《圆柱的体积》教学反思通用15篇
身为一名到岗不久的老师,课堂教学是我们的任务之一,写教学反思能总结教学过程中的很多讲课技巧,来参考自己需要的教学反思吧!以下是小编精心整理的《圆柱的体积》教学反思,欢迎阅读与收藏。
《圆柱的体积》教学反思1
《圆锥的体积》一课的教学,是在掌握了圆锥的认识和圆柱的体积的基础上进行的。多年的教学,让我学习和累计了很多的教学经验。教学时我先故事导入激发学生的学习兴趣,再让学生大胆的猜想圆锥的体积公式,然后通过实验操作来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。
一、让学生经历发现、提问、解决问题的全过程
新课一开始,我就利用教师出示一筒米,师:将这筒米倒在桌上,会变成什么形状情境导入,教师再演示削铅笔:把一支圆柱形铅笔的笔头刨成圆锥形,让学生观察,猜测圆锥的体积和什么有关,由于课件很形象直观,学生很快联系到了圆柱的体积,而且很容易想到应该是几分之几的关系。在猜想中学生的学习兴趣高涨,更明确了学习的目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的'体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。
二、让学生在现实情境中体验和理解数学
在实验前让学生先猜想,再通过小组合作实验、交流得出结论,亲自去验证自己的猜想是否正确,既调动了学生的实际操作能力,也通过他们的实际操作自己得到结论促进了小组的合作意识。符合数学来源于实践的认知。充分发挥学生小组合作的精神,大胆放手让学生动手操作,实验,并完成实验报告单。推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。在感知事物,获取感性知识中,操作与思维紧密结合,加深对圆锥及体积的认识
1、情感的发展
小学数学教学中的情感发展主要包括学生对数学、数学学习活动的兴趣;自信心和意志力,学习数学的态度与学习习惯。本节课的教学,摆脱了传统“灌”的教学,从引导学生发现问题、探索问题,学生在发现中激起兴趣,从探索中寻找快乐,然后又应用知识解决问题。学生经历了一个探索性的学习过程,不知不觉地掌握了知识,发展了能力,增进了对数学的情感。学习变成了一个赏心悦目的活动。
2、思想的发展
小学数学教材中,含有大量思想教育因素,是对学生进行教育的良好素材。教师在教学数学知识的同时,要注意发挥教材本身思想教育功能,不失时机地、潜移默化地渗透思想教育活动是儿童认识数学的重要方式。新课改提倡学生的自主活动,把数学学习的主动权交给学生,鼓励每个学生积极参与教学活动,在教学中创设丰富多彩的活动情境,让学生亲自实践,大胆探索。
三、多层次设计练习题
练习设计从基本题入手,过渡到情境题,发展到综合解决实际问题,这个过程中训练了学生的解题能力,培养了运用所学知识解决实际问题的能力。
在教学后感觉到遗憾的是,由于教具的关系学生参与以小组合作学习的面很广但小组合作分工不太合理。使每个学生不是全身心投入到探究实验中去,这样少部份学生的积极性调动不高,有点遗憾进行学习,没有最大限度的发挥每个学生的自主学习的能力,这样的学习虽然是培养了学生的能力。但合作意识还需加强。小组学生的试验完成默契还需加强。
《圆柱的体积》教学反思2
圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓信新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的求知欲,使学生乐于探索,善于探究。
一、让学生在现实情境中体验和理解数学
