实用的小学数学教案通用(4篇)
作为一名优秀的教育工作者,通常会被要求编写教案,教案是教学活动的依据,有着重要的地位。那么教案应该怎么写才合适呢?以下是小编为大家整理的小学数学教案4篇,欢迎阅读,希望大家能够喜欢。
小学数学教案 篇1
教学内容:
填括号
教学目的:
1、通过实际探索和实验,更好地理解和掌握10以内加法和减法。
2、熟练根据数的组成填出未知加数
3、通过游戏形式培养学生数感
重点难点:
能正确准确填出未知加数
教学过程:
一、基础训练
1、课件出示
2、猜数
老师手里拿了5个☆,左手要拿几个才能组成10个?
二、合作探究
同学们都很聪明,今天我们就到商场去看看吧
1、P70课件出示盒子,看这个盒子里有几个格子?
售货员阿姨要往盒子里放钢笔,你能算出还要放几支才能放满吗?
你是怎么知道的?
师边听学生说边板书算式
7+( )=10 你是怎么想的'?
2、看这里要摆小旗
已经摆了6面,还要摆几面才是8面?
6+( )=8
三、练习
四、做一做
课件出示
1、那这个盒子里还差几个?谁能列出算式?
这里墙上需要挂水壶,你能很快地列出算式吗?
2、看图片,还要画几个呢?
五、作业P71练习十1-3
小学数学教案 篇2
课题一:比的意义(A)
教学内容
教科书第46~47页和相应的“做一做”,练习十二的第1~4题。
教学目的
1。理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。
2。弄清比同除法、分数的关系。
教具准备
长3分米、宽2分米的红旗一面,投影仪。
教学过程
一、复习
教师:在日常生活和工农业生产中,常常需要对两个数量进行比较。比如这面红旗(教师出示红旗),它长3分米,宽2分米。要对这面红旗的长和宽进行比较,可以用什么方法?
引导学生回答:可以用减法,比较长比宽多多少或宽比长少多少。用除法,比较长是宽的几倍,或者宽是长的几分之几。板书:3÷2==1?????长是宽的1倍
2÷3=????????宽是长的
二、新课
1。导入新课。
教师:刚才我们用以前学过的方法对红旗的长、宽进行比较。这节课,我们要在用除法对两个数量进行比较的基础上,学习一种新的对两个数量进行比较的数学方法──比。(板书:比。)
教师:比表示什么意义呢?它怎么读,怎么写?各部分的名称是什么?比又和除法、分数有什么关系呢?这些都是我们这节课要学习的内容。下面我们先学习比的意义。(板书课题。)
2。教学比的意义。
教师:(指3÷2)看这个除法算式,长是宽的几倍需要哪个量和哪个量比较?(长和宽比较。)
红旗的长是多少?宽呢?红旗的长和宽比较也就是几和几比?
(长和宽比较也就是3和2比。)
求红旗长是宽的几倍又可以说成长和宽的比是3比2。(板书:长和宽的比是3比2。)(指2÷3)宽是长的几分之几是哪个量和哪个量比较?根据这个例子(指上例),想一想,宽是长的几分之几又可以说成什么?
引导学生说出:宽和长的比是2比3。教师板书。
小结:现在我们知道谁是谁的几倍或几分之几,又可以说成谁和谁的比。
教师:这两个例子都是对长、宽两个量进行比较,为什么一个比是3比2,而一个比是2比3呢?
引导学生回答:3比2是长和宽的比,2比3是宽和长的比。
这两个例子告诉我们:两个数量进行比较一定要弄清谁和谁比。谁在前、谁在后不能颠倒位置。
教师:刚才我们用除法和比的方法对红旗的长、宽进行了比较。在日常生活中,两个数量进行比较的事例有许多,请看这个例子(出示投影片):
“一辆汽车2小时行驶了100千米,这辆汽车的速度是每小时多少千米?求汽车行驶的速度怎样计算?
学生回答时,板书:100÷2=50(千米)
100千米是汽车行驶的什么?2小时呢?汽车的速度需要哪个量和哪个量比较?(路程和时间比较。)
那么汽车行驶的速度又可以说成路程和时间的比。
教师:在这个例子中,路程和时间的比是几比几?
