当前位置:9136范文网>教育范文>教学反思>八年级数学教学反思

八年级数学教学反思

时间:2022-06-21 18:41:07 教学反思 我要投稿

八年级数学教学反思(15篇)

  作为一名人民教师,课堂教学是我们的任务之一,写教学反思能总结教学过程中的很多讲课技巧,优秀的教学反思都具备一些什么特点呢?下面是小编帮大家整理的八年级数学教学反思,欢迎阅读,希望大家能够喜欢。

八年级数学教学反思(15篇)

八年级数学教学反思1

  一、要创造性地使用教材

  教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行调整。本节教材中的引例分式方程较复杂,学生直接探索它的解法有些困难。我是从简单的整式方程引出分式方程后,再引导学生探究它的解法。这样很轻松地找到新知识的'切入点:用等式性质去分母,转化为整式方程再求解。因此,学生学的效果也较好。

  二、相信学生并为学生提供充分展示自己的机会

  学生已经学习了一元一次去探究分式方程的解法及分式方程检验的必要性。

  三、注意改进的地方

  讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步。

八年级数学教学反思2

  新课程改革的不断深入,要求我们教师有全新的教育理念,全面的教育教学此文转自能力,全新的教学行为。为此,政府、教育行政部门以及学校对教师进行各层次各方面的教育教学此文转自培训,以期提高教师的专业水平,推进教师的专业发展,使我们能够真正肩负起实施新课程的重任。

  因此,我们教师必须在此基础上,通过各种方式实现自我完善,以推进自己的专业发展。而在众多自我完善的方式中,教学反思无疑是非常有效的一种。但教师的个人反思活动属于个体反思,由于受到自身素质、观察视角、知识与经验、专业发展水平等因素的影响,其反思内容及程度均较低。为此,在教师个人反思的基础上,引入“集体反思”非常必要。“个人智慧不过是草间露珠,集体智慧才是长河流水”。“集体反思”能够有效弥补教师个人反思的不足,利用集体的`智慧,共同激活每一位教师的教学智慧。它能够集思广益,在交流和碰撞中可以相互启迪,共同提高。只有把个人反思融入到“集体反思”中,个体反思才有更广泛的价值,个体从“集体反思”中获得更多的收获。

  同时,“集体反思”能够在教师教育教学此文转自培训和自我完善之间建立起有效的联系,使集体培训与个人成长有效整合,共同推进教师的专业发展。

八年级数学教学反思3

  《矩形的判定》一课,是在学习了《平行四边形的判定》以后提出的。因为有了学习平行四边形的判定方法做为基础,所以本节课采用了“类比学习”的'方法,引导学生通过“类比学习”的方法进行新知的探索与学习。在设计中,通过平行四边形的演示活动引出主题“矩形”,运用回忆的方法,对“矩形的定义及性质”进行了预备知识检测,再对矩形的判定方法进行猜想与验证,紧接下来设计了几道练习题让学生学以致用,最后用一流程图进行了小结。

  在设计中,我一直想要抓住发展学生数学思维,让学生有足够的时间去思索猜想新知验证新知,课堂上也看到了学生们在积极认真的思考问题,但是因部分学生的基础比较差,对于探索证明的方法还是有些欠缺,加上课堂上关于逻辑思维的证明引导的不够充分彻底,不能够为学生做好充分的铺垫,所以部分学生感觉推理困难,这是最遗憾的地方。在学生应用判定定理做习题中,也没有能够有足够的时间汇总巡视学生做题中出现的共性问题进行讨论,只是做个别指导。等等的问题,在今后教学中,自己一定要更加的注意这些问题的出现并想办法解决,让教学中的“遗憾”少一些。

八年级数学教学反思4

  从经验中学习是每一个人天天都在做而且应当做的事情,然而经验本身的局限性也是很明显的,就数学教学活动而言,单纯依赖经验教学实际上只是将教学实际当作一个操作性活动,即依赖已有经验或套用学习理论而缺乏教学分析的简单重复活动;将教学作为一种技术,按照既定的程序和一定的练习使之自动化。它使教师的教学决策是反应的而非反思的、直觉的而非理性的,例行的而非自觉的。

  这样从事教学活动,我们可称之为“经验型”的,认为自己的教学行为传递的信息与学生领会的含义相同,而事实上这样往往是不准确的,因为师生之间在数学知识、数学活动经验、这会社会阅历等方面的差异使得这样的感觉通常是不可靠的,甚至是错误的。

  我们在上课、评卷、答疑解难时,我们自以为讲清楚明白了,学生受到了一定的启发,但反思后发现,自己的讲解并没有很好的.针对学生原有的知识水平,从根本上解决学生存在的问题,只是一味的想要他们按照某个固定的程序去解决某一类问题,学生当时也许明白了,但并没有理解问题的本质性的东西。

八年级数学教学反思5

  每年都有不一样的感受和反思,教学中感受颇深的是学生对于数学的学习。对数学感兴趣的很少,中游一部分学生数学成绩平平,很多同学数学不入门更不要说兴趣了。由于个体差异、智商差异、理解潜力差异等,产生了不少的学困生。因此,转化学困生成了我们数学老师普遍关注的问题。在新科该下应当采取相应有效的措施,改善教学方式和策略,对学困生进行转化。下方我结合自我近几年来的教学实践,对学困生的成因及转化对策,谈一下自我的看法。

