小学数学教案集锦【6篇】
作为一位不辞辛劳的人民教师,往往需要进行教案编写工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那要怎么写好教案呢?下面是小编为大家收集的小学数学教案6篇,仅供参考,欢迎大家阅读。
小学数学教案 篇1
教学目的:
1.使学生掌握加法和乘法的运算定律。能够比较熟练地运用这些运算定律进行简便计算。
2.使学生掌握四则运算的运算顺序.能正确计算四则混合运算。
教学过程:
一、运算定律
教师:我们在学习四则运算时.学过哪些运算定律?指名用自己的话说出运算 定律,并举例说明。然后用字母表示出来:教师根据学生的回答,整理成教科书第93页的表。
如果学生只举整数的例子,教师可以引导学生想一想:运算定律除了对整数加法和乘法适用以外,对小数和分数的加法、乘法适用吗?让学生再举几个有关小数、分数加法和乘法的例子。
下面的式子有没有错误?把错的地方改正过来。
(4.3十2.5)4=4.342.54
(700十1)68=70068十68
153(220十57)=153220十57
638十378;(63十37)(8十8)
还可以做练习二十的第8题。
教师:在我们学过的知识里哪些地方应用丁运算定律?可以多让几个学生说一说。如果学生掌握得比较好,还可以让学生用运算定律解释下积、商的变化规律:如:在乘法里。如果一个因数扩大10倍,另一个因数不变,那么积就扩大10倍:可
以用下面的式子说明:
(a10)b=a10b=ab10=(ab)10
这里应用了乘法的交换律和结合律。
二、简便算法
教师:应用运算定律可以使些计算简便。谁能举个例子?
接着出示教科书第93页的例1、先让学生观察题目中的数有什么特点。然后让学生说一说应该用什么运算定律。说完后,让学生独立完成计算。
集体订正时.教师再提问:这道题是怎样应用运算定律的?应用了哪些运算定律?使学生明确:在计算时.不仅计算的`开始有时可以用简便方法进行计算,在计算的过程中有时也可以用简便方法进行计算。
教师:在计算时,要随时注意用简便方法进行计算、
做教科书第93页做一做中的题目。
教师说明题目要求后。让学生独立计算。教师巡视,对学习有困难的学生进行个别辅导。集体订正时.让学生说一说每道题是怎样用简便方法计算的。特别是下面二道题,是怎样进行简便计算的?
567十98 1 21 7
教师要提醒学生:有的算式可能存在几种不同的算法,所以。在运算前要认真审 题.看清算式中各个数的特点、选用种比较简便的算法,使计算又对又快。
三、四则混合运算
引导学生回忆四则混合运算的有关概念和运算顺序。
什么叫做第一级运算?什么叫做第级运算:
在一个算式中如果只含有同级运算、运算顺序是怎样的:
在一个算式中如果含有第级和第二级两级运算。应该先算什么?
在含有括号的算式中。应该先算什么?再算什么?
出示教科书第94页中间的算式.让学生标明运算顺序。
教师:在计算混合运算的式题时.首先要认真审题,看清题中有哪些运算符号.确定运算的顺序。
出示教科书第94页的例2。先让学生认真审题。想一想运算顺序。然而让学生独立计算。教师巡视。了解学生掌握的情况、对个别学生进行辅导,集体订正时,指名说一说运算的顺序。同时,还要注意强调书写的格式。
做练习二十的第9题。学生独立计算。集体订正。
四、小结(略)
五、作业
小学数学教案 篇2
教学内容:
人教版小学数学教材六年级上册第50~51页内容及相关练习。
教学目标:
1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。
2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。
3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。
教学重点:
理解比的基本性质
教学难点:
正确应用比的基本性质化简比
教学准备:
课件,答题纸,实物投影。
教学过程:
一、 复习引入
1.师:同学们先来回忆一下,关于比已经学习了什么知识?
预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。
2.你能直接说出700÷25的商吗?
(1)你是怎么想的?
(2)依据是什么?
3.你还记得分数的基本性质吗?举例说明。
【设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。
二、新知探究
(一)猜想比的基本性质
1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?
