当前位置:9136范文网>教育范文>教学反思>乘法分配律教学反思

乘法分配律教学反思

时间:2022-11-11 11:39:22 教学反思 我要投稿

乘法分配律教学反思15篇

  身为一名刚到岗的教师,我们要有一流的课堂教学能力,借助教学反思我们可以拓展自己的教学方式,那么你有了解过教学反思吗?以下是小编精心整理的乘法分配律教学反思,仅供参考,希望能够帮助到大家。

乘法分配律教学反思15篇

乘法分配律教学反思1

  四年级《乘法分配律》数学教学反思

  乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。在教学过程中有坡度的让学生在不断的感悟、体验中理乘法分配律,从而自己概括出乘法分配律。我是这样设计:

  一、让学生从生活实例去理解乘法分配律

  出示:

  每件上衣60元,一条裤子30元,买这样的服装5套一共需要多少元?

  学生解答:板书两种解法:(60+30)×560×5+30×5说说理由。

  在两个算式中间画=。

  即:(60+30)×5=60×5+30×5。

  借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。这是生活中遇到过的,学生能够理解两个算式表达的意思,也能顺利地解决两个算式相等的问题。

  二、突破乘法分配律的教学难点

  相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变形的能力是教学的难点。为了突破这个教学难点,我设计了一系列的练习。

  1、在□里填数,○里填运算符号:如(25+45)×4=□○□○□○□.....  2、在相等的一组算式后面打“√”:如16×7+24×7(16+24)×7□.....在这一组题目中我重点评析了最后一道题:40×50+50×9040×(50+90)□。先让学生说说这一题为什么不能打√,再根据乘法分配律的特征,分别写出与左右算式相等的'式子。如:(2+3)×4=2×4+3×4.....提问:

  1)在这些等式中,等号左边的算式有什么特点?右边的算式呢?

  2)等号左边的算式和右边的算式有什么联系?

  3)从上面的观察与分析中,你能发现什么规律?

  通过练习学生对乘法分配律有了进一步的认识,最后归纳出了乘法分配律的字母表示:

  (a+b)×c=a×c+b×c。

  总体上我的教学思路是由具体--抽象--具体。在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

  问题:

  在练习中发现,很多孩子对形如:a×99+a或a×101-a的式子,解答时有困难。另外就是有时对形如:32×25×125的式子受学习乘法分配率的影响,也把中间改为加号了。

  所以需要加大练习的量,并重点加大指导的力度。

乘法分配律教学反思2

  乘法分配律是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的。乘法分配律也是学生较难理解与叙述的定律。如何教学能使学生较好的理解乘法分配律的内涵,并能正确的运用定律进行简便运算呢?我做了一下几点尝试。

  一、创设师生竞赛,激发学习欲望。

  上课教师先出示:(1)8×(125+11) (2)(100+1)×23

  (3 )648×5+352×5

  老师和同学们做一个比赛,王老师口算,你们用计算器算,看看谁能获。

  结果教师又快又对,学生都很奇怪,教师顺势导入:同学们都特别想知道在比赛过程中,学生用计算器都没有老师口算得快的原因吗?是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?今天我们就来探究其中的奥秘。

  这样的导入让学生充满了求知的欲望,激发了学习的热情。

  二、设计思考问题,学生自主探究。

  出示例题后,学生独立解答,然后教师出示思考问题,学生自主探究。

  讨论:

  1、这两种方法有什么不同?两个算式的结果如何?用什么符号连接?

  2、那么等号连接的这两个算式有什么特点和联系呢?请同学们带着老师给出的三个问题展开讨论。(课件出示问题)生A:我发现左边括号外的那个数,写到右边都要乘两次。

  生B:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。

  整个教学过程通过学生观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。

  三、练习有坡度,前后有呼应。

  在本课的练习设计上,我力求有针对性,有坡度,同时也注意知识的延伸。练习的形式多样,课本上的填空题解决以后,设计了判断题和练习题,把学生易出错的问题提前预设好,而且通过练习让学生明白乘法分配律也可以两个数的差,也可以是三个数的和,使学生对乘法分配律的内容得到进一步完整,也为后面利用乘法分配律进行简算打下伏笔。为了让学生初步感受乘法分配律能使一些计算简便,我特意把开始和老师比赛的题目让学生运用今天所学知识进行计算,学生非常有兴趣,在练习中培养了学生分析、推理、概括的.思维能力。

  总之,在本堂课中新的教学理念有所体现,是一节本色的数学课堂。但在具体的操作中还缺乏成熟的思考,自主探究环节对问题的设计不够简洁,还可以再做斟酌。实际分配律的揭示过程与教案设计顺序有些出入,感觉效果没有预想的好,上课时对于教案的熟悉程度还有待加强。

乘法分配律教学反思3

  乘法分配律是四年级学习的重点,也是难点之一。它是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的,是一节比较抽象的概念课,因此教学时我根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。

  1、在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有的同学是横向观察,有的是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

  2、从学生已有知识出发。提供充分的信息,为学生参与探索学习活动创造条件,没有学生主体的主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的.计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个植树的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的起点较低,学生比较容易接受。

