当前位置:9136范文网>教育范文>教学反思>《圆柱与圆锥》教学反思

《圆柱与圆锥》教学反思

时间:2023-03-13 09:11:27 教学反思 我要投稿

《圆柱与圆锥》教学反思

  作为一名到岗不久的人民教师,我们要在课堂教学中快速成长,我们可以把教学过程中的感悟记录在教学反思中,那么应当如何写教学反思呢?下面是小编为大家收集的《圆柱与圆锥》教学反思,仅供参考,大家一起来看看吧。

《圆柱与圆锥》教学反思

《圆柱与圆锥》教学反思1

  这节课我所教学的内容是对圆柱与圆锥这一单元的知识进行系统的整理和复习,使学生更好的掌握圆柱、圆锥的特征,掌握圆柱侧面积、表面积的计算以及圆柱、圆锥体积的计算公式。会运用所学知识解决一些简单的实际问题。培养学生能够解决问题的能力。

  课前,我让学生自己对学过的知识进行了整理,有几个同学整理得挺全面,有的'同学把知识点都写上了,但没有条理。所以,课上我通过表格的形式引导学生回顾前面所学知识,总结图形的特征和计算方法,培养了学生有条理的对所学知识进行整理归纳的能力。因为是复习课,我没有设计让学生合作学习,动手操作等环节。课上我出了两道具有代表性的题。通过巡视我发现同学们列算式基本没问题,因为我们在讲新课时,同学们通过观察、动手操作,自主探究,合作交流等形式归纳出了所有的计算公式,只要同学们认真审题,这类题基本没什么问题。

  另外,我每天还让学生在黑板上写两、三题在早晨或中午做,也收到了很好的效果。

《圆柱与圆锥》教学反思2

  对于圆柱和圆锥的教学,比较适合的教学方法是学生动手操作,独立探索获取新知,如1、学生自己动手测量圆锥的高,从而找出测量圆锥高的方法。2、动手剪开圆锥的侧面,验证圆锥侧面展开图是一个扇形。3、学生通过做实验,得出圆锥的体积=等底等高圆柱体体积/3,推导出圆锥的体积公式。4、测量学具有关数据,计算体积等。这样不但培养了学生的动手能力,同时在操作过程中学生的创新能力也得到发展。

  本节课的基本教学顺序是:激疑——猜想——验证——应用。如,教师先让学生猜想圆柱体和圆锥体体积的关系,然后实验验证。教给学生大胆猜想,并用科学方法验证的数学方法。如,教学“圆柱的体积”这部分内容,可先引导学生回忆平行四边形、三角形和梯形面积计算公式的.推导过程,并分析、对比各个公式推导过程的共同点,以及由于图形不同而产生的不同点。接着提出如何把圆转化成已学过的图形来计算面积的问题,并让学生拿出预先准备好两个图形学具,按照书上所示的方法将圆分成16等份,剪开后拼成一个近似的长方形。然后再根据长方形的面积公式推导出圆的面积公式。这样让学生通过拼摆进行迁移,可以使学得轻松、主动。

  又如:学习了圆锥体体积的计算方法后,教师设计了这样两个练习,1、计算学具的体积;2、在桌面上有一堆沙子,现在想知道它的体积,该怎样做?让学生运用所学知识解决实际问题,不但培养了学生的实践能力,同时使学生感到学有所用,提高了兴趣。

《圆柱与圆锥》教学反思3

  本节课是一堂复习课,对学生应该是一个温故而知新的过程。

  复习课是帮助学生整理知识、查漏补缺的重要课时。如何在复习课中提高学生的学习效率?是摆在老师面前的一个难题。如果把它仅仅看作是对知识的再现与补缺,简单地将各知识点罗列出来,这样无法使学生系统理解知识,弄清各知识之间的联系和知识的发生过程,而且还会使学生觉得是"炒剩饭"。这样往往会因重复练习而缺少新意。为了避免这种现象,我想如果能够设计有效的教学环节,能切实有效地让学生投入到课堂中并积极参与课堂才会取得事半功倍的效果,教师积极利用各种教学资源,创造性的使用教材,设计适合学生发展的教学过程。因此,在复习基础知识这一教学中,教师应将各个知识点,根据其发生过程和内在联系,通过对知识的分类、整合,构建知识网络,形成知识体系,让学生通过知识网络形成高视角的思维结构建立整体意识和统一观点。为此,我进行了这样几个环节的设计:

  通过师生谈话,引入课题。活跃教学气氛,营造轻松愉悦平等的学习氛围。 ?