  一、数学学困生构成的原因分析

  数学学困生构成的原因是复杂的、也是多方面的。我认为大部分学困生是后天构成的,主要集中表此刻以下几个方面:

  1、缺乏兴趣

  进入初中以后,由于课程增多,对于数学基础差的学生来说学习的困难就更大了,书看不动,题不会解。再说数学是一门比较抽象,逻辑性较强的学科,学生容易觉得枯燥无味,从而丧失学习兴趣。

  2、学习目的不明确

  学困生由于升学无望,认为读书无用,无心学习。因此缺乏进取心,没有乐观向上、用心进取的良好心态。上课不愿听讲甚至违反纪律,对自我失去信心,自暴自弃,结果导致数学成绩越来越差。

  3、学习意志不坚强

  进入初中以后,有的学生适应潜力比较差,表此刻学习情感脆弱,意志不够坚强,遇到困难和和挫折就退缩,甚至丧失信心。

  4、学习品质差

  学习品质是决定数学成绩好坏的一个重要因素。有的学生在学习上缺乏主动,不能持续的听课,自控潜力差,学习被动,无自觉性,情绪不稳定,上课注意力不集中,平时贪玩好动,态度消极,敷衍应付。

  5、父母因素

  此刻初中生独生子女占比例较大,一方面家长“望子成龙,盼女成凤”心切,他们对子女期望过高,超出学生现有潜力,个性是在农村,家长忙于挣钱忙于农活对孩子教育不够,没有好的教育方法,成绩差就实行暴力。另一方面又过分溺爱,造成学生复杂的心理矛盾,构成自私、蛮横的不良习惯,没有吃苦耐劳的、刻苦学习的精神。

  二、数学学能的转化对策

  1、抓好入门知识,降低难度

  在教学中,在入门出我适当放慢进度,降低难度。适当对教材作处理,从具体入手,从简单入手,在一步步提高难度。

  2、创设问题情境,激发学生学习兴趣

  数学课要善于创设情境,满足不一样学生的心理要求,使每一个学生充满强烈的求知欲。例如,我在上《轴对称图形》时,提出这样一个问题:“在一段笔直的公路两旁有A、B两个村庄,为了方便果农卖果,收购商定在公路旁设一个收购点P,使点P到两个村庄A、B的距离相等,收购点P应设在何处呢?你会画吗?”学生透过自我探究,他们发现要解决这个问题,用前面的知识是无法完成的,务必学习新知识,利用新知识才能解决新问题,这样学生就有了学习的动力。

  3、关爱学生,用感情唤起学生学好数学的热情

  别林斯基以前说过:“爱是教育的工具和媒介,对孩子的信任是教育成功的保障。”学困生在心理上更需要教师的关爱、呵护、理解和信任。课堂上教师的目光应多投向学困生,充满信任和期望,发现和欣赏每个学困生的闪光点、关注他们的进步。同时注重师生的情感交流,课后多找学困生谈心,关心他们的学习和生活,了解他们的思想动态,用爱心与真情唤起他们学好数学的热情。

  4、构建和谐的师生关系,使学生体会成功喜悦

  以人为本,构建和谐师生关系是保证和促进学习的重要因素。学生往往是因为不喜欢某任科教师而放下对该科的学习。因此,要善于用爱心去感染学困生,对他们热情辅导,真诚帮忙,与他们进行心理交流,和他们交朋友,从精神上多鼓励,学法上多指导。当他们有所进步,及时给予肯定、表扬和鼓励,使他们体验到成功的喜悦,让他们尝到收获的甜头,使他们感到“我能行”,“我并不比别人差”。从而培养了他们的自信心和自尊心的,到达逐步转化学困生的`目的。

  5、教给学生正确的学习方法

  学困生之所以学习困难,重要的原因是因为学习意志不强,没有脚踏实地、一步一个脚印地学,更不明白如何去学。教学中要个性注意教给学困生学习的方法,“授之以鱼不如授之以渔”。教给他们如何预习、听课、复习、做作业、观察、归纳等方法,对他们进行耐心、细致的指导,有意识地培养正确的数学学习方法,加强学法指导和学习心理辅导,促使他们愿学、想学,最后到达爱学、会学的目的。

  总之,转化学困生是一个长期而又艰巨的任务,在数学教学中只要找准学困生的成因,认真分析他们的心理因素,采取有效措施,用心做好学困生的转化工作。把爱心献给每一个学困生,透过努力,绝大部分学困生是能够转化的,教师所付出的劳动也会有回报的。

八年级数学教学反思6

  新课改理念下,课堂教学除了传统的知识与技能目标之外,还有过程与方法目标、情感、态度和价值观目标。三维目标,特别是后两者如何落实?