  3、充分调动学生的学习热情,去猜想——倾听——举例——验证。老师没有过多的讲授,也没有花大量的时间去刻意的创设教学情境,只是做唤醒学生主体意识的工作,引导学生大胆猜想,大胆表达。学生借助已有的知识经验,自主解决新问题,使学生的主体地位得以体现。

乘法分配律教学反思4

  乘法分配律是所有运算律中形式变化较为复杂,且跨越加法和乘法两级运算的定律,对学生的记忆、理解与运用都提出了较高的要求。教学中,教师需要在探析错因、读法纠正、变式训练上做足功夫,巧制策略。学生在正式接触乘法分配律之前,学生陆续掌握了加法和乘法的交换律和结合律,并能熟练使用这些定律进行简单的运算。照常理推测,同为等式恒等变换,借助已有的经验,学生对于乘法分配律应该很容易接受。然而,实际情况却不容乐观,学生在运用乘法分配律进行简算时出错率较高。为此,教师应巧制策略,帮助学生克服困难。

  如何帮学生建立数学模型,展现乘法分配律的性质,是教学的根本,也是学生理解的前提。要让学生对乘法分配律有深刻准确的记忆和理解,用最符合学生心理特征的方式进行阐述才是上策。

  为此,我改进了教学方式——切换读法,化难为易。

  [例题]植树节那天,学校组织二(1)班的学生植树,上午植树4小时,下午植树2小时,平均每小时植树25棵,问:植树节那天,学生一共植树多少棵?

  步骤1:学生列式多为“25×4+25×2”和“25×(4+2)”两种式子。

  步骤2:简述各算式的算理:25×4+25×2表示先分别求出半天的.植树数,再求一天的植树总数;25×(4+2)表示先求植树总时长,再求植树总数。

  步骤3:引导学生从数字计算的角度去理解:25×4+25×2表示两个积的和,25×(4+2)表示两个数的积。接着用一句话揭示它们的共同点:4个25加上2个25等于6个25,6就是4与2的和。以实例为对象,换成通俗的说法,完美呈现了算式的内涵,深化了学生的理解。

  步骤4:针对代数式表示的乘法分配律“a×c+b×c=(a+b)×c”,让学生尝试用通俗方式解读,即a个c加上b个c等于(a+b)个c。

  实践证明,渗入思维的读法比机械复读教学效果要好。

乘法分配律教学反思5

  多年来,我一直从事小学数学教学工作,每当教授学生学习运用乘法分配律进行简便计算时,心里多少都有些发怵,因为这是一节比较抽象的概念课,学生极易混淆概念。这节课是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上教学的。乘法分配律是学习这几个定律中的难点,它的教学重点是让学生感知乘法分配律,知道什么是乘法分配律,难点是理解乘法分配律的意义,并会用乘法分配律进行一些简便运算。于是,对于乘法分配律的教学,我没有把重点放在数学语言的表达上,而是把重点放在让学生通过多种方法的计算去完整地感知,对所列算式进行仔细观察,比较和归纳,大胆提出自己的猜想并且举例进行验证。

  乘法分配律是四年级下册的教学内容,对本课的教学目标我定位在:

  1、从学生已有的生活经验出发,通过口算、观察、类比,归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

  2、在教学中渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题、解决问题的能力,提高学生对数学的应用意识。

  新教材的一个鲜明特点就是,不再仅仅给出一些数值计算的实例,让学生通过传统的计算方法,发现规律,而是给学生出示一些熟悉的问题情境,让学生从实际生活出发,体会运算定律的现实生活背景,这样便于学生依托已有的知识经验,分析比较不同的解决问题的方法,从而引出运算定律。

  本节课也一样,教材提供了这样一个主题图:工人叔叔正在给墙面贴瓷砖呢,横着一排贴9块瓷砖,竖着有两种颜色,其中黄色的贴4排,蓝色的贴6排,需要解决的问题是:一共需要贴多少块瓷砖?学生独立计算,分别用两种不同的方法计算:

  (1)4×9+6×9=90(块);

  (2)(4+6)×9=90(块)。

  接着我让学生叙述等号左边和右边分别表示什么意思(根据情境)。目的是让学生用等值变形对算式的理解。接着让学生观察两个算式,让学生说出:这两个算是可以用“=”连接,即:(4+6)×9=4×9+6×9。学生继续观察等于号左边和右边的算式的特点,目的是结合学生熟悉的问题情境,为后面的学习奠定基础,帮助学生体会运算定律的现实背景。接着设计“悬念”,出示四组题目,把学生引到“两个算式的结果相等”的情况中来。先让学生猜想,然后验证,再让学生仿照上式编题,让每一个学生都不由自主的参与到研究中来。在编题的过程中,大多学生都编得正确,于是学生在参与探究中体验到了成就感,从而增强了他们学习的自信心和继续探究的欲望。接着,请同学们在生活中寻找验证的方法,分小组交流讨论,学生的思维活动一下活跃起来了,纷纷探究其中的奥秘。

  用小组讨论的方式,更促使学生之间进行思维交流,激发学生希望获得的成功的机会。通过实践、讨论,揭示了乘法分配律。再通过用自己喜欢的.方式来表述乘法分配律加以内化。这样做,学生学得积极、学得主动、学得快乐。自己动手编题、自己动脑探索,从数量关系变化的多次类比中悟出规律。