  在本环节我首先提出问题:“你知道圆柱与圆锥有哪些特征?”这是一个简单问题,每个学生都有说的,但又说不完整,其他学生会进行补充,学生的参与度高,积极性高。同时,在互动交往中师生相互启发,相互补充,从而使知识结构不断完善,强化了复习的功能。

  整理复习的目的不仅仅在于对知识的整理,还需要通过对知识的整理达到复习与提高的效果。所以最后我安排了一个问题:一个圆柱长10厘米,接上4厘米的一段后,表面积增加了25.12平方厘米,求原来圆柱的体积是多少立方厘米?本环节是对本节课所学知识的拔高,不仅要让学生回顾本节课所学的主要数学知识和思想方法,还要给学生表达和发展思维的'机会,进而提高学生的能力,也使学生认识到整理和复习的重要性。

  反思这节课的教学设计与实际教学过程,还有一些问题需要思考与改进。如:

  这节课的设计已改动了多次,通过谈话对圆柱和圆锥从表面到内部的特征进行再认识,对圆柱的表面积,圆柱、圆锥的体积进行再回顾,有学生对这部分知识进行再整理的过程花费了很多的精力。这样的“再认识”是不是有“新授”的痕迹?

  在复习中必要的练习是不可缺少的。我们可以以练习代替复习,可以边整理知识点边穿插练习,也可以在练习中引导学生通过对练习题的分类,整理出知识网络,还可以先梳理沟通知识间的联系,再针对性地进行练习,有时用一节课对某部分知识进行整理和复习后,后面要跟着三四节的练习课复习与练习的关系如何协调才能提高复习的效率也是一个值得研究的问题。

  由于教学经验欠缺,这节课还存在很多的问题,如:教学环节连接不够自然,新的教学方法运用不够熟练等等,以后还需要努力学习,提高自己的教学水平。

《圆柱与圆锥》教学反思4

  教完《圆柱和圆锥》这一单元内容,我的心总是七上八下的,隐隐约约中感觉到学生可能撑握得不够好。今天上午测试完后,我就迫不及待地批改起学生的卷子来。可是,我越往下批改,我就越觉得难受:之前的所用担心都不幸而言中了,学生考得出乎我意料地差!

  下午,我反复研究了学生的试卷,发现学生在答卷中至少存在着以下几个方面的问题:

  一、对于表面积而言,学生主要是对题中的圆柱体有几个面搞不清(当然也包括部队分学生审题马虎)和在求各个面的面积时公式运用错误。有些题目是要求圆柱的三个面的面积和,学生只求了两个面的面积和;有些题目要求圆体的两个面的面积和,学生求了三个面的面积和;有的圆柱体的表面积实际是侧面积,而学生却求了三个面的面积和。如有一道题目要求一个无盖的圆柱形水桶的表面积,很多学生求了水桶三个面的面积和,还有一道题是求用铁皮做10 节通风管需要多少铁皮,学生也是求2 个底面积+ 侧面积的和乘10 。另外,就是在运用公式来求侧面积时,有的学生却错用了体积公式。

  二、对于体积而言,主要存在的问题是在圆锥这里。如有一道题要求一个圆锥体的体积时,很多学生却忘了乘三分之一,把它求成了圆柱的体积。这主要是学生分辨圆柱和圆锥的体积时出现混淆,当然也有相当部分学生是由于审题不认真所造成的。不管怎么样,说明学生对于圆柱体和圆锥体的体积有所混乱,同时在审题上也相当粗心。