《课程标准》指出:要创设与学生生活环境、知识背景密切相关的、又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。在本节课中,我给学生创设了生活情景(装在杯子中的水的体积你会求吗?圆柱形橡皮泥的体积你会求吗?)学生听到教师提的问题训在身边的生活中,颇感兴趣。学生经过思考、讨论、交流,找到了解决的方法。而且此环节还自然渗透了圆柱体(新问题)和长方体(已知)的知识联系。在此基础上教师又进一步从实际需要提出问题:如果要求某些建筑物中圆柱形柱子的体积,或是求压路机滚筒的体积,能用刚才同学们想出来的办法吗?这一问题情境的创设,激发学生从问题中思考寻求一种更广泛的方法来解决圆柱体体积的欲望。
二、鼓励学生独立思考,引导学生自主探索、合作交流
数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动,因此,动手实践、自主探究、合作交流是《课程标准》所倡导的数学学习的主要方式。在本节课提示课题后,我先引导学生独立思考要解决圆柱的体积问题,可以怎么办?学生通过思考很快确定打算把圆柱转化成长方体。那么怎样来切割呢?此时采用小组讨论交流的形式。同爱们有了圆面积计算公式推导的经验,经过讨论得出:把圆柱的底面沿直径分成若干等份。在此基础上,小组拿出学具进行了动手操作,拼成了一个近似的长方体。同学们在操作、比较中,围绕圆柱体和长方体之间的联系,抽象出圆柱体的体积公式。这个过程,学生从形象具体的知识形成过程(想象、操作、演示)中,认识得以升华(较抽象的认识——公式)。
在探究的过程中,我不是安排了一整套指令让学生进行程序操作,获得一点基本技能,而是提供了相关知识背景、实验素材,使用“对我们有帮助吗?”“你有什么发现?”“你是怎么想的?”等这样一些指向探索的话语鼓励学生独立思考、动手操作、合作探究,让学生根据已有的知识经验创造性地建构自己的数学。通过实验、操作、自主探究,实现学生主体地位、学习方式的转变,有效地培养学生的创新意识。教学中通过等分、切、拼将圆柱体拼成一个近似的长方体,再运用多媒体显示由圆柱体到近似的长方体的变换过程,让学生观察、比较近似长方体与圆柱的关系,使圆柱体体积的计算公式推导过程完全展示在学生面前。使学生感悟到转化的思想在几何学习中的妙用。从而产生一种自我尝试、主动探究、乐于发现的需要、动机和能力。
三、建立切拼表象,渗透极限思想
学生进行数学探究时,由于条件的限制,没有更多的`学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生基本没有亲身参与操作,非常遗憾。
本节课我采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。
《圆柱的体积》教学反思3
我进行了圆柱体积的教学,圆柱的体积公式的推倒,需要学生的动手操作或教师教具的操作演示,把圆柱体转化成学过的立体图形长方体,再根据长方体与圆柱体之间的关系推倒出圆柱体的.体积。上课前我对学生的动手操作环节进行了思考,学生的学具就既小又直接拼成了长方体,对于学生操作起不到效果,所以就直接用课件演示让学生观察.学生能很快的发现知识,因此推导时间过短,总感觉没有达到效果。学生缺少动手实践,就没有了探究知识的过程,很多的同学可能只是被动的接受知识。这一次让学具和教具成了教学的绊脚石。
其次有一个学生大胆猜想圆柱体也有可能转化成正方体,当时讲到转化为长方体时,没有及时处理好这个学生的问题,而是在下一个课时补处理的。对于课堂的灵活掌控也是不够的。在今后的教学中要加强自身对课堂的掌控能力。灵活及时处理课堂中的问题。
《圆柱的体积》教学反思4
教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。
1、挖掘训练空白,及时补白教材。
编者在编写教材时,也考虑了地域、学科、时间等因素,留下了诸多空白,我们使用教材时,要深入挖掘其中的训练空白,及时补白教材。中的例题教学,就挖掘出了教材中的.训练空白,并没有把教学简单地停留在一种解答方法上,而是在学生预习的基础上引导学生深入思考,在解决问题的过程中体会“从不同的角度去考虑问题,将得到不同的结果”的道理,从而学会多角度考虑问题,提高解决问题的能力。
2、找出知识联系,大胆重组教材。