  “给的现成”的少,学生“创造”的就多,这样学生学会的不仅仅是一条规律,更重要的是,学生学会了自主、主动参与,学会了进行合作、独立思考、研究、发现等,像一个数学家一样(这是我的鼓励语言)!这对于一个十来岁的孩子来说,起到的激励作用是无比巨大的。而爱思考、多思考、会思考的学习习惯,会让孩子一生受益。纵观整个教学过程,学生学得轻松,学得主动。

  通过这节课的教学,我感受到:认真钻研教材,深入挖掘教材中的宝贵资源,会使教材的内涵更有深度、广度,也为培养和发展学生思维的灵活性,提供了更加广阔的空间。本节课的教学较好的贯彻了新课程标准的理念,具体体现在以下几点:

  一、主动探究、亲身经历和体验

  学生的学习过程应该是学习文本批判、质疑和重新发现的过程,是在具体情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展的过程。本节的教学,我从主题图入手,引出(4+6)×9=4×9+6×9。设计的目的是从解决这个问题的两种算法中,得到乘法分配律的一个实例。接下来,出示四组题目,把学生引到“两算式的结果相等”的情况中来。然后让学生通过验证方法的可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、验证、归纳出乘法分配律。整个过程中,我不是把规律直接呈现给学生,而是让学生通过自主探索去感悟发现,使主体性得到了充分发挥。在这个过程中,学生经历了一次严密的科学发现过程:观察――猜想――验证――结论,联系生活,解决问题。为学生的可持续学习奠定了基础。

  二、多向互动,注重合作交流

  在教学过程中,学生的认知水平、思维方式、智力水平、活动能力都是不一样的。因此,为了使不同层次的学生都能在学习中得到发展,我在本节课的教学中通过师生多向互动,特别是通过学生与学生之间的相互启发与补充,来培养他们的合作意识,实现对“乘法分配律”这一定律的主动构建过程,使学生个人的方法化为共同的学习成果,共同体验成功的喜悦,生命活力得到发展的过程。

  总之,在本节课中,虽然新的教学理念有所体现,但对于个别学生的参与积极性还没有充分调动起来,同学们虽然很投入,都似乎掌握了运算定律的运用,但在课堂练习时还是发现了一些问题,个别学生仍然出现了概念混淆,如:学生在计算形如a×(b+c)时,就把等于号右边的算式错误的写成:a×b+c,期间我还提醒大家注意,但实际运用中,很多同学还是忘记用括号里的两个加数a和b分别去乘括号外的乘数c。其实这个问题,也是我上课之前所发怵的原因,现在看来,对于这一问题,还必须在今后的练习过程中进一步加强理解、运用的训练,更有待我在今后的教学中不断地探索改进更好的教学方法,以求进一步提升课堂教学效率。

乘法分配律教学反思6

  乘法分配律是继乘法交换律、乘法结合律之后的新的运算定律,在算术理论中又叫乘法对加法的分配性质,由于它不同于乘法交换律和结合律是单一的运算。从某种程度上来说,其抽象程度要高一些,因此,对学生而言,难度偏大,如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。在教学过程中有坡度的让学生在不断的感悟、体验中理乘法分配律,从而自己概括出乘法分配律。我是这样设计:

  一、让学生从生活实例去理解乘法分配律

  一共25个小组参加植树活动,每组里8人负责挖坑和种树,4人负责抬水和浇树。重组教材,改变每组的人数,由(4+2)个25,变为(8+6)个25更能凸显出应用乘法分配律后带来的方便,也为乘法分配律的应用打下伏笔和基础。并且把“挖坑、种树”“抬水、浇树”更改为“挖坑和种树”“抬水和浇树”减少了文字对学生理解带来的困难。

  通过引入解决问题让学生得到两个算式。先捉其意义,再突显其表现的形式。

  如(4+2)×25其意义就是6个25与4×25+2×25所表示的也是4个25再加2个25也就是6个25,它们的表示意义一样。因此得数也一样故成等量关系。然后观察它们之们的形式变化特点,两个数的和乘以一个数可以写成两个积相加的形式,再捉住因数的特点进行分析。在此基础上,我并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会

  借助对同一实际问题的不同解决方法让学生体会乘法分配律的合理性。这是生活中遇到过的,学生能够理解两个算式表达的意思,也能顺利地解决两个算式相等的问题。

  二、突破乘法分配律的教学难点

  让学生亲历规律探索形成过程。对于探索简洁分配律的过程价值,丝毫不低于知识的掌握价值。既然是“规律定律”,就是让学生亲历规律形成的科学过程设计中,不着痕迹的让学生不断观察、比较、猜想、验证,从而概括出乘法分配律,在探索、归纳过程中,渗透着从特殊到一般,又由一般到特殊的数学思想和方法。

  相对于乘法运算中的其他规律而言,乘法分配律的结构是最复杂的,等式变形的能力是教学的难点。为了突破这个教学难点,从生活中的实际问题出发,开放引入的情境,一共25个小组参加植树活动,每组里人负责,人负责。一共有多少同学参加这次植树活动?