  三、在整张试卷上,计算是最大的问题。这单元的计算大多是多位小数相乘,计算所得的积的.位数也较多。因此,计算的难度相当大!很多学生见到这些计算就感到头痛,所以计算错误相当多。

  纵观这次考试情况,反思这个单元的教学内容和教学方法,我觉得本单元教学内容分两大板块--- 表面积和体积,但本单元的知识是简单的立体几何知识,很多知识都较为抽象,学生理解起来的确是不容易。因此,在教学时我有意识地结合、围绕下面几点进行教学设计:一是结合生活实际进行教学设计。比如在教圆柱体的认识时,我先要求学生收集身边的圆柱体物体、观察生活中哪些物体是圆柱体,让学生在身边、在生活中学到数学知识。二是加强动手操作,在做中学。比如在教学圆柱体的表面积时,我要求学生动手用硬纸做一个圆柱体,然后进行分解撑握一般的圆柱体有三个表面,使学生理解圆柱体的表面积的含义,从而撑握圆柱体表面积的计算方法。三是注意培养学生良好的学习习惯。在本单元教学中,我有意识地对计算、易做错的题目进行反复的训练。但是,由于本届学生基础的确较差,加上我教学上可能存在着急功好进的思想,勿视了学生的实际情况,因而导致学生测试成绩不好。今后,应好好注意。

《圆柱与圆锥》教学反思5

  今天,进入第二单元《圆柱与圆锥》的学习,也是学生在小学最后一次学习空间图形。操作、思考、想象相结合是学生认识图形、探索图形特征、发展空间观念的重要途径。在本单元中,教材也安排了操作活动的,在每个主题活动中都安排了操作活动,促进学生理解数学知识、发展空间观念。如圆柱的表面积的教学中,教材引导学生通过操作来说明圆柱的侧面展开后是一个怎样的图形?让学生进行圆柱实物测量算表面积,制作笔筒,深化知识的理解。

  我跟去年一样,布置课前前置作业:明天我们学习《圆柱的认识》,回家找一个大一点的圆柱形的物体,用最少的彩纸把这个圆柱包起来。

  课一开始,让学生回顾学过的长方体与正方体的特征,你心目中长方体与正方体是怎样的呢?学生从面、顶点、边来交流,交流中其实对圆柱的认识做了很好引导。接着,让学生交流你心目中的圆柱是怎样的?由于学生自己操作过,因此回答非常积极。从底面、高和侧面来交流,很快学生在交流中明确:圆柱的上下两个面是完全相同的圆;侧面是一个弯曲的面,并且粗细均匀;两个底面之间的距离叫做高,有无数条高。我追问着:你怎样证明两个底面大小相等呢?

  生1:我在包这个圆柱时,只测量了一个底面直径,剪了两个,正好,因此两个底面大小相等。生2:圆柱可以看成有无数个大小相等的圆片叠起来的,那么两个底面大小一定相等。

  生3:在包圆柱时,我测量过两个底面的直径,大小相等。你怎样证明圆柱的高有无数条?生1:我觉得两个底面间有很多的垂直线段。生2:底面有无数的点,两个底面对应的点连接的线段都是圆柱的高了。引导学生通过实验和推理的方法来证明,让学生结合实验操作进行辩析明理,加深学生对圆柱特征的理解。

  你怎么知道圆柱的侧面展开是长方形呢?学生通过滚、包圆柱、围圆柱发现了展开的侧面与圆柱的联系。你能用这张长30厘米,宽20厘米的纸围成怎样的.圆柱呢?