  我认为,这个问题不可一概而论,因为虽然每节课都有三维目标,但每节课的目标侧重点会因教学内容、学生情况而有所不同。对数学课来说,知识与技能是基础,思维能力的培养是核心,方法、情感、态度和价值观以及目标的实现都要依赖思维水平的发展。所以数学课必须在教学中揭示概念、定理、命题、公式、解法的形成、探索过程,而不是让学生仅仅通过模仿、重复训练达到会算即可,甚至死记硬背。

  本课有三个概念,对每个概念,都通过情景展示概念产生的背景(必要性),但根据概念特点,处理方式又有不同:数据的“波动性”重在理解和形象感受,通过散点图和比喻让学生理解;“极差”比较简单,则直接说明;最难的“方差”,则通过步步深入的问题,引导学生体会确定方差公式的`困难,让学生参与选择,最终理解方差公式的合理性。这样,学生不仅会算,还知道为什么这样算,还知道除了方差,还有其他选择,更重要的但也是最不明显的,在选择方差公式的过程中,体会了数学的合理性、严谨性,学习了面临困难和选择时的处理方法。所以说,概念也是训练思维的好材料。

八年级数学教学反思7

  教学前的反思

  1、自己或他人以前在执教这一教学内容(或相关内容)时曾遇到过哪些问题?这些问题是采用什么策略和方法解决的?其效果如何?

  2、根据自己所教班级学生的实际,学生在学习这一教学内容时,可能会遇到哪些新的问题?针对这些新问题,可采取哪些策略和方法?

  教学中的反思

  3、学生在学习教学的重点和难点时,出现了哪些意想不到的.障碍?你是如何机智地处理这些问题的?

  4、教学中师生之间、学生之间出现争议时,你将如何处理?

  5、当提问学习能力较弱的学生,该生不能按计划时间回答时,你将如何调整原先的教学设计?

  6、学生在课堂上讨论某一问题时,思维异常活跃,如果让学生继续讨论下去就不能完成预定的教学任务,针对这种情况,你将如何进行有效的调控?

  教学后的反思

  7、教学目标是否以促进学生的发展为根本宗旨?

  8、教学内容是否科学合理?

  9、教学方法是否以学生为主体?

  10、教学是否体现新课程理念?

八年级数学教学反思8

  通过一学年的教学,从自身的教学反思和教学总结中、结合学生的学习情况,对本册教学的总体进行回顾。总结成败得失,看到自身教学中所存在的不足,从而提高自身的教学能力。 本册教学共七个单元,教学内容上从四则混合运算和应用题的基础上加深其复杂程度,并应用于实际生活。在平行四边形、三角形、和梯形的认识和它们面积计算上,培养学生的空间能力的形成,并为以后的学习找下基础。本册教学重点是小数的意义和性质是本册教学的重点。

  一学期中教学措施:

  一、在各单元的教学中首先加强基础知识的教学,重视对基本概念的教学,小学数学的基本概念是进一步学习的基础,是教学必学内容。重视这方面的教学有助于学生形成正确的'分析和判断能力,能正确地分析,这是学习数学必备的能力。

  二、重视对数学能力的培养

  学会灵活运用各种方法是提高计算能力的基础。在教学中练习中要求学生能灵活地运用各种方法的前提下,能简便的要用简便方法做,小数加减法,要求学生在掌握计算方法的基础上,通过练习,能比较熟练地进行计算,通过练习加强学生的计算能力。

  三、注重联系

  在学生理解和掌握数学知识斩前提下,把学到的数学知识应用到生活中,切实地解决实际问题。

  教学后的思考和反思:

  在课堂教学中或者每次单元考试后,各个单元都暴露出一些问题。计算不过关、学生理解能力不够强、空间观念不强、学生的学习习惯和学习能力上所存在的问题。从期末试卷中所反映出来的问题中。在今后的数学教学中还是要从以下几方面着手。

  整体的数学教学还是要从最基础的抓起,计算是基础中的基础。从试卷上所反映出来的问题说明本班学生在最基本的计算上还有待于加强。其次是培养学生分析问题的能力,解题的关健是会分析,分析能力的提高,才能更有效地解决问题的。再次学生的形象思维能力还有待于加强,对于图形题、作图题这类比较抽象的空间思维能力的题,学生的解决能力还存在欠缺。我们学习数学的目的就是为了解决问题。在解决问题还要加强学生分析问题、概括问题、发现问题的能力,在教学中多重视学生的反馈,注重学生学习能力的培养。最后还是要从自身教学水平和教学能力上去分析,加强业务学习,注重课堂教学,认真对待每一次的教学,及时反思,及时总结

八年级数学教学反思9

  在沈阳抚顺的研讨会上,本人承担了《变量与函数》的教学任务。之前,我分别在本校与广州开发区中学分别上了一堂课。三节课,是一个实践、反思、改进、再实践的过程。经过课题组的点评与讨论,本人对概念课的教学设计与教学实践有了更深入的了解。

  本设计呈现的课堂结构为:

  (1)揭示学习目标;

  (2)引入数学原型;

  (3)抽象出数学现实,逐步达致数学形式化的概念;

  (4)巩固概念练习(概念辨析);

  (5)小结(质疑)。

  1、如何揭示学习目标

  概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?