  学生主动去设计、解决,调动学生的积极性。让学生根据自己的想法,选择自己喜欢的方案,开放给学生,发挥学生的主体性,通过去发现、猜想、质疑、感悟、调整、验证、完善,验证其内在的规律,从而概括出乘法分配律。让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中。

  在学生已有的`知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

  当然,对乘法分配律的意义还需做到更式形结合解释,那就更有利于模型的建立。

  乘法分配律教学反思是必要的,所以老师们一定也要好好地去对待。不断的反思,才可以促进不断的进步。以上面的文章,希望与各位同行们共同进步。

乘法分配律教学反思7

  《探索与发现(三)乘法分配律》教学反思

  东新四小学 王唯

  教学内容:

  小学四年级数学(上)《探索与发现(三)》乘法分配律》教材第48页

  教学目标:

  1、经历探索的过程,发现乘法分配律,并能用字母表示。

  2、会用乘法分配律进行一些简便计算。

  教学重点:理解乘法分配律的特点。

  教学难点:乘法分配律的正确应用。

  教学过程:

  一、复习回顾

  (出示课件1)计算

  35×2×5=35×(2×)

  (60×25)×4=65×(×4)

  (125×5)×8=(125×)×5

  (3×4)×5 × 6=(×)×(×)

  师:上节课,经过同学们的探索,我们发现了乘法交换律和结合律,并会应用这些定律进行简便计算,今天咱们继续探索,看看我们又会发现什么规律。让我们一起走上探索之路。

  二、探究发现

  (出现课件2)

  师:大家看,工人叔叔正在贴瓷砖呢,看到这幅图,你发现了哪些数学信息?

  生:我发现有两个叔叔在贴瓷砖

  生:我发现一个叔叔贴了4列,每列贴9块,另一个叔叔贴了6列,每列贴了9块。

  师:你最想知道什么问题?

  生:我想知道工人叔叔一共贴了多少块瓷砖?(按鼠标出示问题) 师:你能估计出工人叔叔一共贴了多少块瓷砖吗?

  生:我估计大约有100块瓷砖

  生:我估计大约有90块瓷砖。

  师:请同学们用自己喜欢的方法来计算瓷砖究竟有多少块。(学生做,小组讨论,教师巡视)

  师:谁来向大家介绍一下自己的做法?

  生:6×9+4×9(板书)

  =54+36

  =90

  分别算出正面和侧面贴的块数,再相加,就是贴的总块数。

  生:(6+4)×9(板书)

  = 10×9

  =90(块)

  因为每列都是9块,所以我先算出一共有多少列,再用列数去乘每列的块数,就是一共贴瓷砖的块数。

  师:同学们的计算方法都很好,请同学们仔细观察两种算法,你能发现什么?

  生:我发现计算方法不同,但结果却是一样的。

  6×9+4×9 = (6+4)×9(板书)

  师:请同学们仔细观察上面两道算式的特点,你能再举一些这样类似的例子吗?

  (学生举例,教师板书)

  师:这几们同学举的例子符合要求吗?请在小组中验证一下。 (小组汇报)

  小组1:符合要求,因为每组中两个算式都是相等的'。

  小组2:在每组的两个算式中,一个是两个数的和去乘一个数,另一个是用这两个数分别是去乘同一个数,再相加,符合要求。

  (板书用=连接算式)

  师:比较等号左右两边的算式,从它们的特点和结果相等中你能发现什么规律,小组再讨论一下。

  小组1:我们小组发现,只要符合上面题目要求的算式,结果都是一样的。

  小组2:我们小组发现,两个不同的数分别去和同一个数相乘,然后再相加,可以先把这两个数相加再一起去乘第三个数,结果不变。 结论(课件2):师:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做 乘 法 分 配 律。它是我们学习的关于乘法的第三个定律。

  师:大家齐读一遍。

  师:和同桌说一说自己对乘法分配律的理解。

  师:上节课我们学习了用字母来表示乘法交换律和结合律,现在你能用字母的形式表示出乘法分配律吗?用a,b,c分别表示这三个数,试着写一写吧。

  (a+b)×c=a×c+b×c

  师:这叫做乘法分配律

  三、巩固练习:

  1、计算

  (80+4)×25 34×72+34×28

  师:观察算式特点,看是否符合要求,能否应用乘法分配律使计算简便。

  2、判断正误

  ( 25 + 7 )×4 = 25 ×4 ×7×4 ( )

  35×9 + 35

  = 35×( 9 + 1 )

  = 350 - - - - ( )

  3、填一填

  (12+40)×3=× 3 +×3

  15×(40 + 8) = 15×+ 15×

  78×20+22×20=(+ )×20

  四、总结

  师:说说这节课你有什么收获?