学生回答后教师板书:路程和时间的比是100比2。
教师:现在看这些例子,都是用什么方法对两个数量进行比较的?(用除法。)那么表示两种量的两个数,它们之间具有什么关系?(相除关系。)是几个数相除?(两个数相除。)
学生回答后板书。
再看长和宽的比是3比2,宽和长的比是2比3,路程和时间的比是100比2,这又是用什么方法对两个数量进行比较的?(比的方法。)几个数的比?学生回答后教师板书:两个数的比。
(教师引导学生总结出比的意义:)通过这些例子可以清楚地看出:两个数相除又叫做两个数的比。
从比的意义看,两个数的比是表示两个数之间的什么关系?(相除关系。)学生回答后,教师在相除二字下面画上着重号,然后齐读。
3。教学比的读写法,各部分名称及求比值的方法。
教师:以上我们学习了比的意义,在数学中,比还有这样的记法。
3比2记作(板书:记作),先写3,再写“∶”,最后写2。(板书:3∶2)
提示学生比号的两个小圆点要写在两个数的正中间,它叫比号,读作“比”,那么这个比就读作3比2。让学生齐读一遍。
2比3记作(板书:记作),先写什么?再写什么?最后写什么?
教师提问,学生回答后教师板书。
100比2怎么写?学生回答后,教师板书:100∶2。
这两个比会读吗?齐读一遍,学生练习写比。
教师:在比中,每一部分都有它的名称。我们以3∶2为例(板书:3∶2),这叫什么符号?(学生答后板书:比号)比号前面的数叫做比的前项,(板书:前项)比号后面的数叫做比的后项。(板书:后项)
根据比的意义,比的前项和后项是什么关系?(相除关系。)在这个比中,用谁除以谁?(3除以2。)3除以2的商是多少?(1)
教师指出:我们把比的`前项除以后项所得的商叫做比值。(板书:比值)1在这里就叫做3∶2的比值。
板书:3∶2=3÷2=1
┇┇┇┇
前比后比
项号项值
教师:从上面的式子可以看出,同除法比较,比的前项相当于除法中的被除数,比的后项相当于除法中的除数,比值相当于除法的商,可以用下表来表示。
列完表后,教师指出:比和除法还是有区别的,不能完全混同起来,除法是一种运算,而比表示两个数的关系。
教师提问:那么,比和比值有什么区别和联系呢?
引导学生根据比的意义和比值的定义,弄清楚比值是一个数,是比的前后项相除所得的商,它通常用分数表示,也可以用小数表示,有时也可能是整数;而比是表示所比较的两个数的关系,如3∶2,也可以写成分数形式(但不能写成带分数,仍读作3比2。)
需要指出:比的后项不能是零。
让学生想一想这是为什么?引导学生联系比和除法的关系,由于比的后项相当于除法的除数,而除数不能为零,所以比的后项也不能为0。同时还要进一步指出,在体育比赛中的“几比几”,也使用“∶”号。但这只表示哪一队对哪一队比赛,各得多少分,不表示两队所得分数的倍比关系,与数学中的比的意义不同。比赛中时常出现0∶0或几比0的情况,而数学中比的后项是不能为0的。另外,比赛中的几比几是不能化简的。
4。做教科书第62页上半部分“做一做”的题目。
(1)完成第1题。
指名一学生在黑板上板演,其他学生独立完成。教师注意巡视,并察看学生是否将比号的位置写得规范。
然后提问:每个比的前项是几?后项是几?能不能把比的前项和后项颠倒?教师指出:正如前面所讲,求长是宽的几倍,用长÷宽;求宽是长的几分之几,
用宽÷长;所以交换了比的前后项的位置,比的具体意义就变了。
(2)完成第2题。
让学生独立完成,教师巡视,做完后集体订正。
5。教学比与分数的关系。教师:两个数的比也可以写成分数形式。例如:3∶2可以写作
示两个数的比,仍读作3比2。
让学生齐读。,在这里,它表
进一步举例:2∶3可以写作,100∶2可以写作。然后让学生齐读。
提问:分数和除法有什么关系呢?(分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。)
提问:根据分数和除法的关系以及比和除法的关系,比和分数又有什么关系呢?引导学生弄清楚:比的前项相当于分数的分子,比的后项相当于分数的分母,比值相当于分数值。列表如下:
列完表后,提问:比和分数有没有区别呢?