  数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入。初中涉及的函数概念的核心是“量与量之间的特殊对应关系”。本课中,本人在导言中提出两个问题:“引例1,《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高。你知道其中的道理吗?”、“引例2,我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外。问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系。上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的“特殊关系”。数学研究有时从最简单、特殊的情况入手,化繁为简。让学生明确,这一节课我们只研究两个量之间的特殊对应关系。“特殊在什么地方?”学生需带着这样的问题开始这一课的学习。

  函数概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法。当然,这里的问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容。

  2、如何选取合适的数学原型

  从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单。真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童话故事等。简洁、简单指的是问题的表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质。

  本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题2,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示)。这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念。

  由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例。

  对于繁难的概念,我们更应注重为学生构建学生所熟悉的、简单的数学现实,化繁为简、化抽象为形象。过难、过繁的背景会成为学生学习抽象新概念的'拦路虎。

  3、如何引领学生经历数学化、形式化的过程

  “数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境。但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节。从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题。本人在学生完成问题情境的几个问题后,提出系列问题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?通过哪一个量可以确定另一个量?”

  在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量。由问题1~3的共性“单值对应关系”与“脚印与身高”问题中反映的“一对多关系”进行对比抽象出函数的概念,逐步了解如何给数学概念下定义,并理解概念的本质特征。

  4、如何引用反例

  学生对概念的理解需要经历一个从模糊到清晰的过程,通过正例与反例的对照,才能准确理解概念的内涵。反例引用的时机、反例的量要恰到好处。过早、过多的反例会干扰学生对概念的准确理解。

  概念生成的前期提供的各种量的关系中的实例提供的是一个更为广泛的背景,让学生经历从各种关系中抽象出“特殊的单值对应关系”,从而体会产生函数概念的背景。这样的引入有利于避免概念教学中“一个定义,三点注意”的倾向。

  在本校上课时,从“气温问题”中的函数图象引导学生发现时间t取定一个值时,所得T的对应值只有一个,学生习惯性地提出问题“温度T取定一个值时,时间t是否唯一确定?”全体同学从正反两个方面认识“唯一确定”的含义,在这样的基础上再归纳出函数的定义,学生较好地掌握函数中的单值对应关系。

  在广州开发区中学上课时,在概念的形成前期,忙中出漏,没有抓住“气温问题”中的函数图象讲解“唯一确定”,特别是没有从反面(温度T=8,时间t=12~14)帮助学生理解“唯一性”,也没有强化“脚印与身高”反映的“一对多关系”,只在涉及“单值对应关系”的实例基础上引出概念,也跳过后面提到的三个反例,学生在后面的概念辨析练习中错漏较多,为纠正学生的理解花了九牛二虎之力。

  在抚顺上课时,在完成例1、例2的教学后,还用到如下反例:问题2变式“在这次数学测试中,成绩是学号的函数吗?”、问题3变式“北京春季某一天的时间t是气温T的函数吗?”、练习2(3)变式“汽车以60千米/秒的速度匀速行驶,t是s的函数吗?”,学生借助这三个逆向变式,根据生活经验理解“两个量间的对应关系”是否为“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数的关系,更重要的是让学生养成逆向思维的习惯。

八年级数学教学反思10

  新课程改革要求我们:将数学教学置身于学生自主探究与合作交流的数学活动中,将知识的获取与能力的培养置身于学生形式各异的探索经历中,关注学生探索过程中的情感体验,并发展实践能力及创新意识,为学生的终身学习及可持续发展奠定坚实的基础。

  首先讲解勾股定理的重要性,让学生明白勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础。它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+ b2= c2)堪称数形结合的典范,在理论上占有重要地位,从而激发学生的求知欲。

  一、精心编制数学教学目标知识与技能:1.让学生在经历探索定理的过程中,理解并掌握勾股定理的内容;2.掌握勾股定理的证明及介绍相关史料;3.学生能对勾股定理进行简单计算。

  过程与方法:在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,发展合情推理能力,并体会数形结合和特殊到一般的思想方法。

  情感态度与价值观:体会数学文化的价值,通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感,激发学生发奋学习。

