺规作图,确定线段的一个5等分点。

  要求:同桌一人作图,一人写算法,并请学生说出答案。

  提问:用文字语言写出算法有何感受?

  引导学生体验到:显得冗长,不方便、不简洁。

  教师说明:为了使算法的表述简洁、清晰、直观、便于检查,我们今天学习用一些通用图型符号构成一张图即流程图表示算法。

  本节要学习的是顺序结构与选择结构。

  右图即是同流程图表示的算法。

  (二)、观察类比理解课题

  1、投影介绍流程图的符号、名称及功能说明。

  符号符号名称功能说明终端框算法开始与结束处理框算法的各种处理操作判断框算法的各种转移

  输入输出框输入输出操作指向线指向另一操作

  2、讲授顺序结构及选择结构的概念及流程图

  (1)顺序结构

  依照步骤依次执行的一个算法

  流程图:

  (2)选择结构

  对条件进行判断来决定后面的步骤的结构

  流程图:

  3、用自然语言表示算法与用流程图表示算法的比较

  (1)半径为r的圆的面积公式当r=10时写出计算圆的面积的算法,并画出流程图。

  解:

  算法(自然语言)

  ①把10赋与r

  ②用公式求s

  ③输出s

  流程图

  (2)已知函数对于每输入一个X值都得到相应的函数值,写出算法并画流程图。

  算法:(语言表示)

  ①输入X值

  ②判断X的范围,若,用函数Y=x+1求函数值;否则用Y=2-x求函数值

  ③输出Y的值

  流程图

  小结:含有数学中需要分类讨论的或与分段函数有关的问题,均要用到选择结构。

  学生观察、类比、说出流程图与自然语言对比有何特点?(直观、清楚、便于检查和交流)

  (三)模仿操作经历课题

  1、用流程图表示确定线段A.B的一个16等分点

  2、分析讲解例2;

  分析:

  思考:有多少个选择结构?相应的流程图应如何表示?

  流程图:

  (四)归纳小结巩固课题

  1、顺序结构和选择结构的模式是怎样的?

  2、怎样用流程图表示算法。

  (五)练习P99 2

  (六)作业P99 1

高二数学优秀教案2

  教学目的:

  1、掌握常用基本不等式,并能用之证明不等式和求最值;

  2、掌握含绝对值的不等式的性质;

  3、会解简单的高次不等式、分式不等式、含绝对值的不等式、简单的无理不等式、指数不等式和对数不等式。学会运用数形结合、分类讨论、等价转换的思想方法分析和解决有关

  教学过程:

  一、复习引入:本章知识点

  二、讲解范例:几类常见的问题

  (一)含参数的不等式的解法

  例1解关于x的不等式。

  例2解关于x的不等式。

  例3解关于x的不等式。

  例4解关于x的不等式

  例5满足的`x的集合为A;满足的x

  的集合为B 1若AB求a的取值范围2若AB求a的取值范围3若AB为仅含一个元素的集合,求a的值。

  (二)函数的最值与值域

  例6求函数的最大值,下列解法是否正确?为什么?

  解一:,解二:当即时,例7若,求的最值。

  例8已知x,y为正实数,且成等差数列,成等比数列,求的取值范围。

  例9设且,求的最大值

  例10函数的最大值为9,最小值为1,求a,b的值。

  三、作业:

  1、

  2、,若,求a的取值范围

  3、

  4、

  5、当a在什么范围内方程:有两个不同的负根

  6、若方程的两根都对于2,求实数m的范围

  7、求下列函数的最值:

  1

  2

  8.1时求的最小值,的最小值

  2设,求的最大值

  3若,求的最大值

  4若且,求的最小值

  9、若,求证:的最小值为3

  10、制作一个容积为的圆柱形容器(有底有盖),问圆柱底半径和

  高各取多少时,用料最省?(不计加工时的损耗及接缝用料)

高二数学优秀教案3

  一、教材分析

  本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。

  根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

  认知目标:通过创设问题情境,引导学生发现正弦定理的内容,掌握正弦定理的内容及其证明方法,使学生会运用正弦定理解决两类基本的解三角形问题。

  能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的'创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

  情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,激发学生学习的兴趣。

  教学重点:正弦定理的内容,正弦定理的证明及基本应用。教学难点:已知两边和其中一边的对角解三角形时判断解的个数。

  二、教法

  根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

  三、学法

  指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。

  四、教学过程

  (一)创设情境(3分钟)