  生1:我围成的圆柱,圆柱的底面周长是长方形的宽,圆柱的高是长方形的长。

  生2:我围成的圆柱,圆柱的底面周长是长方形的长,圆柱的高是长方形的宽。我课件演示,观察一下,你有什么新的发现?学生发现了长方形的面积就是圆柱的侧面积,发现了两个圆柱的侧面积相等,都是这张长方形纸的面积。得出了结论侧面积相等,但它们的底面积不相等,高也不相等。通过这样的练习学生很自然的感悟到圆柱的侧面积就用长方形的长乘宽,也就是圆柱的底面周长乘高。

  学生对圆柱认识到位与否直接关系到圆柱表面积和体积的教学,因此从某种意义上说认识圆柱是圆柱单元的重点中的重点。通过包圆柱,一张白纸围圆柱,把传统的剪改成现在的围,使学生对圆柱侧面研究自然过渡到对长方形与围成圆柱 关系的研究上,更加深入,努力实现探究效果的最大化。

《圆柱与圆锥》教学反思6

  《圆柱与圆锥》这一单元内容重点分两大板块---表面积和体积,是简单的立体几何知识,知识显得较为抽象,学生理解起来比较困难,解题时计算的难度也较大,学生出错的现象可以说是多方面的,主要归纳如下:

  一、这一单元公式多,学生容易混淆,如圆的周长和面积;表面积和侧面积;圆锥和圆柱的体积(特别计算圆锥的体积时很多的学生总是漏×1/3)。

  策略:在理解的基础上熟记各种公式,并利用题组训练突破圆柱和圆锥的关系:1、等底等高,V柱=3V锥

  二、计算难度大,全是小数的加减乘除法计算,学生容易出错。

  策略:加强小数的计算训练,特别是多进行N×3.14的`训练,提高计算准确率。

  三、审题不认真。在求体积的题目中,一些题目给出圆柱的半径、高单位不统一,学生往往就没注意到,经常出错。

  策略:要求学生解题是一定要注意先统一单位,再计算。遇到面积单位、体积单位之间的换算,学生习惯性地使用了长度单位的10进制,要特别注意纠正。

  四、对题目的理解不到位,关于圆柱面积的计算经常出错。

《圆柱与圆锥》教学反思7

  “数学是思维的体操”,数学课堂是培养学生思维能力的主阵地。因此,教学中,教师常常把重心放在拓展学生思维的空间上,常常更多地关注解题方法的优劣、解题过程的繁简。计算则通常归于一句话:计算要细心,多练自然准确率就高啦。其实不然,某些计算的难度已经影响了思维的训练及效果,譬如人教版第十二册第二单元的“圆柱、圆锥”。这部分内容素以计算繁杂而成为教学中的一大令人头疼的章节,相信每一位经历过的教师都有同感。

  因为已知了这个教学难点,许多教师和我一样,会有意识地对这个难点进行突破,让学生把3.14×1到3.14×9的得数背下来,并指导学生如何运用背的结果。还练习了由3.14×1你还能想到哪些算式的结果,拓宽3.14×1到3.14×9计算结果的运用范围。但在教学圆柱的表面积、体积的计算时,学生还是错误百出。在订正过程中,有些学生因此对正确的列式产生了怀疑,甚至动摇了对学习这部分内容的信心。作为教师,面对这种状况,心里很不是滋味,不免对自己的“教”进行一番审视,有些方面还真需要改进。

  一、计算圆柱的侧面积、表面积、体积,圆锥的体积,如果用综合算式计算,算式有时很长,特别是半径或直径未知时。

  我以前较注重要求学生用综合算式来解答,这样对列式的正确与否一目了然。事实上这样要求不但增加了学生思维的难度,同时也增加了计算的`难度。思维能力上的难度体现在根据公式求圆柱的'表面积、体积时,有些条件没有直接告诉,需要先求出中间数。如已知底面直径和高,求圆柱的表面积,这里需要先求出底面周长与半径,再求出侧面积与底面积,最后再求出表面积。教师眼中比较简单的问题,对学生来说由于中间问题多而显得思维难度大,如果我们一开始认识不到,不能降低要求,帮助学生用分步列式的方法计算,无形中增加了学生的难度。教材中的例题就是分步列式,是有良苦用心的。更何况在解决实际问题时,还要考虑问题求的是侧面积、表面积、体积中的哪一种,如果求的是表面积,又应该是由哪些面组成的,是一个底,还是两个底,还是没有底。计算上的难度体现在这么长的一个算式中,如果其中一步列式有差错或一个数据算错,整个算式的结果就会算错。而对待错误,一般的学生特别是后进生很少去对这么长的算式进行整体反思,去改正列式中的一个小错误,或把其中算错的那个数据进行修正,进而用适当微调的方式进行订正,而是全部推倒重算。算的步骤越多,错误的概率就越大,常常越订正错误越多,多次订正得不到正确结论,学生很容易烦燥,并丧失学习的信心。