预设:比的基本性质。
2.学生纷纷猜想比的基本性质。
预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
【设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。
(二)验证比的基本性质
师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。
1.教师说明合作要求。
(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。
(2)小组讨论学习。
①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。
②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。
③选派一个同学代表小组进行发言。
2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。
预设:根据比与除法、分数的关系进行验证;根据比值验证。
3.全班验证。
16:20=(16○□):(20○□)。
4.完善归纳,概括出比的基本性质。
上题中○内可以怎样填?□内可以填任意数吗?为什么?
(1)学生发表自己的见解并说明理由,教师完善板书。
(2)学生打开书本读一读比的.基本性质,教师板书课题。(比的基本性质)
5.质疑辨析,深化认识。
【设计意图】基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,这样可以促使每个学生经历自主探究的学习过程,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。
三、比的基本性质的应用
师:同学们,你们还记得我们学习分数的基本性质的用途吗?什么是最简分数?
今天我们发现的比的基本性质也有一个非常重要的用途──可以化简比,进而得到一个最简整数比。
(一)理解最简整数比的含义。
1.引导学生自学最简整数比的相关知识。
预设:前项、后项互质的整数比称为最简整数比。
2.从下列各比中找出最简整数比,并简述理由。
3:4; 18:12; 19:10; ; 0.75:2。
(二)初步应用。
1.化简前项、后项都是整数的比。(课件出示教材第50页例1)
学生独立尝试,化简后交流。
(1)15:10=(15÷5):(10÷5)=3:2;
(2)180:120=(180÷□):(120÷□)=( ):( )。
预设:除以公因数和逐步除以公因数两种方法,但重点强调除以公因数的方法。
2.化简前项、后项出现分数、小数的比。(课件出示)
师:对于前项、后项是整数的比,我们只要除以它们的公因数就可以了,但是像 : 和0.75:2,
这两个比不是最简整数比,你们能自己找到化简的方法吗?四人小组讨论研究,找到化简的方法。
学生研究写出具体过程,总结方法,并选代表展示汇报。教师对不同方法进行比较,引导学生掌握一般方法。
预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。
3.归纳小结:同学们通过自己的努力探索,总结出了将各类比化为最简整数比的方法。化简时,如果比的前项和后项都是整数,可以同时除以它们的公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。
4.方法补充,区分化简比和求比值。
还可以用什么方法化简比?(求比值)
化简比和求比值有什么不同?
预设:化简比的最后结果是一个比,求比值的最后结果是一个数。
5.尝试练习。
把下面各比化成最简单的整数比(出示教材第51页“做一做”)。
32:16; 48:40; 0.15:0.3;
【设计意图】新课程标准提出教学中应该充分体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人。因此在运用比的基本性质化简比的教学过程中,通过自学、独立探究、小组合作等方式,为学生创造一个积极的数学活动的机会,鼓励学生自主探究,找到化简比的方法。
四、巩固练习
(一)基础练习
1.教材第53页第4题。
把下列各比化成后项是100的比。
(1)学校种植树苗,成活的棵数与种植总棵数的比是49:50。
(2)要配制一种药水,药剂的质量与药水总质量的比是0.12:1。
(3)某企业去年实际产值与计划产值的比是275万:250万。
2.教材第53页第6题。
(二)拓展练习(PPT课件出示)
学生口答完成。
1.2:3这个比中,前项增加12,要使比值不变,后项应该增加( )。
2.六(1)班男生人数是女生人数的1.2倍,男生、女生人数的比是( ),男生和全班人数的比是( ),女生和全班人数的比是( )
【设计意图】练习的设计要紧紧围绕教学的重难点,同时练习的编排应体现从易到难的层次性。第1题是针对比的基本性质的基础练习,同时也为后续百分数的学习埋下伏笔。第2题训练单位不同的两个数量的比的化简方法,培养学生的审题能力。拓展练习不仅发展学生思维的灵活性、培养学生的创造能力,而且很好地巩固了本节课的知识,同时这类题型也是分数应用题、比例应用题的基础训练,也为以后分数应用题和比例应用题的学习打下扎实的基础。
五、课堂小结
这节课你有什么收获?还有什么疑问?