数学知识具有一定的结构,知识间存在着密切的联系,我们在教学时不能只着眼于本节课的教学,而应找出知识间的内在联系,帮助学生建立一个较为完整知识系统。的表1仅帮助学生熟练掌握体积公式,此外无更多的教学价值,而重组后的表2不仅实现了编者的意图,而且为“比例”的教学作了提前孕伏。走出了数学教学的“只见树木,不见森林”的“点教学”的误区。
《圆柱的体积》教学反思5
圆柱的体积这部分知识是学生在有了圆柱、圆和长方体的相关知识基础上进行教学的。在知识和技能上,通过对圆柱体积的具体研究,理解圆柱体的体积公式的推导过程,会计算圆柱的体积;在方法的选择上,抓住新旧知识的联系,通过想象、实际操作,从经历和体验中思考,培养学生科学的思维方法;贴近学生生活实际,创设情境,解决问题,体现数学知识“从生活中来到生活中去”的理念,激发学生的学习兴趣和对科学知识的'求知欲,使学生乐于探索,善于探究。在圆的体积公式推导过程中,给予学生足够的时间和空间,激发学生的探究的欲望,培养学生的空间想象力。我把圆柱体拼成一个长方体,就是把一个新图形转换成一个我们学习过的图形,通过讨论,争鸣从而得出比较深层的数学知识,这种思维的火花,我们老师应及时捕捉,让它开得绚丽多彩,从而让学生的个性能得到充分的培养。让学生老师这样才能寓教于乐,从而达到了事半功倍的效果。在教此内容时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:
一、展示知识的发生过程,让学生在参与中学习。
现代教育认为课堂教学首先不是知识的传递过程,而是学生的发展过程;首先不是教师的教授过程,而是学生的学习过程;首先不是教师教会的过程,而是学生学会的过程。展开部分,首先让学生大胆猜想,圆柱体的体积可能等于什么?大部分学生猜测圆柱体的体积可能等于底面积×高。在验证圆柱的体积是否与圆柱的底面积和高有关的过程中,我让两名学生到台上演示,学生兴致很高,都想到台上进行操作,被选出进行演示的学生非常认真地进行操作,而其他学生也是非常认真的进行观察。因此推导得出圆柱体积公式时,学生感到非常好懂,也学得很轻松。
二、在讨论交流中学习。
通过实验验证之后,让学生看课件后,小小组进行了如下讨论:
(1)拼成的近似长方体体积与原来的圆柱体积有什么关系?
(2)拼成的近似长方体的底面积与原来的圆柱底面积有什么关系?
(3)拼成的近似长方体的高与原来的圆柱高有什么关系?这样不仅为学生提供动手操作、观察以及交流讨论的平台,而且有利于学生克服胆怯的心理障碍,大胆参与,发挥学生的主动性,同时还能增强
团队协作意识。在这一环节中,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。
本节课采用新的教学方法,取得了较好的教学效果,不足之处是:学生亲身体验的感受不够,因为圆柱体积演示器只有一套,所以,只能是个别学生进行操作,大部分学生只能远距离观察。有些学生因看得不清楚而观察、思考得不正确。如果条件允许,演示器多一些,能让学生人人都进行操作,我想学生的参与率、学生动手能力、学生的观察与思考、教学效果都会更好。
《圆柱的体积》教学反思6
本节课主要是引导学生探索并掌握圆柱的体积公式,主要重视了以下几方面:
1、重视先猜想、再验证的思路来引入教学。
新课伊始,课件出示三个几何体的底面和高,引导学生来观察这三个几何体,发现它们的底面积都相等,高也都相等。进一步引导思考:想一想,长方体和正方体的体积相等吗?为什么?猜一猜,圆柱的体积与长方体和正方体的体积相等吗?学生认同,并提出等于底面积乘高。教师再次抛出问题:这仅仅是猜想,那用什么办法验证呢?今天这节课就来研究这个问题。
2、重视利用知识、方法的迁移来展开教学。
本课的例题探索,有一个目标就是使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。因此,笔者在执教时,根据陈星月的回答顺势复习了圆面积的推导:把一个圆平均分成16份、32份、64份或更多,剪开后可以拼成近似的长方形,圆的面积就可以转化成长方形的面积进行计算。接着提问:那么,受这个启发,那我们能不能将圆柱转化成长方体来计算体积呢?首先实物演示圆柱切拼的过程。把圆柱的底面平均分成16份,切开后可以拼成一个近似的长方体。然后进行课件演示,发现:把圆柱的底面平均分的份数越多,拼成的几何体会越来越接近长方体。这样有利于激活学生已有的知识和经验,使学生充分体会圆柱体积公式推导过程的.合理性,并不断丰富对图形转化方法的感受。