  师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。

  [板书设计]

  探索与发现(三)

  -----乘法分配律

  (a+b)×c=a×c+b×c

  6×9+4×9 =(6+4)×9

  (40+4)×25 = 40×25+4×25

  (64+36)×42 = 42×64+42×36

乘法分配律教学反思8

  《乘法分配律》是四年级数学下册第三单元中的一节教学内容,一直以来的教学中,我认为这节课的教学都是一个教学难点,学生很难学好。

  我认为其中的不易可以从三个方面来说:其一,例题仅仅是分配律的一点知识,在课下的练习题中还存在不少乘法分配律类型的题(不过,这好像也是新课改后教材的表现)。如果让学生仅仅学会例题,可以说,你也只是学到了乘法分配律的皮毛;其二,乘法分配律只是一种简单的计算方法的应用,所有用乘法分配律计算的试题,用一般的方法完全都可以计算出来,也就是说,如果不用乘法分配律,学生完全可以计算出结果来,只不过不能符合简便计算的要求罢了,问题是学生已学过一般的方法,学生在计算时想的最多的还是一般的计算方法;其三,本节课的教学灵活性比较大,并没有死板板的模式可以来死记硬背,就是学生记住了定律,在运用时,运用错了,也是很大的麻烦,从题目的分析到应用定律都需要学生的认真分析及灵活运用。

  针对以上自己分析可能出现的问题,,确定从以下两个方面时行教学:

  第一,以书本为依托,学好基础知识。

  有一句话叫做“万变不离其宗”。虽然课下还有多种类型题,但它们都与书上的例题有着亲密的联系,所以教学还是要以书本为依托。在教学中,我引导生通过观察两个不同的算式,得出乘法分配律的用字母表示数:a×b+a×c=a×(b+c),在引导学生经过练习之后,我还强调学生,要做到:a×(b+c)=a×b+a×c。用我自己的话说,就是:能走出去,还要走回来。再次经过练习,在学生掌握差不多时,简单变换一下样式:(a+b)×c=a×c+b×c,走回来:a×c+b×c=(a+b)×c。如此以来,学生算是对乘法分配律有了个初步的`认识,知道是怎么回事,具体的运用还差很远,因为还有很多的类型学生并不知道。于是我就在第二节课进行了第二个方面的教学。

  第二,以练习为载体,系统巩固知识。

  针对乘法分配律还有多种类型,例题中也没讲到的情况,我上网查资料,加上并时的一些认识,把乘法分配律分为五类,并对每类进行简单的分析提示,附以相应的练习题印发给学生,让学生进行练习。

  类型一:(a+b)×c a×(b-c)

  例:A (40+8)×25 B 15×(40-8)

  类型二:a×b+a×c a×b-a×c

  例:A 36×34+36×66 B 325×113-325×13

  类型三:100+1或80+1

  例:A 78×102 B 125×81

  类型四:100-1或40-1

  例:A 45×98 B 25×39

  类型五:+1或-1

  例:A 83+83×99 B 91×31-91

乘法分配律教学反思9

  师:(出示挂图)仔细观察,从图中你获得哪些信息?

  买这些衣服,戚老师一共要付多少元呢?你能用两种方法列出综合算式吗?

  生:(65+35)×12=1200(元)

  生:65×12+35×12=1200(元)

  师:每个算式的结果都是1200元,那么这两个算式有什么关系?

  生:(65+35)×12=65×12+35×12

  师:刚才我们是通过计算发现两个算式相等的,大家能根据题意说说两个算式为什么相等吗?

  (学生小组讨论)

  师:指名学生回答。

  生:一件上衣和一条裤子合起来叫一套衣服,就是65元和35元的和,买12套衣服的价钱就是12个65元和12个35元的和;每件上衣65元,12件上衣的价钱就是12个65元,每条裤子35元,12条裤子就是12个35元,合起来也是12套衣服的价钱,所以(65+35)×12=65×12+35×12。

  师:说得真棒,谁能概括地说一说。

  生:12个65加12个35等于12个65与35的和。

  师:请同桌互相说一遍。

  师:照这样,你能再写出几组这样的等式吗?(学生独立思考。)

  (过一会儿,一只只小手举起来了,教师指名回答。)

  生1:(15+25)×8=15×8+25×8。

  生2:a×(5+2)=a×5+a×2。

  生3:(+▲)×■=×■+▲×■。

  ……

  师:同桌检查一下,对方写的等式两边是否相等?

  师:同学们仔细观察,对比上面的等式左右两边的式子有什么特征?你从中发现什么规律?小组内的同学可以互相商量、讨论。

  生1:我们小组发现:等号左边的式子不是两个数的和乘一个数就是一个数乘两个数的和,等右左边的式子都是括号内的两个数与括号外的那个数相乘,最后把两个积相加起来。

  生2:我们小组从乘法的意义理解发现:比如(15+25)×8=()×8+(

  )×8。因为15和25的和等于40,左边的式子可以理解为40个8,右边的式子可以理解为15个8加25个8一共是40个8,所以40个8等于15个8加25个8。

  ……

  师;同学们刚才观察非常仔细,都代表本组讲出了你们发现的规律。

  师:像(65+35)×12=65×12+35×12这样的等式,你能写出多少个?

  生:无数个。

  师:你们能不能像乘法交换律和乘法结合律那样也用一个字母式子来表示呢?

  学生尝试用字母表示乘法分配律,教师巡视。

  生:a×(5+2)=a×5+a×2。

  生:(+▲)×■=×■+▲×■

  生(a+b)×c=a×c+b×c。

  ……

  师:你们真棒!今天我们发现的规律就是乘

  法分配律。乘法分配律常表示为(a+b)×c=a×c+b×c。

  你们能用自己的话说说什么是乘法分配律吗?