小学数学教案 篇3
教学内容:
北师大版小学数学二年级上册22、23页
教学目标:
1、结合“动物聚会”的具体情境,能够说出相同数连加与乘法之间的关系。
2、结合具体情境,能够说出一个乘法算式表示的意义,体会到同一个乘法算式在不同的情境中所表示的意义有所不同。
评价方案设计:
1、目标1达成的评价方案
通过学生对“想一想,连一连”的做题情况进行评价。
2、目标2达成的评价方案
通过学生对“3×6还能解决生活中的哪些问题”的回答情况进行评价。。
教学重点:
在具体的情境中理解乘法的表示意义,能够列出乘法版式进行计算,体会乘法的简单应用。
教学难点:
体验、比较和区分似“3个6”和“6个3”的不同含义。
教学过程:
一、故事引入
教师边叙述美丽的童话故事边出示主题图:秋天到了,勤劳的小动物们都带着自己的劳动成果,庆祝共同的丰收,它们喜气洋洋地欢聚在一起。(板书:动物聚会)
二、问题探究
1、教师启发:你能提出什么乘法问题?
要求
A、独立观察主题图,思考问题;
B、小组内交流:提出问题、解决问题,并解释算式的意义。
2、小组汇报
一共有多少只小鸟?
3×3=9(只)
表示:每根树枝上有3只小鸟,3根树枝上有3个3只。
要求
A、求加数相同的和可以用乘法算式表示;
B、明确乘法算式中4和2的含义:2表示每架飞机上有2个人,4表示有四架飞机;
C、知道乘法算式中各部分的.名称:乘数、乘数和积。会读、写乘法算式;
D、乘法算式中两个乘数调换位置,积不变。
活动(一):火车上坐了多少人?
4+4+4+4+4+4=24(人)
4×6=24(人)或6×4=24(人)
要求:(与活动一相同)
活动(二):划船的有多少人?
3+3+3=9(人)
3×3=9(人)或3×3=9(人)
要求:(与活动一相同)
活动(三):坐在椅子上的有多少人?
1+2+3=6(人)
质疑:
A、上面的求和算式能用乘法表示吗?为什么?(加数不同,不能用乘法表示)
B、怎么调位置坐,才能用乘法表示?
①
3+3=6(人)
3×2=6(人)或2×3=6(人)[空一张椅子,每张椅子坐3人]
②
2+2+2=6(人)
2×3=6(人)或3×2=6(人)[每张椅子坐2人]
三、巩固应用
完成“试一试”中的第1、2题。
要求
1、独立读题、列式计算;
2、学生交流每个乘法算式中各个乘数的意义;
3、汇报,订正答案。
四、小结:今天,我们学会了什么?
学生交流后教师结题:知道了求几个相同加数的和可以用乘法表示,用乘法表示比用加法表示更简;学会了乘法算式的读写法。认识了乘法算式中各部分的名称。
小学数学教案 篇4
教学目标
1.使学生掌握求相遇时间应用题的结构特点,并能正确解答求相遇时间的应用题.
2.提高学生分析问题,解决问题的能力.
3.培养学生大胆尝试,勇于探索的精神.
教学重点
1.找到与求路程应用题的内在联系.
2.正确分析解答求相遇时间的应用题.
教学难点
掌握求相遇时间应用题的`解题思路.
教学过程
一、复习引入
(一)出示复习题
小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?
1.画图,列式解答.
2.订正答案
3.小组讨论:试着改编一道求相遇时间应用题.
二、探究新知
例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?
1.讨论:复习题的线段图该怎样改一改.并试着画一画.
2.联系复习题的解法,尝试解答
3.订正思路
想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇.
270(50+40).
想法二:根据复习题速度和相遇时间=路程,依据乘法的因积关系可得:
相遇时间=路程速度和.
三、反馈调节
两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?
1.学生独立分析解答.
2.订正答案.
3.质疑:对于求相遇时间应用题还有什么问题?
4.教师提问
(1)要求相遇时间题目中需告诉我们哪些条件?
(2)例4与复习题之间有什么联系?又有什么区别?
四、巩固练习
(一)从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?
(二)两艘军舰同时从相距948千米的两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?
教师提问:怎样验证结果是否正确?
(三)两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,
第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?
(四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这
列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?
五、课后小结
我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?