3、重视通过核心问题的讨论和板书的精当设计来突出重点、突破难点。
核心问题即指中心问题,是诸多问题中相对最具思维价值、最利于学生思考及最能揭示事物本质的问题。它是在教学过程中,为学生更好地理解和掌握新知、更好地积累学习经验和方法,针对具体教学内容,提炼而成的教学中心问题。就如圆柱体积的计算而言,在这节课的教学过程中,教师抓住“圆柱的体积可能跟圆柱的哪些条件有关呢?”“拼成的长方体与原来的圆柱有什么关系?”“要计算圆柱的体积一般要知道哪些条件?”这三个问题,使学生在获取圆柱体积公式的同时又了解了体积公式的由来,并及时总结了思考问题的方法。核心问题也可以指为了探究知识的来龙去脉而在关键环节提出的指向性问题。
当然,需要注意和改进的地方是:书写格式的规范。
《圆柱的体积》教学反思7
本节课是学生在学习了长方体和立方体的基础上进行教学的,它是一种比较常见的立体图形,学生对圆柱都有初步的感性认识。本节重点是圆柱的特征和圆柱侧面积的计算。上课伊始,我先组织学生复习圆柱的特征、长方体和正方体体积以及圆的面积计算公式推导过程,由此引出圆柱的`体积一课题。为了让学生更好地理解和掌握圆柱体积的计算方法,为后面学习圆锥体积打下坚实的基础,因此在本节课的教学设计上我十分注重从生活情境入手,让学生经历圆柱体积的探究过程,通过一系列的数学活动,培养学生探究数学知识的能力和方法,同时在学习活动中体验学习的乐趣。
反思不足: 1、练习有些少。在学生练习这个环节中,最能反映学生掌握情况。应该再从不同的角度设计多种练习题目来考察学生的知识掌握情况。2、本节课节奏较快,没有去检测一下学生每个环节掌握了没有。3、数学要应用于生活,应该多出些有关生活实际的练习题。
《圆柱的体积》教学反思8
由于我课前认真研读教材,把握教学的重点和难点,精心设制教学过程和教学活动,上课时我做到胸有成竹。通过这节课的教学我感到自身的教学水平和驾驭课堂的能力得到了提升,从同事评课反映,我认为这节课的教学是比较成功的。这节课教学方法主要体现在我采用新课程的教学理念,合理安排教学环节,激发学生的思维,组织学生参与操作,通过观察、交流,感悟知识间的联系,从而获取新知。我深知教学无止境,没有最好只有更好,我要从成功中找不足。
一、交流预习作业。
在预习作业里我在备课时就设制了两个知识点,让学生课前完成,一个知识点是对旧知的回顾,要求学生写出长方体和正方体的体积计算公式,另一个知识点是要求学生预习教材回答两个问题,两个问题是与这节课教学密切相关的内容,在教材上都是能找到答案的。在对预习作业交流时我发现学生能比较顺利和准确的回答,这为新课的教学活动不仅起了良好的开端,更重要的是为学生在课堂上再进一步地、更深入地探索新知削弱了阻力,减轻了负担。
二、交流猜想和探索如何验证。
我利用课件把等底等高的长方体、正方体和圆柱体图形和问题呈现出来,让学生观察图形思考问题并组织讨论。在对如何验证让学生作为重点交流。意图是先让学生明确两点。第一点圆可以转化成长方形,圆柱可以转化长方体;第二点把圆柱的底面经过圆心16等份 ,切开后可以拼成一个近似的长方体。由于学生课前做了充分的预习和课堂开始阶段预习作业的交流,学生对如何验证的思维已经初步形成。让学生再次交流和汇报,我发现学生都了解和掌握。此时我指名学生到讲台前利用教具说出操作方法,并进行操作,让全班同学观察操作过程。通过学生的操作、观察,学生得到体验和感悟,发现圆柱可以转化成一个近似的长方体。
三、课件展示、构建新知。