让学生明确分数是一种数,而比表示两个数相除的关系。
总结比、除法、分数三者在意义上的区别:比是指两个数相除,表示两个数的关系;除法是一种运算;分数是一种数。它们的意义是不同的。
6。做教科书第62页下半部分“做一做”的题目。
让学生独立完成,教师巡视。
集体订正时,指名学生说说自己用分数表示的比,并强调指出:虽然写的是分数形式,但不能读作几分之几,而应读作几比几。
小学数学教案 篇3
教学内容:
课本第73-74页,做一做1、2。
教学目标:
1、通过具体的实例让学生感受到万以内的数在生活中的应用,建立形象的感性认识,发展学生的数感,了解大数的价值。
2、认识新的计数单位,单位进一步理解相邻的两个计数单位之间的十进制关系。
3、学会读写万以内的数(中间、末尾没有零),知道数的组成,掌握数位顺序表。
教学重、难点:
认识新的计数单位万,会数万以内的数,掌握数位顺序表。
教学准备:
教学挂图、计数器,一个数位顺序表格(空的.)。
教学过程:
一、 准备练习。
1、 观察下列两组数,先回答是怎么数的,再接着数出后面的5个数来。
27、37、47、57、( ) ( ) ( ) ( ) ( )
110 、210、310、410、( ) ( ) ( )()()
2、读出下面的数。
375309420200
谁能说说读数时要从哪位读起?怎样读?
3、想一想,999是几位数?再添1是多少?它是几位数?
[设计意图]通过准备练习复习旧知,为学生迁移性的学习新知做好准备。
二、 讲授新课
师:同学们,昨天老师让你们调查了芜湖长江大桥的公路桥和铁路桥的长度,下面请你们来汇报一下调查的结果。
学生汇报调查的数据,教师板书,并让全班同学认读。接着老师问同学们,有谁知 道南京长江大桥的公路桥和铁路桥的长度呢?
1、出示南京长江大桥的图。
(1)请学生说一说对南京长江大桥的认识。
教师补充说明,南京长江大桥是我国在长江上最早建立的公路、铁路两用桥。
(2)请学生认读公路桥、铁路桥的长度。
2、板书:万以内数的认识。齐读
3、教学例4。
(1)观察例4中的立方体。
数一数:一个大立方体中有多少个小立方体?
(请学生说一说是怎么数的。)
(2)一个大立方体中有1000个小立方体,这儿有10个大立方体,共有多少个立方体呢?
根据学生所说,师生共同数一数。(一千一千地数。)
(3)小结并板书。
一千一千地数,10个一千是一万。
万也是一个计数单位,它和千是相邻的计数单位,千位在左起第四位,万位在左起第五位。
① 请学生指出计数器上的千位、万位。
② 教师拨一千,学生数一千,直到拨10个一千,学生数一万。
4、教学列5。
(1)教师拨出2356,请学生认出读。
根据学生认读板书:读作:三千三百五十六。
如何写出这个数?请一名学生板书。(写作:2356。)
(2)师:这个数是由( )个千,( )个百,( )个十和( )个一组成的。
(3)有关这个数你还知道什么?
(多请几名学生说,学生可能说出它是几位数,最高位是什么数位。)
[设计意图]通过自主探究,掌握数位的顺序,同时培养学生的动手操作能力。
5、课堂练习。
(1)课本第75页的做一做第1题。
先写出各数,再读一读,最后说出这些数的组成。
(2)用计数器数数,一个一个地数。
①从994-1000;②从9995-10000。(男、女生分组数数,每组数一题。)
6、数位顺序表。
(1)说一说到目前为止,你已学过哪些计数单位?哪些数位?
(2)你通从左往左分别说出它们的顺序吗?
(3)教师拿出数位顺序表格问:有谁会填出这张表?
(教师请一名学生填写,其他学生在本子上自己制作。)
(4)记这个表格。(同桌互说。)
[设计意图]通过活动学习,掌握万以内数的读写和组成,同时培养学生的推理、分析能力和知识的迁移的能力。
三、巩固练习
同桌互相拨数、认读,并将认读的数写在本子上。
四、课堂小结说一说你今天有什么收获?