小学数学教案 篇5
教学内容:
教材第26页练习四第3题、第4题。
教学要求:
1.使学生进一步掌握折线统计图表示统计数据的方法,加深对折线统计图所表示的数据的理解,能利用折线统计图对数据进行分析。
2.使学生联系实际进行统计,经历统计过程,体会统计在实际中的应用和作用,培养统计的意识,提高实践能力。
教学准备:老帅复印好历年班级簿中学生第二学期的身高记录,为每位学生准备一张画折线统计图的方格纸;学生事先了解自己家庭去年下半年每月的电话费支出情况。
教学重点:掌握折线统计图表示统计数据的方法。
教学难点:利用折线统计图对数据进行分析。
教学过程:
一、基本练习
1.做练习四第2题。
让学生看第3题,说一说第3题的题意和从统计表里知道了什么。要求学生在课本上画出折线统计图。让学生相互交流,说说从图里知道了什么。提问:你从这里可以看出折线统计图表示的数据比统计表有哪些好处?指出:复式折线统计图不仅可以直接看出数量的增减变化情况,而且还可以对这两位同学的成绩及变化情况作出比较。
2.提问:你认为完成一项统计要经过哪些过程,
说明:一项完整的统计,先要收集数据并进行分类整理,再选择适当的统计图或统计表表示出相关的.数据,然后对数据作出比较,分析、推理和判断。
二、实践性练习
1.做练习四第4题。
让学生了解题意。要求两名学生相互合作,按要求从复印的身高记录上收集自己和同伴的身高数据。要求在课本上制成复式折线统计图。让学生与自己的同伴讨论从图中能得出哪些结论。组织学生在班内交流自己得出的结论。提问;你认为复式折线统计图有什么作用?在日常生活中哪些地方还可以用折线统计图来表示统计的数据,帮助我们进行分析?
2.统计家庭电话费支出情况。
让学生拿出事先收集的家庭电话费支出情况,要求学生看一看每月的支出的金额。你能与自己的同桌同学合作,制作出你们两家的电话费支出的复式折线统计图吗?学生完成复式折线统计图。现在请大家仔细观察自己制作的复式折线统计图,看看你们家的电话费支出情况怎样,比比两家去年下半年的电话费支出有什么不同。组织学生根据自己制作的统计图把分析情况进行交流。
三、课堂小结
这节课我们练习了什么内容?你进一步明确了哪些问题?
小学数学教案 篇6
[教学内容]
测量活动(第6-7页)
[教学目标]
1、通过测量活动,进一步体会小数在日常生活中的应用。
2、通过探索怎样把几分米或几厘米用“米”作单位来表示的过程,进一步体会小数的意义。
3、能用小数表示一个物体的长度、质量等。
[教学重、难点]
通过实际操作,体会小数与十进分数的关系,理解小数的`意义,知道小数部分各数位名称及意义。
[教学准备]
学生、老师准备尺子。
[教学过程]
一、测量活动:
让学生分组测量本班教室内的黑板和桌椅或其它物品的长度,然后讨论这些长度用“米”作单位怎样表示。在讨论把几分米或几厘米写成以米作单位时,可以先写成分母是10或100的分数,再写成小数。当学生知道了6分米=6/10米=0.6米后,可进一步问学生如果门的高度是1米6分米怎样用米为单位表示呢?
鼓励学生用自己的语言说明可以用小数表示测量结果的原因。
二、填一填:
填写第6页的表格,左边已经有测量结果,只要把测量结果写成以米为单位的小数;右边要求学生自己选择物品,先测量它们的长和宽,再写成以米为单位的小数。
三、试一试:
第1题:将几克改写成以千克为单位,其方法是一样的。让学生先独立完成,再在小组中交流,这样改写的原因。
第2题:先让学生说一说测量的结果,如曲别针的长度是2厘米5毫米,再写成以厘米为单位的小数。
四、作业:
第7页练一练
[板书设计]
测量活动
填一填中的表格 试一试中的题目
【小学数学教案】相关文章:
小学数学教案02-25
小学数学教案06-13
小学数学教案(经典)07-28
【经典】小学数学教案07-29
小学数学教案(精选)07-20
小学数学教案【精选】07-06
(精选)小学数学教案07-22
【热】小学数学教案02-01
【精】小学数学教案02-01
【热门】小学数学教案02-01