让学生观看课件:课件2是把刚才实际操作的.过程再次演示和呈现,课件3和课件4是把圆柱的底面平均分成32份、64份切开后拼成的长方体。我抓住时机问学生:如果把圆柱的底面平均分的份数越多,切开后拼成的物体的形状就有什么变化?学生明确回答拼成的物体越来越接近长方体。接着我把圆柱体和转化后的长方体图象同时显示出来,要求学生说出长方体的底面积和高与圆柱的底面积和高有什么关系,学生能清楚地表达出来。为了拓展学生的知识面,我此时还提出了转化后的长方体底面的长和宽分别与圆柱体的底面周长和半径有什么关系,这在教材和参考教案都没有的知识点。学生的思维得到激发,学生勇于回答,学生回答错了,我既没有批评学生,也没有急不可耐给出答案,而是让学生再想,后来还是有学生能正确回答出来了。我想如果不给学生思考的时机直接给出答案,这样与学生发现问题的答案所产生的效果就截然不同了。
推导圆柱的体积计算公式的过程分为猜想、操作、发现、结论四个阶段,学生经历这些教学活动,体验和感悟了转化的作用和价值,弄懂得了圆柱的体积计算公式的来龙去脉。
四、分层练习,发散思维。
在获得圆柱的体积计算公式的成果之后,为了培养学生解题的灵活性,拓展知识,培养学生发散思维的能力,注意分层练习,我安排了三道练习题。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积。在练习时我不断巡视关注学生练习情况,对出现的错误解答方法我不回避,在展示学生练习时既展示成功的也展示错误的。学生练习出现错误是正常现象,在讨论和评讲练习时是很好的资源,要充分的利用。
不足之处:
整个课堂教学过程中,师生的有效、良性互动还达不到预期目标,有一部分学生没有具备良好作业习惯,灵活运用知识解决问题的能力还欠缺。
通过这节课,我思量交流预习作业能不能与全课的教学活动整合在一起,在课堂上如何更好地关注中等偏下的学生,我时常为此感到纠结。建构高效的课堂教学范式在我校已经试验一个月了,难免有困惑和疑问,今后我还要一如继往地与集体备课成员沟通、交流,共同探讨教改新路,让课堂教学更高效、更优质。
《圆柱的体积》教学反思9
《圆柱的体积》一课是在学生已经学习了“圆的面积计算”和“长方体、正方体的体积”及圆柱的相关知识的基础上教学的。
教学时我注重引导学生经历“类比猜想 验证说明”的探索过程。由于圆柱和长方体都是直柱体,长方体的体积是底面积×高,因而我引导学生猜想圆柱的体积是否也可以用底面积×高来计算。接着引导学生想办法证明自己的猜想,也就是验证说明。重视学生已有的经验,是新课改教学的'重要理念,因而我引导学生回忆以前学习的“把未知的问题转化为已知的问题”的方法,即“怎样把圆柱转化成已知的形体”的问题。大部分学生都能想到把“圆柱转化成长方体”,接着就“怎样将圆柱转化成长方体”这个问题,让他们观察、研究、讨论。学生受到以前“圆的面积”推导过程的启发,都知道应把圆柱平均分成若干份切开,拼成近似的长方体。由于学生没有学具,因此我用教具演示整个过程,然后引导学生思考:长方体底面的长相当于圆柱底面的什么?(周长的一半即π r)长方体底面的宽相当于圆柱底面的什么?(圆的半径r)再根据长方体的面积公式推导出圆柱体积公式V=π r2 × h或V=S×h。这样让学生亲身经历知识的形成过程,为学生的主动探索与发现提供了空间。
我觉得本课比较成功的一点是学生除了掌握本课的知识点外,还懂得了“类比猜想 验证说明”的数学思想方法,可以说是既授之于“鱼”,又授之于“渔”。
《圆柱的体积》教学反思10
本节课是在学习了圆柱的体积公式后进行的解决问题。这要求学生对圆柱的体积公式掌握的比较扎实,并要求理论与实际生活相结合。让学生通过经历发现和提出问题、分析和解决问题的完整过程,掌握问题解决的策略。使学生在解决问题的过程中体会转化、推理和变中有不变的数学思想。
在教学中教学我采用操作和演示、讲解和尝试练习相结合的方法,是新课与练习有机地融为一体,做到讲与练相结合。整节课我采用启发式教学。从导入新授到独立解答问题,环节清晰,教学目的明确。通过提问引导学生自主研究问题找到重难点,突破重难点。通过2个瓶子的`倒置,把不规则的物体转化成规则物体,再来求它们的体积。在进行转化时,让学生明白倒置前空气的体积在倒置后属于哪一部分。倒置前水的体积在倒置后属于哪一部分。不管在倒置前还是倒置后,什么不变,什么变了?要求瓶子的体积实际是求什么?在课堂中学生积极参与,积极思考,小组合作学习。在学习中学习探究氛围高,体现高年级学科特点,并且灵活运用生命化课堂的四自模式、新技术,运用熟练,课堂中使用恰当有效。但在教学时提出的问题应该更简洁明了。在课堂上如何更好地关注中等偏下的学生,我时常为此感到纠结。