  指名学生回答。

  师小结:两个数的和乘第三个数,可以把两个数分别和第三个数相乘,再求和。

  教后反思:

  1、关注学生已有的知识经验

  以学生身边熟悉的情境为教学的切入点,激发学生主动学习的需要,为学生创设了与生活环境、知识背景密切相关的感兴趣的学习情境,通过两种算式的比较,唤醒了学生已有的.知识经验,使学生初步感知乘法分配律。让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。

  2、提供自主探索的机会

  一堂数学课可以有不同种教法,怎样教才能在数学活动中培养学生的创新能力呢?我觉得,最重要的是保证学生的主体地位,提供自主探索的机会。在探索乘法运算律的过程中,提出的问题有易到难,层层递进,不仅为学生提供了自主探索的时间和空间,使学生经历乘法运算律的产生和形成过程,而且让学生发现其中的数学规律与奥秘,从而激发学生对数学深层次的热爱。

  在日常生活中,数学真是无处不在,处处留心皆学问。如果学生们能处处留心数学问题,并运用数学知识去解决这些实际问题;能够在认真观察的基础上,根据数字的特点,灵活地选择运算定律,找到适合自己的最佳的简算方法,那么自己的教学就成功了。尽管在课堂上也许还不能够全部掌握简算的知识,只要在日常的学习和生活计算的过程中,能够学会善于观察,自觉运用,就能达到熟能生巧的效果,学习成绩与学习能力也会有很大程度的提升。

乘法分配律教学反思10

  关于乘法分配律早在上学期和本册教材的前几个单元的练习题中就有所渗透,虽然在当时没有揭示,但学生已经从乘法的意义角度初步进行了感知,以及初步体会了它可以使计算简便。今天的教学就建立在这样的基础之上,上午第一节课我在自己班上,后来第二节课去听了一根木头老师的课,现在进行对比,谈一谈自己的感受:

  首先,值得向一根木头老师学习的是,学生的预习工作很到位。课前,学生就已经解决了“想想做做”第3、4题,学生通过解决第三题用两种方法求长方形的周长,既巩固了旧知,而且将原来的认识提升了,从解决实际问题的角度进一步感受了乘法分配律。而第4题通过计算比较,突现了乘法分配律可以使计算简便,体现了应用价值。我在课前没有安排这样的预习,因此课上的时间比较仓促。

  其次,我在学生解决完例题的问题后,还让学生提了减法的问题,这样做的目的是让学生初步感受对于(a—b)×c=a×b—a×c这种类型的题也同样适合,既扩展了学生的知识面,同时又为明天学习简便运算铺垫。

  最后,我觉得在指导学生在观察比较65×5+45×5和(65+45)×5的联系和区别时,可以指导学生从数和运算符号两个角度观察,学生得出结论后,其实已经感知到了算式的特点,然后让学生用自己的方式创造相同类型的等式,可以是数、字母、图形的等,值得欣慰的是学生能用各种方式正确表示出来,然后再揭示数学语言,学生的认知产生飞跃。

  不足的是,学生很难用自己的语言表达乘法分配律的含义,小组交流时,有些同写还是充当旁观者的角色,有待于教师科学地引导。

  《乘法分配律》教学反思3

  乘法分配律是一节比较抽象的`概念课,教师可以根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。

  具体是这样设计的:先创设佳乐超市的情景调动学生的学习积极性,通过买“3套运动服,每件上衣21元,每条裤子10元,一共花多少元?”列出两种不同的式子,他们确实能够体会到两个不同的算式具有相等的关系。这是第一步:通过资料获取继续研究的信息。(虽然所得的信息很简单,只是几组具有相等关系的算式,但这是学生通过活动自己获取的,学生对于它们感到熟悉和亲切,用他们作为继续研究的对象,能够调动学生的参与意识。)

  第二步:观察算式,寻找规律。让学生通过讨论初步感知乘法分配律,并作出一种猜测:是不是所有符合这种形式的两个算式都是相等的?此时,教师不要急于告诉学生答案,而是让学生自己通过举例加以验证。这里既培养了学生的猜测能力,又培养了学生验证猜测的能力。

  第三步:应用规律,解决实际问题。通过对于实际问题的解决,进一步拓宽乘法分配律。这一阶段,既是学生巩固和扩大知识,又是吸收内化知识的阶段,同时还是开发学生创新思维的重要阶段。

乘法分配律教学反思11

  学生在进行了乘法结合律与乘法分配律这两堂课的新课学习之后,不知道是教学方面的设计和学生学习状态等什么方面的原因,总感觉学生在这两个方面的认识存在着很多的疑惑。新教材在对于这种运算定律方面的教学没有要求从文字语言方面加以叙述,只是要求学生能够在观察、发现、猜想、举例、验证、总结的一系列基础上得出规律,尽管课堂上面学生都能够动起来,但是真正地在灵活运用方面确不能够令老师满意,所以在练习课中我们好好地研讨了练习的重点与策略,从实际效果上来说还是不错的。