  一个问题中,3.14通常要重复计算多次,结果多是几位小数。如已知圆柱的底面直径是10厘米,高是15厘米,求圆柱的表面积.算式是10×3.14×15+(10÷2)×3.14×2。3.14要分别乘150与50,最后是两积相加。如果我们把3.14看成,在计算时先不与具体的数字进行计算,到最后统一处理,如上面这一题,如果我们这样算:,最后只要算200与相乘,那么只要乘一次3.14,这样就可以减少与3.14相乘的次数,也就减少了出现错误的可能性。因此,我鼓励学生把带入算式中计算,甚至允许如果题目结果没有提出得数保留的要求,最后的结果可以保留,让学生品尝把带入算式计算的好处。在以后的练习中,学生的学习效果出现了明显的好转,自信又回到了学生的身上,同时也培养了学生计算的兴趣及能力。

  圆锥的体积等于与它等底等高的圆柱体积的,计算圆锥的体积有几种公式:,首先看能否与其它数约分,如已知圆锥的底面积是20.5平方厘米,高是6厘米,体积是×20.5×6,可先把与6约分。如已知圆锥的底面半径是9厘米,高是5厘米,体积是×3.14×9×9×5,可先与9约分。若无法约分,就先算出其它各数的积,最后再除以3。这样尽量减少小数计算的次数,降低出错的可能性。

  从圆柱、圆锥的表面积、体积的教学,我想到了我们教师如何对待学生计算过程中出现的差错。学生在学习过程中出现差错是很正常的。对待学生的计算错误,教师首先保持一个正确的心态,适当提醒学生是应该的,过分从学生身上查找原因,过分责怪学生不认真、不仔细、习惯不好等等,不但不会对解决问题产生丝毫的帮助,反而会使学生失去数学学习的兴趣。教师应充分吃透教材,准确把握教材的意图,善于观察学生,从学生学的过程寻找适合的教法,找到帮助学生克服学习困难的金钥匙。

《圆柱与圆锥》教学反思8

  我们现在的教学倡导向“40分钟”要质量,如何在有限的课堂时间里,在教材固定教学内容的基础上,使自己的教学有广度有深度,其中练习的设计,也是非常重要的一个环节。下面是我执教第二单元《圆柱和圆锥》时的一些心得和感受。

  一、 准备要充分

  学生哪个环节比较薄弱或是哪里容易出错,相对而言,老教师会有经验得多。作为年轻老师,在有限的时间和精力内,做到精讲精练,确实需要下一番功夫。例如事先把学生做过的练习题先做一遍,开阔自己的视野,丰富和充实课堂练习,争取在40分钟新课里想办法解决,从而提高课堂实效。但是,只教教材,是远远不够的。除了教材上的'练习题,平时还有练习册和试卷,老师都要提前准备,也让学生做到“有备而练”,这样,学生做起作业来就不会产生畏难等消极情绪,反而会增强自信心,激发练习兴趣。

  二、灵活抓时机

  例如在《圆锥体积》一课的新授环节,通过一系列实验,学生不难发现“圆锥的体积是与它等底等高的圆柱的体积的三分之一”,反过来说,“圆柱的体积是与它等底等高的圆锥体积的3倍”。有经验的老师会在这时候进行追问:“在等底等高的条件下,圆柱的体积比圆锥体积多多少?反过来问,圆锥体积比圆柱体积少多少?”从而加深学生对新知的理解,拓展学生的思维空间。我已通过实践证明,这一问一拓展确实可以起到“事半功倍”的效果,学生在做练习册的相关练习时,既轻松又灵活很多。