  二、优化数学教学内容的.呈现方式(一)创设问题情境,引导学生思考,激发学习兴趣。

  1.2002年国际数学家大会在北京举行的意义。

  2.电脑显示:ICM20xx会标。

  3. 会标设计与赵爽弦图。

  4. 赵爽弦图与《周髀算经》中的“商高问题”。

  (二)通过学生动手操作,观察分析,实践猜想,合作交流,人人参与活动,体验并感悟“图形”和“数量”之间的相互联系。

  1.观察网格上的图形:分别以直角三角形的三边向外作正方形,三个正方形的面积关系。再利用几何画板演示,引导学生去观察,大胆的猜测。

  2.引导学生将正方形的面积与三角形的边长联系起来,让学生进行分析、归纳,鼓励学生用用语言表达自己的发现。采取“个人思考——小组活动——全班交流”的形式。

  3.让学生自己任画一个直角三角形,再次验证自己的发现,在此基础上得到直角三角形三边的关系。

  4.电脑演示:锐角三角形、钝角三角形三边的平方关系,从而进一步认识直角三角形三边的关系。

  5.通过几个练习,了解直角三角形三边关系的作用。

  (三)继续动手操作实践,思考探究,拼图验证猜想。

  1.学生动手用准备好的四个直角三角形拼弦图。

  2.利用弦图来验证勾股定理。采取“个人思考——小组活动——全班交流”的形式。

  (四)拓展延伸,发挥作为千古第一定理的文化价值。

  1.简单介绍勾股定理的文化价值。

  2.阅读:勾股定理成为地球人与“外星人”联系的“使者”。

  3.电脑演示:欣赏勾股树。

  4.推荐进一步课外学习的网址。

  5.与课头的“ICM20xx”在中国举行的意义首尾呼应,进一步激发学生追求远大目标,奋发学习。

  本节课开始我利用了导语中的在北京召开的20xx年国际数学家大会的会标,其图案为“弦图”,激发学生的兴趣。同时出示勾股定理的图形,让学生猜想直角三角形三边之间的关系。然后利用正方形网格验证猜想的正确性,还利用教具在黑板上拼图,启发学生用面积法得出a2+ b2= c2在讲解勾股定理的结论时,为了让学生更好地理解和掌握勾股定理的探索过程,先让学生自己进行探索,然后同学进行讨论,最后上台演示。这样可以加深学生的参与,也让师生间、生生间有了互动。然后老师利用多种证法让学生参与勾股定理的探索过程,让学生自己感觉并最后体会到勾股定理的结论,使得这课的重难点轻易地突破,大大提高教学效率,培养了学生的解决问题的能力和创新能力。

八年级数学教学反思11

  函数是中学数学中的重要概念、它既是从客观现实中抽象出来的,又超越了千变万化的客体的个性,其内涵极为深刻,外延又极为广泛、所以它既是重点,又是难点、教学时,教师应采取以下有效的措施:

  1、注重概念的引入

  为引入函数概念,课本上讲了四个例子,教师可根据学生的实际再增加一些例子、对每个例子都要进行分析,揭示它们的共同特性:

  (1)问题中所研究的两个变量是互相联系的;

  (2)其中一个变量变化时,另一个变量也随着发生变化;

  (3)对第一个变量在某一范围内的每一个确定的值,第二个变量都有唯一确定的值与它对应、

  2、准确理解定义

  课本中函数的定义包含着三层意思:

  (1)“x在某一范围内的每一个确定的值”,是说自变量是在某一范围内变化的,它揭示了自变量的取值范围;

  (2)“y都有唯一确定的值和它对应”,它既揭示了所研究的函数是单值函数,又反映了两个变量间有着一个相互依存的关系,即函数的对应法则;

  (3)谁是谁的函数要搞清、定义中说的是“y是x的函数”、

  3、不断深化概念

  在几类具体函数的研究过程中,要注重把所得的具体函数与函数的定义进行对照,使学生进一步加深对函数概念的理解、

  4、强化函数性质的应用

  不同的函数有不同的.特性,探求并掌握一个新函数的性质是我们追求的目标、在掌握函数性质的同时,要注重强化学生应用函数性质的意识、应用函数性质时还应注意以下两点:

  (1)、借助函数解题

  我们知道,代数式、方程、不等式与函数有着密切的关系,因此可构造函数,利用函数的性质解决有关的问题、例如构造二次函数研究一元二次方程根的分布问题、解一元二次不等式等、

  (2)、利用函数解决实际问题

  利用函数知识解实际问题是近几年高考出题的热点、这类题目可以培养学生综合运用

  知识的能力,增强学生用数学的意识、但教材中这类题目设计得较少,应根据学生的实际补充一定的例题或习题、

  5、加强数学思想方法的教学

  新大纲把数学思想方法纳入数学基础知识的范畴,因此要加强数学思想方法的教学、函数这一章主要体现了以下思想或方法:

  配方法、这一方法要求所有的学生都要掌握、

  待定系数法、这一方法是求函数解析式的重要方法,要切实掌握、教学中,还可以根据学生的实际,介绍待定系数在其他方面的应用、

  数形结合法、数形结合是数学的重要思想方法、在几类具体函数的研究过程中,要始终抓住数与形的结合,即根据解析式画出图形,又依靠图形揭示函数的性质、数形结合也是一种重要的解题方法,要引导学生利用数形结合法解题,以开发智力、培养能力。

八年级数学教学反思12

  一、完成的教学内容如下:

  第十六章二次根式:本章主要内容是二次根式的概念、性质、化简和有关的计算。本章重点是理解二次根式的性质,及二次根式的化简和计算。本章的难点是正确理解二次根式的性质和运算法则。

  第十七章勾股定理本章的主要内容是勾股定理及逆定理的概念。本章要使学生能运用勾股定理解决简单问题、用勾股定理的逆定理判定直角三角形。同时注重介绍数学文化。本章的重点是勾股定理及其证明,直角三角形的边角关系,难点是运用灵活运用勾股定理解决实际问题。

  第十八章平行四边形本章的主要内容是掌握各种四边形的概念、性质、判定及它们之间的关系并能应用相关知识进行证明和计算。本章的重点是平行四边形的定义、性质和判定。难点是平行四边形与各种特殊平行四边形之间的联系和区别。本章的教学内容联系比较紧密,研究问题的思路和方法也类似,推理论证的难度也不大,教学中要注意用“集合”的思想,分清平行四边形的从属关系,梳理它们的性质和判定方法。

  共进行了三次单元测试。

  二、教学中的亮点:

  1、改变学生的学习状态,在教学中更重要的是关注学生的学习过程以及情感、态度、价值观、能力等方面的发展。

  就学习数学而言,学生一旦"学会",享受到教学活动的成功喜悦,便会强化学习动机,从而更喜欢数学。因此,教学设计要促使学生的情感和兴趣始终处于最佳状态,从而保证施教活动的有效性和预见性。