  “兴趣是的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题,(二)猜想—推理—证明(15分钟)

  激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。提问:那结论对任意三角形都适用吗?(让学生分小组讨论,并得出猜想)

  在三角形中,角与所对的边满足关系

  注意:

  1、强调将猜想转化为定理,需要严格的理论证明。

  2、鼓励学生通过作高转化为熟悉的直角三角形进行证明。

  3、提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

  (三)总结--应用(3分钟)

  1、正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

  2、运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

高二数学优秀教案4

  [核心必知]

  1、预习教材,问题导入

  根据以下提纲,预习教材P2~P5,回答下列问题。

  (1)对于一般的二元一次方程组a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何写出它的求解步骤?

  提示:分五步完成:

  第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③

  第二步,解③,得x=b2c1-b1c2a1b2-a2b1.

  第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④

  第四步,解④,得y=a1c2-a2c1a1b2-a2b1.

  第五步,得到方程组的解为x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.

  (2)在数学中算法通常指什么?

  提示:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。

  2、归纳总结,核心必记

  (1)算法的概念

  12世纪的算法指的是用阿拉伯数字进行算术运算的过程续表

  数学中的算法通常是指按照一定规则解决某一类问题的明确和有限的步骤

  现代算法通常可以编成计算机程序,让计算机执行并解决问题

  (2)设计算法的目的

  计算机解决任何问题都要依赖于算法。只有将解决问题的'过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题。

  [问题思考]

  (1)求解某一个问题的算法是否是的?

  提示:不是。

  (2)任何问题都可以设计算法解决吗?

  提示:不一定。

高二数学优秀教案5

  课题:命题

  课时:001

  课型:新授课

  教学目标

  1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;

  2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

  3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

  教学重点与难点

  重点:命题的概念、命题的构成

  难点:分清命题的条件、结论和判断命题的真假

  教学过程

  一、复习回顾

  引入:初中已学过命题的知识,请同学们回顾:什么叫做命题?

  二、新课教学

  下列语句的表述形式有什么特点?你能判断他们的真假吗?

  (1)若直线a∥b,则直线a与直线b没有公共点.

  (2)2+4=7.

  (3)垂直于同一条直线的两个平面平行.

  (4)若x2=1,则x=1.

  (5)两个全等三角形的面积相等.

  (6)3能被2整除.

  讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

  教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

  抽象、归纳:

  1、命题定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.

  命题的定义的要点:能判断真假的陈述句.

  在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的'理解.

  例1:判断下列语句是否为命题?

  (1)空集是任何集合的子集.

  (2)若整数a是素数,则是a奇数.

  (3)指数函数是增函数吗?

  (4)若平面上两条直线不相交,则这两条直线平行.

  (5)=-2.

  (6)x>15.

  让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.

  解略。

  引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?

  通过对此问的思考,学生将清晰地认识到定理、推论都是命题.

  过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。紧接着提出问题:命题是否也是由条件和结论两部分构成呢?

  2、命题的构成――条件和结论

  定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.

  例2:指出下列命题中的条件p和结论q,并判断各命题的真假.

  (1)若整数a能被2整除,则a是偶数.

  (2)若四边行是菱形,则它的对角线互相垂直平分.

  (3)若a>0,b>0,则a+b>0.

  (4)若a>0,b>0,则a+b<0.

  (5)垂直于同一条直线的两个平面平行.

  此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。

  此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.

  解略。

  过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.

  3、命题的分类

  真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.

  假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.

  强调:

  (1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.

  (2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。

  判断一个数学命题的真假方法:

  (1)数学中判定一个命题是真命题,要经过证明.

  (2)要判断一个命题是假命题,只需举一个反例即可.

  例3:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:

  (1)面积相等的两个三角形全等。

  (2)负数的立方是负数。

  (3)对顶角相等。

  分析:要把一个命题写成“若P,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若P,则q”的形式.解略。

  三、巩固练习:

  P4第2,3。

  四、作业:

  P8:习题1.1A组~第1题

  五、教学反思

  师生共同回忆本节的学习内容.

  1、什么叫命题?真命题?假命题?

  2、命题是由哪两部分构成的?

  3、怎样将命题写成“若P,则q”的形式.

  4、如何判断真假命题.