  通过这件事的点拨,我觉得老师要够“灵活”。一方面要深啃教材,全面了解;另一方面也要开放自己的思维,敢于创新。只要是——既让学生加深了对新知的理解和认识,又让学生的思维得到了训练,这样的练习就是有效的练习,就有助于提高课堂效率。

  写到这里,我深深地觉得自己今后还需要多学习,多思考,不断反思,不断努力。

《圆柱与圆锥》教学反思9

  一、对圆柱的认识进行重点引导

  认识圆柱时,由于学生对圆柱已有了一些直观的认识,教学中我先让学生从情境图中找出圆柱,让孩子明白生活中的圆柱和圆锥,在此基础上,结合圆柱的直观图,介绍圆柱的底面、侧面和高的含义。并对圆柱的侧面教学作了重点说明。

  二、注意学习方法的迁移

  圆锥的.认识和圆柱的认识在研究内容上有其相似之处。认识圆柱后我及时地引导学生进行回顾。通过交流学生对学习的方法进行了有效地迁移,学习的积极性得到有效地激发。兴趣盎然地投入到观察、研究之中。对于圆锥,不同的同学有了不同的认识。然后,通过适时地交流和组织阅读课本,学生对于圆锥有了较好的认识。

  三、注意对比

  圆柱和圆锥认识以后,我让学生对于圆柱和圆锥的特征进行了有效的对比。从而使学生对于圆柱和圆锥的面、高有了更深的认识,完善了学生的知识系统。

  通过本课的教学,我认识到在我们的教学中要注意有层次地发挥教师的主导作用,体现学生的主体作用。虽然课前钻研教材,准备学具、教具花的时间多些,但看到孩子们那一张张可爱脸蛋,我心里和孩子一样乐滋滋的。

《圆柱与圆锥》教学反思10

  本节课的教学重点要引导学生掌握本单元的知识结构,在充分利用教材的知识形成学生知识网络的基础上,提高学生分析、解决实际问题的能力。针对本课的教学设计,有以下几点思考:

  1、加强数学知识与实际生活的联系,提高运用所学知识解决实际问题的意识与能力。这部分内容的设计加强了与生活的联系,为教师组织教学提供了思路。在教学认识圆柱体和圆锥之前,可以让学生收集、整理生活中应用圆柱、圆锥的实例和信息资料,以便在课堂中交流。在实际教学中,学生认识圆柱、圆锥后,还可以让学生根据需要创设和制作一个圆柱或圆锥形的.物品的活动情境,既可激发学生的学习兴趣,又可提高学生运用数学的意识和能力。

  2、重视探究归纳。教学中让学生自己去收集、整理、交流,通过这样的学习方式,充分发挥学生学习的自主性,把课堂还给学生,提高学生自主获取知识的能力。

《圆柱与圆锥》教学反思11

  在学习完第三单元《圆柱与圆锥》之后,很多学生容易把圆柱的表面积和体积的计算方法混淆、计算圆锥的体积时老忘乘三分之一、计算生活实际中的物体表面积和体积时,又不能正确判断该计算什么或者如何计算,一系列的问题困扰着全体师生,这些问题也反映出学生对基础知识的掌握不牢固、计算能力差、对计算公式运用不熟练等。针对这种情况我设计了一节《圆柱和圆锥的整理与复习》课,本节课共设计了两个环节

  第一环节:整理本单元学过的知识点。包括两部分:

  1、同桌互说圆柱和圆锥的特征和相关的计算公式;