  2、重视学习动机在教学过程中的激励作用,通过激发学生的参与热情,逐步强化学生的参与意识。学生学知识是为了用知识。但长期的应试教育使大多数学生不知道为什么学数学,学数学有什么用。因此在教学时,应针对学生的年龄特点、心理特征,密切联系学生的生活实际,精心创设情境,让学生在实际生活中运用数学知识,切实提高学生解决实际问题的能力。使大家都能深深感受到"人人学有用的数学"的新理念。经常这样训练,使学生深刻地认识到数学对于我们的生活有多么重要,学数学的价值有多大,从而激发了他们学好数学的强烈欲望,变"学数学"为"用数学"。

  三、教学中的不足:

  重视实践活动在教学过程中的启智功能,通过观察、思考、讨论等形式诱导学生参与知识形成发展的全过程,尽可能增加学生的参与机会。

  在数学教学中,促使学生眼、耳、鼻、舌、身多种感官并用,让学生积累丰富的典型的感性材料,建立清晰的表象,才能更好地进行比较、分析、概括等一系列思维活动,进而真正参与到知识形成和发展的全过程中来。

  重视学习环境在教学过程中的作用

  通过创设良好的人际关系和学习氛围激励学生学习潜能的释放,努力提高学生的参与质量。和谐的师生关系便于发挥学生学习的主动性、积极性。

  现代教育家认为,要使学生积极、主动地探索求知,必须在民主、平等、友好合作师生关系基础上,创设愉悦和谐的学习气氛。因此,教师只有以自身的积极进取、朴实大度、学识渊博、讲课生动有趣、教态自然大方、态度认真,治学严谨、和蔼可亲、不偏不倚等一系列行为在学生中树立起较高威信,才能有较大的感召力,才会唤起学生感情上的共鸣,以真诚友爱和关怀的态度与学生平等交往,对他们尊重、理解和信任,才能激发他们的上进心,主动地参与学习活动。教师应鼓励学生大胆地提出自己的见解,即使有时学生说得不准确、不完整,也要让他们把话说完,保护学生的积极性。

  交往沟通、求知进取、和谐愉快的学习氛围为学生提供了充分发展个性的机会,教师只有善于协调好师生的双边活动,才能让大多数学生都有发表见解的机会。例如,在讨论课上教师精心设计好讨论题,进行有理有据的指导,学生之间进行讨论研究。这样学生在生动活泼、民主和谐的群体学习环境中既独立思考又相互启发,在共同完成认知的过程中加强思维表达、分析问题和解决问题能力的发展,逐步提高学生参与学习活动的质量。

  5、重视学习方法在教学过程中的推动作用

  通过方法指导,积极组织学生的思维活动,不断提高学生的参与能力。教育心理学的研究成果表明,教师可以通过有目的的教学促使学生有意识地掌握推理方法、思维方式、学习技能和学习策略,从而提高学生参与活动的心理过程的效率来促进学习。教学过程是一个师生双边统一的活动过程。在这个过程中,教与学的矛盾决定了教需有法,教必得法,学才有路,学才有效,否则学生只会效仿例题,只会一招一式,不能举一反三。在教学中,教师不但要教知识,还要教学生如何“学”。教学中教师不能忽视,更不能代替学生的思维,而是

  要尽可能地使教学内容的设计贴近学生的“最近发展区”。通过设计适当的教学程序,引导学生从中悟出一定的方法。

  四:改进的措施

  在各单元的教学中首先加强基础知识的教学,重视对基本概念的'教学,小学数学的基本概念是进一步学习的基础,是教学必学内容。重视这方面的教学有助于学生形成正确的分析和判断能力,能正确地分析,这是学习数学必备的能力。

  在课堂教学中或者每次单元考试后,各个单元都暴露出一些问题。计算不过关、学生理解能力不够强、空间观念不强、学生的学习习惯和学习能力上所存在的问题。从期末试卷中所反映出来的问题中。在今后的数学教学中还是要从以下几方面着手。

  整体的数学教学还是要从最基础的抓起,计算是基础中的基础。从试卷上所反映出来的问题说明本班学生在最基本的计算上还有待于加强。其次是培养学生分析问题的能力,解题的关健是会分析,分析能力的提高,才能更有效地解决问题的。再次学生的形象思维能力还有待于加强,对于图形题、作图题这类比较抽象的空间思维能力的题,学生的解决能力还存在欠缺。我们学习数学的目的就是为了解决问题。在解决问题还要加强学生分析问题、概括问题、发现问题的能力,在教学中多重视学生的反馈,注重学生学习能力的培养。最后还是要从自身教学水平和教学能力上去分析,加强业务学习,注重课堂教学,认真对待每一次的教学,及时反思,及时总结。

八年级数学教学反思13

  本节课将一次函数的知识分为概念、图象及其性质和应用三大部分,授课过程中体现在板书设计、知识回顾、例题讲解及练习巩固等环节,让学生对一次函数有一个系统、直观的复习思路。在复习知识点时,让学生自己联想回顾,变被动为主动学习。例如,在“图象及其性质”环节中,老师不急于提问,而是让学生自己说出一次函数图象的'形状、位置及增减性,不完整的可让其他学生补充。这样,使无味的复习课变得活跃一些,增强了学习气氛。