[设计意图]学会归纳整理自己的知识体系。
小学数学教案 篇4
探索与发现:三角形内角和
课型
新授课
设计说明
本节课是在学生已经掌握了钝角、锐角、直角、平角及三角形分类的基础上,让学生通过直观操作来认识和学习的。
1.重视知识的探究与发现。
在教学中,概念的形成没有直接给出,而是整节课都是在引导学生的实验操作、活动探究中进行。在探究活动中,不但重视知识的形成过程,而且注意留给学生充分进行主动探究和交流的空间,让学生归纳出三角形内角和等于180°。
2.重视学生的合作探究学习。
使学生能够积极主动地参与到数学活动中,能在实践中感知、发表自己的见解,学生感受到通过自己的努力取得成功所带来的满足感,同时也培养了学生的探究能力和创新能力。
课前准备
教师准备:PPT课件 量角器 直尺 三角尺
学生准备:量角器 三角尺
教学过程
一、常识导入。(3分钟)
1.介绍帕斯卡:早在300多年前有一个科学家,他在12岁时验证了任意三角形的内角和都是180°,他就是法国科学家、物理学家帕斯卡。
2.导入新课:这节课我们也来验证一下三角形的内角和。
1.倾听教师的介绍,了解帕斯卡。
2.明确本节课的学习内容。
1.填空。
(1)有一个角是钝角的三角形是( )三角形;有一个角是直角的三角形是( )三角形;三个角都是锐角的三角形是( )三角形。
(2)平角=( )°
直角=( )°
周角=( )°
二、合作交流,探究新知。(18分钟)
(一)量算法。
1.探究特殊三角形的内角和。
(1)出示一副三角尺,引导学生说一说各个角的度数。
(2)引导学生算一算它们的内角和各是多少度。
(3)引导学生得出结论。
2.探究一般三角形的内角和。
(1)引导学生猜一猜其他三角形的内角和是多少度。
(2)组织学生验证一般三角形的内角和是180°。
①引导学生量出每个内角的度数,再计算三个内角的和。
②引导学生分工合作,把结果填入记录表中。
③引导学生说说自己的发现。
(3)引导学生明确由于测量有误差,实际上三角形的内角和是180°。
(二)剪拼法。
1.组织学生用剪拼的方法求三角形的内角和。
2.引导学生总结发现。
3.课件演示,得出三角形的内角和是180°的`结论。
(三)折拼法。
1.引导学生结合剪拼法尝试折拼法。
2.引导学生得出结论。
3.课件演示折拼法。
(一)1.(1)说出每个三角尺中各个角的度数。
①90°;60°;30°。
②90°;45°;45°。
(2)独立算出每个三角尺的内角和。
(3)得出结论:这两个三角尺的内角和都是180°。
2.(1)同桌之间互相说说自己的看法。
猜测:一种是内角和可能是180°,另一种是内角和一定是180°。
(2)小组合作进行探究,量一量,算一算,说一说。
三角形种类 | 每个内角 的度数 | 三个内 角的和 | ||
锐角三角形 | 65° | 46° | 68° | 179° |
钝角三角形 | 110° | 25° | 46° | 181° |
等腰三角形 | 70° | 55° | 55° | 180° |
等边三角形 | 60° | 60° | 60° | 180° |
通过观察发现:三角形的内角和都在180°左右。
(3)听老师讲解,明确三角形的内角和是180°。
(二)1.把一个三角形的三个内角剪下来,小组内拼合。在拼合过程中要注意:顶点重合,三个角拼合。
2.发现三角形的三个内角正好拼成了一个平角,也就是180°。
3.观看课件演示,明确三角形的三个内角拼成了一个平角,所以它的内角和是180°。
(三)1.动手折一折、拼一拼。
2.得出结论:三角形的三个内角拼在一起正好是一个平角,所以三角形的内角和是180°。
3.观看课件演示,再次明确三角形的内角和是180°。
2.算一算。
在一个直角三角形中,已知一个锐角是35°,另一个锐角是多少度?
3.在能组成三角形的三个角的后面画“√”。
(1)90°;20°;70°。 ( )
(2)100°;50°;50°。( )
(3)70°;70°;70°。( )
(4)80°;70°;30°。( )
4.猜一猜。
有一个三角形,其中一个角是20°,它可能是什么三角形?
5.已知∠1、∠2、∠3是三角形的三个内角,请你计算出每个三角形中∠1的度数。
(1)∠2=58° ∠3=48°
(2)∠2=∠3=70°
(3)∠1=∠2=∠3
三、巩固练习。(16分钟)
把正确答案的序号填在括号里。
1.把两个小三角形合成一个大三角形,这个大三角形的内角和是( )。
A.90° B.180° C.360°
2.一个三角形中有两个锐角,则第三个角( )。
A.也是锐角
B.一定是直角
C.一定是钝角
D.无法确定
小组合作,选一选,明确答案。
1.明确任何一个三角形的内角和都是180°,三角形的内角和与三角形的大小无关。
2.通过讨论,明确任何一个三角形都至少有两个锐角,所以无法确定。
6.如下图,在直角三角形中,已知∠2=30°,不计算,你知道∠1的度数吗?
四、课堂总结,拓展延伸。(3分钟)
1.总结本节课的学习内容。
2.布置课后作业。
谈自己本节课的收获。