  课堂的设计首先从学生学习的乘法运算定律入手,让学生能够把乘法交换律、结合律、分配律三者的区别和联系弄清楚;其次是出示了一些在运用定律过程中要经常要用到的口算题,让学生们根据数字的特点做到选择运算定律时心中有数;然后是一系列的填空题与连线题,这些都是仿照定律的模型设计的,使学生明白套用的基本步骤和道理;紧接着接是一组动手计算题,重点是要求学生运用乘法交换律、结合律、分配律去进行解答,但是这是一些基础题,学生应该在课堂学习的基础上基本都能够解答,老师强调解题的格式;在这一些环节的联系之后,本堂课重点的内容也就产生了,老师出示了十道带有技巧的题目,要求学生首先观察,你觉得运用什么方法解决比较简便,第一步怎样操作;可以任意选择一道题;其他同学可以补充不同的意见和方法。这样一来,学生们的积极性高涨,大家踊跃发言,表达自己的观点,发表自己的意见,对于各种不同类型的题目有了一个综合练习;最后出示了两道与实际情景联系紧密的生活中的应用题,需要学生在列出算式之后合理的运用简便方法论加以计算。课堂有层次,练习有坡度,达到了实际的效果。

  自由探索与合作交流是《数学新课标》中提出的.学生学习数学的重要方式。教学实践也证明,在自由探索与合作交流的学习方式中,学生认识活动的强度和力度要比单纯接受知识大得多。在本节课的实施中的每一个学习活动,都试图以学生个性思维,自我感悟为前提多次设计了让学生自主探索,合作交流的时间与空间。通过学生的观察,学生之间和谐有效地互动,强化了学生的自我意识,自我感情。

  在日常生活中,数学真是无处不在,处处留心皆学问。如果学生们能处处留心数学问题,并运用数学知识去解决这些实际问题;能够在认真观察的基础上,根据数字的特点,灵活地选择运算定律,找到适合自己的最佳的简算方法,那么自己的教学就成功了。尽管在课堂上也许还不能够全部掌握简算的知识,只要在日常的学习和生活计算的过程中,能够学会善于观察,自觉运用,就能达到熟能生巧的效果,学习成绩与学习能力也会有很大程度的提升。

乘法分配律教学反思12

  教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。针对这种情况,在教学中应该注意些什么呢?

  1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。我们往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解如:(6+4)×9=6×9+4×9是相等的,还要从乘法的意义的角度理解,即左边表示10个9,右边也表示10个9,所以(6+4)×9=6×9+4×9。

  2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。

  乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算是个有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?

  3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的`理解。对不同的解题方法,引导学生进行对比分析,什么时

  候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法分配律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。

  4、多练。针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。

乘法分配律教学反思13

  乘法分配律教学是在学生学习了加法交换律、结合律和乘法交换律、结合律的基础上进行的。它是学生较难理解与叙述的定律。因此我在教学中让学生在不断的感悟、体验、练习中理解乘法分配律,从而达到熟练掌握的'效果。

  一、从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

  二、在本课教学过程的设计上,我尽量想体现新课标的一些理念,注重从实际出发,把数学知识和实际生活紧密联系起来,让学生在体验中学到知识。举例:设计学校买书的情景。让学生帮助出主意。出示:“一套故事书45元,一套科技书35元,各买3套书。一共需要多少元钱?”让学生尝试通过不同的方法得出:(45 +35 )×3 = 80×3 = 240(元)、45×3 + 35×3 = 135+105= 240(元)。此时,让学生观察通过计算方法得到了相同的结果,这两个算式可用“=”连接。使之让学生从中感受了乘法分配律的模型。从而引出乘法分配律的概念:“两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。”用字母形式表示:(a + b)× c = a × c + b × c

  本节课气氛活跃,学生积极性高。可通过练习发现孩子们掌握得并不如意,在下节课我将继续加强练习。

乘法分配律教学反思14

  乘法分配律是四年级学习的重点,也是难点之一。它是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上教学的,是一节比较抽象的概念课,教学是我根据教学内容的特点,为学生提供多种探究方法,激发学生的自主意识。

  一、在对本节课的教学目标上,我定位在:

  (1)通过学生比赛列式计算解决情景问题后,观察、比较、分析理解乘法分配律的含义,教师引导学生概括出乘法分配律的内容。

  (2)初步感受乘法分配律能使一些计算简便。

  (3)培养学生分析、推理、概括的思维能力。

  二、结合自己所教案例,对本节课教学策略进行以下几点简要分析:

  1、总体上我的教学思路是由具体——抽象——具体。

  在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。在寻找规律的过程中,有同学是横向观察,也有同学是纵向观察,老师都予以肯定和表扬,目的是让学生从自己的数学现实出发,去尝试解决问题,又能使不同思维水平的学生得到相应的满足,获得相应的成功体验。

  2、从学生已有知识出发。

  教师要深入了解各层次学生思维实际,提供充分的信息,为各层次学生参与探索学习活动创造条件,没有学生主体的主动参与,不会有学生主体的主动发展,教师若不了解学生实际,一下子把学习目标定得很高,势必会造成部分学生高不可攀而坐等观望,失去信心浪费宝贵的学习时间。以往教学该课时都是以计算引入,有复习旧知,也有比一比谁的计算能力强开场。我想是不是可以抛开计算,带着愉快的心情进课堂,因此,我在一开始设计了一个植树的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。这样所设的起点较低,学生比较容易接受。