  在处理典型例题A练习中,发现绝大多数学生对于简单题型能自己解答,而一部分学生对综合性、开放性题目有些无从下手,透露出了思维不灵活,应变能力弱等不足。所以要想达到高效高质,必须要分层次教学,让不同水平的学生在同一节课中得到应有的发展,课前必须对每一个环节,每一个题型,每一个学生作充分地细致地研究。

  在教学过程中,我发现理论与实践在学生身上很难统一。学生习惯于做纯理论性的问题,而对于实践中蕴含的数学问题即便很简单,也发现、挖掘不出。

八年级数学教学反思14

  教师的真正本领,主要不在于讲授知识,而在于激发学生的学习动机,唤起学生的求知欲望,让他们兴趣盎然地参与到教学全过程中来,经过自己的思维活动和动手操作获得知识。新一轮课程改革很重要的一个方面是改变学生的学习状态,在教学中更重要的是关注学生的学习过程以及情感、态度、价值观、能力等方面的发展。就学习数学而言,学生一旦"学会",享受到教学活动的成功喜悦,便会强化学习动机,从而更喜欢数学。因此,教学设计要促使学生的情感和兴趣始终处于最佳状态,从而保证施教活动的有效性和预见性。

  新课程提倡学生初步学会从数学的角度提出问题、理解问题,并能综合应用所学的知识和技能解决问题,发展应用意识。随着社会主义市场经济体制的逐步形成,股票、利息、保险、有奖储蓄、分期付款等经济方面的数学问题,已日渐成为人们的常识,因此,数学教学不能视而不见,不管实际应用,这样恐怕就太不合时宜了。

  学生学知识是为了用知识。但长期的应试教育使大多数学生不知道为什么学数学,学数学有什么用。因此在教学时,我针对学生的年龄特点、心理特征,密切联系学生的生活实际,精心创设情境,让学生在实际生活中运用数学知识,切实提高学生解决实际问题的能力。如在"因式分解"这节课中,由上节课的一个习题引入,带领学生一起探究得出因式分解的概念。大家从这节课中都能深深感受到"人人学有用的'数学"的新理念。经常这样训练,使学生深刻地认识到数学对于我们的生活有多么重要,学数学的价值有多大,从而激发了他们学好数学的强烈欲望,变"学数学"为"用数学"。

  合作探究是新课程理念指导下的探究式教学的重要途径,是学生获取知识,发展思维和增强合作意识,提高交往能力的重要手段。合作探究会给学生带来成功的愉悦。例:"平均数中位数众数"教学设计和教学中,要求学生以4人小组为单位,调查、收集你生活中最感兴趣的一件事情的有关数据,必须通过实际调查收集数据,保证数据来源的准确。学生或通过报刊、电视广播等媒体,或对他们感兴趣的问题展开调查采访或查阅资料,经历搜集数据的过程,搜集的统计图丰富多彩,内容涉及各行各业。学生从中能体会统计图在社会生活中的实际意义,培养善于观察生活、乐于探索研究的学习品质及与他人合作交流的意识。

  在学生上网查询,精心设计、指导下,成功地进行了"我是小小设计师"的课堂活动:这节课以圆、多边形设计一幅图,并说明你想表现什么。事先由老师将课题内容布置给学生。由两位学生作为这节课的主持人,其他学生将自己的作品展示出来,并说明自己的创意。最后,老师作为特约指导,对学生的几何图形图案设计及创意、发言等进行总结,学生再自己进行小结、反思。整节课学生体验了图形来自生活、服务于生活的现代数学观,较好地体现了学生主动探究、交流、学会学习的有效学习方式,同时这也是跨学科综合学习的一种尝试。

  在新课程的实施过程中,我们欣喜地看到传统的接受式教学模式已被生动活泼的数学活动所取代。课堂活起来了,学生动起来了:敢想、敢问、敢说、敢做、敢争论,充满着求知欲和表现欲。

八年级数学教学反思15

  在沈阳抚顺的研讨会上,本人承担了《变量与函数》的教学任务。之前,我分别在本校与广州开发区中学分别上了一堂课。三节课,是一个实践、反思、改进、再实践的过程。经过课题组的点评与讨论,本人对概念课的教学设计与教学实践有了更深入的了解。

  本设计呈现的课堂结构为:

  (1)揭示学习目标;

  (2)引入数学原型;

  (3)抽象出数学现实,逐步达致数学形式化的概念;

  (4)巩固概念练习(概念辨析);

  (5)小结(质疑)。

  1、如何揭示学习目标

  概念课的引入要考虑学生关心的如下问题:这节课学什么概念?为什么要学这样的概念?