刚刚尝试建构高效的课堂教学范式,难免有困惑和疑问,今后我还要一如继往地与集体备课成员沟通、交流,共同探讨教改新路,让课堂教学更高效、更优质。
《圆柱的体积》教学反思11
在教研组评课的时候,程老师说过这样几句话,我总结如下:
1、这节课讲的是什么?
2、学习这些知识为了什么?
3、这节课讲给谁?学习这些知识的学生处在什么水平?
从这几个点反思了自己的本节课:
一、这节课讲得是什么?
“是什么”的问题我的理解是理清楚本节课的教学内容,教学目标和重难点,教师要做到心中有数。
在备课时教师首先要关注教材,尊重教材,尽自己最大的力量认识理解教材的编写意图,理解教材所传递出来的信息。同时教师在阅读教材时要清楚教学内容在数学知识体系中的作用,对前面学习内容的延续,对后面学习内容有什么作用。
前面已经学习了“长方体、正方体”立体图形体积的计算,圆柱体积的学习是学生已有知识的延续,同时为后面圆锥体积的学习做好了铺垫和准备。在整个立体图形的学习中起着承前启后的作用。
本节课重点是让学生理解并掌握圆柱体积公式,并能够熟练应用计算,难点是让学生经历圆柱体积公式的推导过程。
二、将这节课是为了什么?
数学来源于生活,有应用于生活,生活中处处有数学,学习数学知识的目的就是为了应用。那么本节课所学的知识就是为了计算一些圆柱体积的大小,这是这节课的目的所在。
三、这节课讲给谁?学生的水平。
这一点就是提醒我们在备课时,充分的备学生,在充分理解教材的基础上。再重新放空自己,把自己摆在学生的位置,重新学习这部分知识。以学生的姿态来备课,读懂学生是上好课的有力保证。
“圆柱体积公式的推导”是在学生学习了圆柱的特征、表面积计算以及“长方体的体积”“正方体体积”等相关立体图形的基础上教学的,学生拥有继续学习的旧知识和经验,即:
1、知识铺垫:学生知道“体积”的含义及计算体积的方法;
2、经验铺垫:在研究圆的面积时,采用“割补转化”的方法,渗透了一种探究学习的思想方法;
四、反思本课的落实情况
导入部分,先复习了“圆柱”的特征,然后通过解读课题,复习了“体积”的概念,自然的引出“我们学习过哪些图形的.体积公式”复习了长方体正方体的体积如何计算,并重点分析了立体图形的统一公式,说明二者的体积与“底面积”和“高”相关。从而创设问题情境,引导学生运用已有的生活经验和旧知,制造认知冲突,形成了“任务驱动”的探索氛围。
探究部分,为学生提供了观察思考及交流讨论的平台,由于教具的限制,没有让学生充分的进行动手操作。这比较遗憾。通过多媒体演示让学生在观察中逐步经历计算公式的推导结果,并发展学生的空间观念。
练习环节安排注重练习生活实际,让学生应用自己推导出的计算公式解决引入环节中的两个问题,第一个问题数据提供,直接利用公式进行计算,同时在巩固两个计算。之后再让学生解决老师手中的圆柱体积,这时需要让学生测量相关数据。让学生认识数学的价值,切实体验到数学其实就在我们身边。并且学生在解决问题的同时推导出了已知半径和直径计算圆柱体积的公式。
本节课最大的不足就是:学生在练习中教师关注度不够全面。
《圆柱的体积》教学反思12
案例背景:
《数学课程标准》指出:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括形成方法和理论并进行广泛应用的过程。这一描述,明确了小学数学的内涵,即数学学习是一个过程。近日,在市小学数学名师课堂教学展示中,天福小学的刘爱芳校长执教的《圆柱的体积》一课,使我对个人的专业素养和课堂的设计内涵,都有了很深的触动。
案例描述:
片段一:
师:同学们,往这里看,今天老师带来了三件物体:玻璃杯、橡皮泥、金属零件。这三件物体有什么共同点?