  3、鼓励学生大胆猜想。

  猜想是科学发现的前奏。学生的学习活动中同样不能没有猜想,否则,主体性探究 活动便缺少了内在的动力,自主学习的过程也成了失去目标的无意义操作。学生看到加法交换律和加法结合律,从直观上产生了关于乘法运算定律的猜想。于是,接下来的举例就成了验证猜想的必需,无论猜想的结论是“是”还是“非”,学生的思维一直是活跃着的,对学生都是有意义的'。这个过程是教会学生 学习与掌握探索方法的过程,是培养学生学习品格的过程。

  4、师生平等交流。

  教学过程是师生共创共生的过程,新课程确定的培养目标和所倡导的学习方式要求 教师必须转换角色。改变已有的教学行为,教师必须从“师道尊严”的架子中走出来,与学生平等地参与教学,成为共同建构学习的参与者。在以上教学片断中,教 师让学生充分经历学习过程,调动学生学习的热情:猜想——倾听——举例——验证,在 欣赏学生的“闪光”处给学生“点拨”。教师没有过多的讲授,也没有花大量的时间去 刻意的创设教学情境,只是做唤醒学生主体意识的工作,引导学生大胆猜想,大胆表达。学生借助已有的知识经验,自主解决新问题,使学生的主体地位得以体现。

  5、将学生放在主体位置。

  把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去尝试解决问题。在探究这一系列的等式有什么共同点的活动中,学生涌现出的各种说法,说明学生的智力潜能是巨大的。所以我在这里花了较多的时间,让学生多说,谈谈各自不同的看法,说说自己的新发现,教师尽可能少说,为的就是要还给学生自由探索的时间和空间,从而能使学生的主动性、自主性和创造性得到充分的发挥。

  三、教学中的不足和改进之处:

  在教学过程中,也有不尽人意的地方,如虽然本节课在感知乘法分配律上下了不少工夫,但在乘法分配律的理解上还不够,因此在归纳乘法分配律的内容时,学生难以完整地总结出乘法分配律,另外还有部分学困生对乘法分配律不太理解,运用时问题较多等,今后的工作中,要多向以下几个方面努力:

  1、多听课,多学习。尤其是优秀教师的课,学习他们的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。

  2、加强同科组教师之间的沟通和交流,相互学习,取长补短,共同进步。

  3、认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数,游刃有余。

乘法分配律教学反思15

  问题的探索

  1、小组合作,培养估计意识

  师:我们先来估计一下他们大约用了多少块瓷砖好吗?

  生:思考并回答,只要是学生说的合理就可以

  估计的方法很多:估计一行有10块,一共有10行,10×10=100(块)

  估计左边有50块,右边有50块,合起来一共有100块。

  ……

  师:那到底谁的估计最合适呢?让我们共同来研究一下好吗?

  2、自主探索,验证估计的正确性

  师:请同学们用自己喜欢的方式做到练习本上。把你想到的算法都写出来。

  先独立思考,然后在小组内交流一下。

  生:思考、交流

  师:看到刚才同学们积极思考的样子,老师很想知道你们是怎么想的?谁想告诉老师和同学们?

  提醒其他学生认真倾听,同时对同伴的回答进行补充。

  可能出现的结果:(1)(6+4)×9=10×9=90(块)

  (2)6×9+4×9=54+36=90(块)

  (3)6×9=54(块)4×9=36(块)54+36=90(块)

  学生还有可能出现其它的不同的思考方法,但只要有理由老师都要进行肯定。

  学生思考出的算式可以让学生自己写到黑板上,然后老师根据自己的需要边总结边调整出如下的板书:

  (1)(6+4)×9=10×9=90(块)

  (2)6×9+4×9=54+36=90(块

  师:通过计算我们可以看出工人师傅一共贴了90块瓷砖,那谁估计的答案最合适呢?掌声鼓励下自己。

  3、分析比较

  师:仔细观察两种方法有什么不同

  生:第一种方法是先求出一行有多少块,再求一共有多少块;第二种方法是先求出一面墙用了多少块,再求出另一面墙用了多少块,最后求一共用了多少块。

  4、结论:

  师:我们来比较一下这两个算式的结果如何?

  生:相等

  师:用什么符号连接(结果相等,用等号连接)

  (6+4)×9=6×9+4×9,(板书)

  教学反思:本节课的`重点和难点是对规律的探索,在得出算式(6+4)×9=6×9+4×9以后,我没有用例子让学生很快的归纳出一个一般的结论,而是引导学生观察、发现、猜想、举例验证、归纳概括等,让学生把静态的知识结论转化成动态的探索对象,使认知任务本身有了一种诱发学生较高思维水平的潜力,给规律的探索过程注入了生命力。

【乘法分配律教学反思】相关文章:

《乘法分配律》教学反思11-14

乘法分配律教学反思12-28

乘法分配律教学反思07-02

《乘法分配律》教学反思01-15

乘法分配律教学反思(15篇)02-12

《乘法分配律》教学反思(15篇)02-15

《乘法分配律》教学反思精选15篇03-05

《乘法分配律》教学反思15篇02-07

乘法分配律教学反思(精选3篇)09-22