  2、全班交流圆柱和圆锥的异同点,整理各种计算公式。

  第二环节:课堂练习。本环节共设计了10道练习题,都是利用公式进行计算的题目,目的是强化学生运用公式解决实际问题的能力。

  虽然课前做了充分的准备,但上完这节课,才发现课堂效果并不理想。静下心来反思,似乎自己有点高估了学生的`能力,对学情的把握也不够好。本计划用7-8分钟的时间完成第一环节,然后就进入第二环节的学习。上课时才发现学生对圆柱和圆锥的特征的掌握还基本可以,对于计算公式只会死记硬背,很多学生并不理解字母公式表达的意思,因此在汇报交流环节用了较长的时间给学生讲各个字母公式的意思,帮助学生记忆最基础的计算公式。比如,有的同学还没记住圆的面积公式,更不要说新公式了,完全是一塌糊涂。鉴于这种情况,我想在今后的教学中应注意以下三点:

  1、平时注意对基础知识的强化训练,没有简单的基础知识的支撑,学生就很难在脑海里构建系统的知识网络,就不能灵活运用知识工具解决问题。

  2、在上复习课时,可以将知识点的复习贯穿在习题的训练中,在习题训练中再次提炼知识点和解题方法,这样可以将知识点和解决问题紧密结合,不会出现知识点和解决问题脱节的情况。

  3、复习时不要贪多,一节课只针对一个知识点进行复习,习题设计要由易到难,层层递进,训练学生举一反三的能力。

《圆柱与圆锥》教学反思12

  综合复习了圆柱和圆锥部分的知识以后,练习题也做了不少,可我发现许多同学仍然在某些题上频繁出错,或隔一段时间再做就会出错,我仔细分析了一下,发现他们还是没有真正理解题意,怎么办呢?经过思索,我终于发现,问题的根源在于我,在于我的引导方法不对,如:

  一台压路机的前轮是圆柱形,轮宽1.5米,直径1.2米,

  (1)前轮转动一周,前进了多少米?

  (2)如果每分钟滚动15周,压过的路面是多少平方米?

  对于这样一道题,我总觉得学生理解起来应该不难,因此每次只是抽学生回答一下:

  第一小题其实是求什么?(底面圆的周长)第二小题求的是什么?(圆柱的侧面积)。并没有多想学生理解不理解。而每每做这道题时效果都十分不理想。后来,在一次教研交流中听了于老师说的一句话,我茅塞顿开,我的引导还是过于含糊了,因此,在下节课中,在讲评这道题中,我也随手拿起学生的一本数学书,请孩子们也跟我来,一起演示压路机的.前轮滚动的情况,边演示边指:前进了多少米是求的哪一部分的长,而压路的面积是求哪一部分的面积,这样形象直观,学生很容易接受,同时我告诉学生,以后遇到你不理解的情况,也要积极想办法,如画图、利和手中的书本等帮助自己化抽象为形象,从而化难为易,而不能不加思考去拼凑算式。

  再如,课本59页第12题:欣欣把一块底面半径2厘米,高6厘米的圆柱形橡皮泥,捏成一个与圆柱底面相等的圆锥形,你知道它的高吗?

  大部分学生会通过计算,即先求圆柱形的体积,再利用体积相等的关系,用体积乘3,再除以底面积来做,但,当我把底面半径2厘米去掉以后,学生很难分清到底乘3还是除以3,为此,我很是头疼。

  怎么办?背公式吗?学生记不住,也限制了思维的发展。后来,我发现一个孩子在本上画图,我受到了启发:是啊,当它们体积相等时,学生可以在本上画图,凭直觉就能发现,当底面积也相等时,圆锥的高肯定是圆柱的3倍,而高相等时,圆锥的底面积应为圆柱的3倍。接着,我又在黑板上画了个相反的情况:试想,当它们体积相等时,如果底面积也相等,而圆锥的高如果说画成圆柱的1/3,会是什么样子呢?我画上以后,学生哈哈大笑,也轻松掌握了这一方法,以后,在这类题上就很少出错了。

  通过以上方法,我也深深体会到,数学教学不能光“说”不“做”,要不,学生记住的,也是一些死答案。

《圆柱与圆锥》教学反思13

  最近对圆柱与圆锥知识进行系统的整理和复习,使学生更好的掌握圆柱、圆锥的特征,掌握圆柱侧面积、表面积的计算以及圆柱、圆锥体积的计算公式。会运用所学知识解决一些简单的实际问题。培养学生能够解决问题的.能力。