生:都是圆柱。
师:圆柱形的物体生活中很多,以这三样为例,你能提出哪些数学问题?
生1:水杯的容积是多少?
生2:水杯的表面积是多少?
生3:水杯的体积是多少?
师:这三个问题很好,我们记下一个。
师板书,水杯容积
生继续提出关于橡皮泥和金属容器的体积的问题,师板书:橡皮泥体积,金属零件体积。
师:关于表面积的问题前面我们已经研究过,这节课我们来研究圆柱体积的问题。
师板书:圆柱体积
师:以你现在的知识储备,你能解决哪个问题?
生:水杯的容积
师:怎样求?
生:可以把水杯的装满水,倒进一个长方体的容器中,计算出长方体容器中水的.体积,也就求出了水杯的容积。
师:瞧,“装满水”,“满”这个字用的多好,把水杯中的水倒进长方体容器中,从而求出水的体积。在这个过程中,运用了一种重要的数学思想方法----转化。
师板书:倒---长方体,转化。
师:在转化过程中,水的什么变了?什么没变?
生:水的形状变了,体积没变。
师:水杯的容积解决了,橡皮泥的体积呢?金属零件的体积呢?
师:根据学生回答分别板书:捏---正方体,浸----长方体。
师:刚才我们根据这三个物体的共同特点,通过转化,把它们转化成我们以前学过的长方体或正方体的体积。是不是通过这三个方法,就可以解决所有的圆柱的体积的问题?
生:不能。
师:为什么?
生交流,得知物体很大时,没法进行转化。
师:因此,我们需要寻找一种通用的方法,你想到了什么方法?
生:计算。
师:圆柱体体积与什么有关?猜想一下怎样计算?
……
片段二:
师:回顾这节课的学习过程,你认为你最有收获的是什么?
师:前面大家根据长方体和正方体的体积公式猜测出圆柱的体积公式也是底面积×高,通过验证得知大家的猜测是正确的。
师:这三个立体图形有什么共同点?
师:像这样的形体在数学上叫做直柱体。
课件出示:长方体、正方体、圆柱及它们的体积公式都是底面积×高。
师:生活中的直柱体还有哪些?