  数学源于生活而高于生活,数学概念的引入可从生活的需要、数学的需要等方面引入。初中涉及的函数概念的核心是“量与量之间的特殊对应关系”。本课中,本人在导言中提出两个问题:“引例1,《名侦探柯南》中有这样一个情景:柯南根据案发现场的脚印,锁定疑犯的身高。你知道其中的道理吗?”、“引例2。我们班中同学A与职业相扑运动员,谁的饭量大?你能说明理由吗?”学生对上述问题既熟悉又感到意外。问题1涉及两个量的关系,脚印确定,对应的身高有多个取值;问题2涉及多个量的关系。上述问题,不仅仅是引起学生的注意,更重要的是让学生了解客观世界中量与量之间联系的多样性、复杂性,而函数研究的正是量与量之间的各种关系中的“特殊关系”。数学研究有时从最简单、特殊的情况入手,化繁为简。让学生明确,这一节课我们只研究两个量之间的特殊对应关系。“特殊在什么地方?”学生需带着这样的问题开始这一课的学习。

  函数概念的引入应具有“整体观”,不仅要提供符合函数原型的单值对应的实例,还应提供其他的量与量之间关系的实例(如多个量的对应关系、两个量间的“一对多”关系等),使学生在更广泛的背景中经历筛选、提炼出新的数学知识的过程,逐步领悟“化繁为简”的数学研究方法。当然,这里的问题是作为研究“背景”呈现,教学时应作“虚化”处理,以突出主要内容。

  2、如何选取合适的数学原型

  从数学的“学术形态”看,数学原型所蕴藏的数学素材应与数学概念的内涵相一致;从数学的“教育形态”看,数学原型应真实、简洁、简单。真实指的是基于学生的生活现实、数学现实,它可以是生活中的实例,也可以是学生熟悉的动漫故事、童话故事等。简洁、简单指的是问题的表述应简洁,问题情境的设置要尽可能简单,全体学生对情境中的`问题不应存在太大的理解困难,设计的问题情境要能突出将要学习的新知识的本质。

  本设计采用了三个数学原型的问题:问题1,“票房收入与售出票数问题”(可用解析式表示);问题2,成绩登记表中的一次数学测试的“成绩与学号问题”(表格表示);问题3,“气温变化与时间问题”(图象表示)。这三个问题从不同层面、不同角度体现函数的“单值对应关系”,也都是学生生活中的真实问题,问题简单易懂,学生容易基于上述生活实例抽象出新的数学概念。

  由于不少学生在理解“弹簧问题”时面临列函数关系式的困难,可能冲淡对函数概念的学习,故本节课没有采用该引例。

  对于繁难的概念,我们更应注重为学生构建学生所熟悉的、简单的数学现实,化繁为简、化抽象为形象。过难、过繁的背景会成为学生学习抽象新概念的拦路虎。

  3、如何引领学生经历数学化、形式化的过程

  “数学教学是数学活动的教学”,面对抽象的数学内容,老师会想方设法创设易于学生理解的数学情境。但如何从具体的实例中提炼出数学的素材、形式化为数学知识是教学的关键环节。从具体情境到数学知识的形式化,需要教师为学生搭建合适的“脚手架”,提出能引发学生思考、过渡到数学形式化的问题。本人在学生完成问题情境的几个问题后,提出系列问题“上述几个问题中,分别涉及哪些量的关系?哪些量的变化会引会另一个量的变化?通过哪一个量可以确定另一个量?”

  在与学生的交流过程中把重点内容板书,板书注重揭示两个量间的关系,引领学生经历数学概念的形成过程,引导学生认识为什么要引进变量、常量。由问题1~3的共性“单值对应关系”与“脚印与身高”问题中反映的“一对多关系”进行对比抽象出函数的概念,逐步了解如何给数学概念下定义,并理解概念的本质特征。

  4、如何引用反例

  学生对概念的理解需要经历一个从模糊到清晰的过程,通过正例与反例的对照,才能准确理解概念的内涵。反例引用的时机、反例的量要恰到好处。过早、过多的反例会干扰学生对概念的准确理解。

  概念生成的前期提供的各种量的关系中的实例提供的是一个更为广泛的背景,让学生经历从各种关系中抽象出“特殊的单值对应关系”,从而体会产生函数概念的背景。这样的引入有利于避免概念教学中“一个定义,三点注意”的倾向。

  在本校上课时,从“气温问题”中的函数图象引导学生发现时间t取定一个值时,所得T的对应值只有一个,学生习惯性地提出问题“温度T取定一个值时,时间t是否唯一确定?”全体同学从正反两个方面认识“唯一确定”的含义,在这样的基础上再归纳出函数的定义,学生较好地掌握函数中的单值对应关系。

  在广州开发区中学上课时,在概念的形成前期,忙中出漏,没有抓住“气温问题”中的函数图象讲解“唯一确定”,特别是没有从反面(温度T=8,时间t=12~14)帮助学生理解“唯一性”,也没有强化“脚印与身高”反映的“一对多关系”,只在涉及“单值对应关系”的实例基础上引出概念,也跳过后面提到的三个反例,学生在后面的概念辨析练习中错漏较多,为纠正学生的理解花了九牛二虎之力。

  在抚顺上课时,在完成例1、例2的教学后,还用到如下反例:问题2变式“在这次数学测试中,成绩是学号的函数吗?”、问题3变式“北京春季某一天的时间t是气温T的函数吗?”、练习2(3)变式“汽车以60千米/秒的速度匀速行驶,t是s的函数吗?”,学生借助这三个逆向变式,根据生活经验理解“两个量间的对应关系”是否为“单值对应关系”,有利于学生明确“由哪一个量能唯一确定另一个量”,从而更好地理解自变量与函数的关系,更重要的是让学生养成逆向思维的习惯。