高二数学优秀教案6

  课题1.1.1命题及其关系(一)课型新授课

  目标

  1)知识方法目标

  了解命题的概念,2)能力目标

  会判断一个命题的真假,并会将一个命题改写成“若,则”的形式。

  重点

  难点

  1)重点:命题的改写

  2)难点:命题概念的理解,命题的条件与结论区分

  教法与学法

  教法:

  教学过程备注

  1、课题引入

  (创设情景)

  阅读下列语句,你能判断它们的真假吗?

  (1)矩形的对角线相等;

  (2)3;

  (3)3吗?

  (4)8是24的约数;

  (5)两条直线相交,有且只有一个交点;

  (6)他是个高个子。

  2、问题探究

  1)难点突破

  2)探究方式

  3)探究步骤

  4)高潮设计

  1、命题的概念:

  ①命题:可以判断真假的陈述句叫做命题(proposition)。

  上述6个语句中,(1)(2)(4)(5)(6)是命题。

  ②真命题:判断为真的语句叫做真命题(true proposition);

  假命题:判断为假的'语句叫做假命题(false proposition)。

  上述5个命题中,(2)是假命题,其它4个都是真命题。

  ③例1:判断下列语句中哪些是命题?是真命题还是假命题?

  (1)空集是任何集合的子集;

  (2)若整数是素数,则是奇数;

  (3)2小于或等于2;

  (4)对数函数是增函数吗?

  (5);

  (6)平面内不相交的两条直线一定平行;

  (7)明天下雨。

  (学生自练个别回答教师点评)

  ④探究:学生自我举出一些命题,并判断它们的真假。

  2、将一个命题改写成“若,则”的形式:

  ①例1中的(2)就是一个“若,则”的命题形式,我们把其中的叫做命题的'条件,叫做命题的结论。

  ②试将例1中的命题(6)改写成“若,则”的形式。

  ③例2:将下列命题改写成“若,则”的形式。

  (1)两条直线相交有且只有一个交点;

  (2)对顶角相等;

  (3)全等的两个三角形面积也相等。

  (学生自练个别回答教师点评)

  3、 小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若,则”的形式。

  引导学生归纳出命题的概念,强调判断一个语句是不是命题的两个关键点:是否符合“是陈述句”和“可以判断真假”。

  通过例子引导学生辨别命题,区分命题的条件和结论。改写为“若,则”的形式,为后续的学习打好基础。

  3、练习提高1.练习:教材P4 1、2、3

  师生互动

  4、作业设计

  作业:

  1、教材P8第1题

  2、作业本1-10

  5、课后反思

高二数学优秀教案7

  教学目标:

  1、理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

  2、掌握坐标法解决几何问题的步骤;体会坐标系的作用。

  教学重点:

  体会直角坐标系的作用。

  教学难点

  能够建立适当的直角坐标系,解决数学问题。

  授课类型:

  新授课

  教学模式:

  启发、诱导发现教学。

  教具:

  多媒体、实物投影仪

  教学过程:

  一、复习引入:

  情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

  情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

  问题1:如何刻画一个几何图形的位置?

  问题2:如何创建坐标系?

  二、学生活动

  学生回顾

  刻画一个几何图形的位置,需要设定一个参照系

  1、数轴它使直线上任一点P都可以由惟一的实数x确定

  2、平面直角坐标系

  在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定。

  3、空间直角坐标系

  在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。

  三、讲解新课:

  1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

  任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

  2、确定点的位置就是求出这个点在设定的坐标系中的坐标

  四、数学运用

  例1选择适当的平面直角坐标系,表示边长为1的正六边形的.顶点。

  变式训练

  如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置

  例2已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区。试问:埋设地下管线m的计划需要修改吗?

  变式训练

  1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程

  2在面积为1的中,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程

  例3已知Q(a,b),分别按下列条件求出P的坐标

  (1)P是点Q关于点M(m,n)的对称点

  (2)P是点Q关于直线l:x-y+4=0的对称点(Q不在直线1上)

  变式训练

  用两种以上的方法证明:三角形的三条高线交于一点。

  思考

  通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

  五、小结:本节课学习了以下内容:

  1.平面直角坐标系的意义。

  2、利用平面直角坐标系解决相应的数学问题。

【高二数学优秀教案】相关文章:

高二数学教案(优秀2篇)03-24

高二数学教案11-28

高二数学教学反思优秀10-25

高二数学教案模板10-24

关于高二数学教案10-18

高二物理优秀教案10-17

高二数学教学反思优秀(优)05-12

职高高二数学教案04-22

初中数学优秀教案优秀06-19