师:它们的形体是否也是底面积×高?有兴趣的同学可以课后研究。
案例反思:
片段一的教学中,教师出示了三样精心准备的物体----玻璃杯、橡皮泥、金属零件(都是圆柱体),在学生围绕这三种物体提出数学问题后,教师并没有直接引导学生去探求如何计算圆柱体的体积,而是通过“以你现在的知识储备,你能解决哪个问题?”“在转化过程中,水的什么变了?什么没变?”“瞧,‘装满水’,‘满’这个字用的多好,把水杯中的水倒进长方体容器中,从而求出水的体积。在这个过程中,运用了一种重要的数学思想方法----转化。”“水杯的容积解决了,橡皮泥的体积呢?金属零件的体积呢?”这些引导性语言,使学生明白有些物体的体积可以分别通过倒、捏、浸转化成长方体或正方体的体积来解决,“转化”的提出为学生后面构建数学模型,探究圆柱体积公式奠定了基础。紧接着“是不是通过这三个方法,就可以解决所有的圆柱的体积的问题?”这个问题,点燃了学生的探究欲望,这是这节课成功的起点,通过极限思想的渗透,使学生体会到了探究圆柱体积的计算方法的必要性。
片段二的教学中,教师在引导学生进行学习反思的基础上,进行了拓展延伸。通过对长方体、正方体、圆柱体积公式的归纳汇总,引出直柱体的概念,学生进行了对直柱体表象的交流。此时,学生的探究欲望、学习激情,并没有随着课的尾声而有所减弱,而是探究热情再一次被点燃,孩子们带着强烈的研究热情结束了本节课的学习。
教材是一种重要的课程资源,对于学校和教师来说,课程实施更多地应该是如何更好地“用教材”,而不是简单地“教教材”。我们在用教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,研究学生学习起点,让学生亲历完整的数学学习过程,触摸数学鲜活生动的生命脉息,体会到知识产生过程中的前因和后果,从而进行有效的数学思考。
《圆柱的体积》教学反思13
《圆柱的体积》是在学生已经学会计算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。通过教材教学学习后,下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。
一、在教学过程的设计方面
1、导入时,力求突破教材,有所创新
圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。
2、新课时,要实现人人参与,主动学习
学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学生经历先想—观察—动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。
3、练习时,形式多样,层层递进
例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的`体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型: a。已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。
b。已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2h。
c。已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2h。
d。已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2h。
e。已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2)2h。
因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。
二、在教学策略方面
我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。而在巩固练习这一环节,我用多媒体发挥它大容量、节省时间的优点。
三、在教学技能方面
学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是学生在自己艰苦的学习过程中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。但是我觉得这个引导的过程需要教师有认真准备,随时能解决课堂上可能出现的一些问题。传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景。
四、教学要达到三个目的
一是认识等底等高的含义,便于判断圆柱可以转化成与它等底等高的长方体。
二是从长方体与正方体等底等高,体积也相等的事实,引发等底等高的圆柱与长方体的体积也相等的猜想,形成把圆柱转化成长方体的活动心向。
三是复习长方体、正方体的体积公式,圆柱的体积最终也要这样计算。
《圆柱的体积》教学反思14
本节课为练习课,目的在于巩固学生前面几个课时的学习内容和发现学生存在的一些问题,然后及时调整或补充教学方案。本节课在教学过程中,发现学生存在的问题主要有:学生对圆柱的侧面展开图的相关知识理解不深入;在计算的过程中,单位名称用错,如体积单位写成面积单位;对于某些实际问题不能正确分辨圆柱直径、半径以及圆柱的高,导致做题出错。对于这些问题,我们可以通过以下方法来突破:
第一,我们在集中讲解时可穿插一些单位换算的.练习等,从而避免学生误用单位名称;
第二,在计算以长方形的一边为轴旋转得到的圆柱体积和计算直接将长方形卷成的圆柱体积之前,我们可先组织学生自己动手操作、观察比较,让学生们自己发现圆柱与长方体各部分之间的关系。
总而言之,我们在引导学生参与到探索知识的发生、发展过程中,应注重突破以往单一、被动的学习方式。
《圆柱的体积》教学反思15
学生进行圆柱体积公式探究时,由于条件的限制,没有更多的学具提供给学生,只一个教具。为了让学生充分体会,我把操作的机会给了个别学生。接着再结合多媒体演示让学生感受“把圆柱的底面分的'份数越多,切开后,拼起来的图形就越接近长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,从而推导出圆柱体积的计算公式。
非常遗憾的是学生基本没有亲身参与操作,。但我使用了课件-----把圆柱体沿着它的直径切成诺干等份,拼成一个近似的长方体 ,展示切拼过程.学生虽然没有亲身经历,但也一目了然.
【《圆柱的体积》教学反思】相关文章:
《圆柱的体积》教学反思12-02
圆柱的体积教学反思12-05
《圆柱的体积》教学反思02-13
圆柱的体积教学反思12-08
《圆柱的体积》教学反思精选15篇11-03
圆柱体积教学反思11-05
圆柱的体积教学反思精选15篇11-05
《圆柱的体积》教学反思(15篇)10-16
圆柱的体积教学反思15篇10-16
圆柱的体积教学反思(15篇)10-16