  课前,我让学生自己对学过的知识进行了整理,有几个同学整理得挺全面,有的同学把知识点都写上了,但没有条理。所以,课上我通过表格的形式引导学生回顾前面所学知识,总结图形的特征和计算方法,培养了学生有条理的对所学知识进行整理归纳的能力。课上我出了两道具有代表性的题。通过巡视我发现同学们列算式基本没问题,只要同学们认真审题,这类题基本没什么问题。问题是计算速度慢,该记得数据没记住。

《圆柱与圆锥》教学反思14

  经过三个星期的教学,第一单元(圆柱和圆锥)如期完成了教学任务。本单元的知识点包括面的旋转、圆柱的表面积、圆柱的体积、圆锥的.体积等。

  在教学过程中,通过学生的课堂反映、作业质量、小测的反馈信息,本单元掌握较好的知识点有:面的旋转、圆柱的体积、圆锥的体积。这些知识,大多数学生都掌握了长方形、三角形旋转一周后得得到一个圆柱、圆锥,会利用公式底面积乘以高得出圆柱的体积,以及利用底面积乘以高再乘以三分之一得出圆锥的体积。在体积的教学中,我主要是通过类比法,先复习长方体和正方体的体积公式:底面积乘以高,然后让学生通过猜测、尝试验证等手段,让学生推导出圆柱和圆锥的公式,所以学生记得特别牢固,这一点在日后的教学继续发扬。

  同时,本单元出错较多的地方是:计算圆柱的表面积,因为学生在求表面积时,没有很好地理解这个圆柱是求两个底面积加上一个侧面积,或者求一个底面积加上一个侧面积,或者只求侧面积,所以经常列式出错,以及计算准确率不高。

  但总的来说,第一单元(圆柱和圆锥)的教学目标已达到,部分知识点学生没有完全掌握的,在期末复习中查漏补缺。

《圆柱与圆锥》教学反思15

  学习完《圆柱与圆锥》之后,我发现很多学生容易把圆柱的表面积和体积计算方法混淆;计算圆锥体积时忘乘三分之一;不能正确判断生活中的实际情况。这些问题反映出学生对基础知识的掌握不牢固、计算能力差、对计算公式运用不熟练等。针对此情况,我设计了《圆柱和圆锥的整理与复习》一课。课前放手让学生自主的去收集、整理已学过的知识。课堂上,我力求在教师的引导下,让学生通过回忆、联想、整理、拓展等实践活动,通过表格、框图等形式帮助学生沟通知识间的联系,把学过的知识整合成一个有机的整体,形成合理的知识体系。充分发挥学生学习的自主性,在交流、讨论、合作、练习中发展学生的空间观念,把课堂还给学生,提高学生运用知识解决实际问题的能力,培养他们自主获取知识与概括知识的能力。

  反思本节课,我想在今后的教学中应注意以下三点:

  1、平时注意对基础知识的强化训练,没有简单的基础知识的支撑,学生就很难在脑海里构建系统的'知识网络,就不能灵活运用知识工具解决问题。

  2、在上复习课时,可以将知识点的复习贯穿在习题的训练中,在习题训练中再次提炼知识点和解题方法,这样可以将知识点和解决问题紧密结合,不会出现知识点和解决问题脱节的情况。

  3、练习设计是非常重要,要由易到难,层层递进,训练学生举一反三的能力。在练习的内容和要求上具有一定的开放性和挑战性,以激起学生学习的欲望,为每一个学生提供发展的空间。

【《圆柱与圆锥》教学反思】相关文章:

《圆柱与圆锥》教学反思08-28

圆柱和圆锥教学反思02-19

《圆柱和圆锥》说课稿01-28

《圆锥的体积》教学反思12-29

圆锥的认识教学反思09-17

圆锥的体积教学反思05-14

《圆锥的体积》教学反思02-10

圆柱的认识教学反思12-09

《圆柱的体积》教学反思12-02