数学高二教学计划
时间过得太快,让人猝不及防,我们的工作又将在忙碌中充实着,在喜悦中收获着,来为今后的学习制定一份计划。可是到底什么样的计划才是适合自己的呢?以下是小编为大家收集的数学高二教学计划,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学高二教学计划1
本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.
②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;
③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整
体思想求解.
(4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.
一、基本概念:
1、 数列的定义及表示方法:
2、 数列的项与项数:
3、 有穷数列与无穷数列:
4、 递增(减)、摆动、循环数列:
5、 数列的通项公式an:
6、 数列的前n项和公式Sn:
7、 等差数列、公差d、等差数列的结构:
8、 等比数列、公比q、等比数列的结构:
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an=
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn= Sn= Sn=
当d0时,Sn是关于n的二次式且常数项为0;当d=0时(a10),Sn=na1是关于n的正比例式。
12、等比数列的`通项公式: an= a1 qn-1 an= ak qn-k
(其中a1为首项、ak为已知的第k项,an0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q1时,Sn= Sn=
三、有关等差、等比数列的结论
14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等差数列。
15、等差数列中,若m+n=p+q,则
16、等比数列中,若m+n=p+q,则
17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等比数列。
18、两个等差数列与的和差的数列、仍为等差数列。
19、两个等比数列与的积、商、倒数组成的数列
、 、 仍为等比数列。
20、等差数列的任意等距离的项构成的数列仍为等差数列。
21、等比数列的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3
24、为等差数列,则 (c0)是等比数列。
25、(bn0)是等比数列,则 (c0且c 1) 是等差数列。
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。
26、分组法求数列的和:如an=2n+3n
27、错位相减法求和:如an=(2n-1)2n
28、裂项法求和:如an=1/n(n+1)
29、倒序相加法求和:
30、求数列的最大、最小项的方法:
① an+1-an= 如an= -2n2+29n-3
② an=f(n) 研究函数f(n)的增减性
31、在等差数列 中,有关Sn 的最值问题常用邻项变号法求解:
(1)当 0时,满足 的项数m使得 取最大值.
(2)当 0时,满足 的项数m使得 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
以上就是高二数学学习:高二数学数列的所有内容,希望对大家有所帮助!
数学高二教学计划2
※教学目标:
知识与技能:
1、掌握空间直角坐标系的建立过程和相关概念
2、学会在坐标系中找出空间点的位置,会写一些简单几何体中有关点的坐标
过程与方法:
1、经历运用空间直角坐标系来描述空间图形的过程,初步建立数感和空间感,从空间的点的坐标培养学生的空间想象能力、抽象思维和探索能力。
2、通过类比、迁移、的方法得出空间直角坐标系的建立的过程和空间点
的坐标确定的方法。
情感、态度与价值观:
1、让学生认识到数学与日常生活的密切联系,从而能够积极的参与数学的学习活动。
2、通过学生的自主学习和合作学习,培养学生合作精神。
※教学重、难点:
重点:空间直角坐标系的建立,点在空间直角坐标系中的'坐标表示
难点:通过建立适当的空间直角坐标系来确定空间点的坐标,以及相关的应用。
※教学准备:
教师准备:制作本节图4.3-1、图4.3-2、图4.3-3、图4.3-4、图4.3-5和食盐
晶体模型的投影片
学生准备:直尺和正方形纸片
※教学过程:
(一)问题情境、导入课题
【投影】问题1、数轴Ox上的点M,用代数的方法怎样表示呢?
问题2、直角坐标平面上的点M,怎样表示呢?
问题3、怎样确切的表示室内灯泡的位置?
(学生复习回顾后回答问题1和问题2,思考、讨论后回答)
【点拨】1、问题1和问题2是确定点在直线和直角坐标平面的位置的方法。
2、问题3是空间点的位置确定的问题,我们可以类比平面直角坐标的方法,建立空间直角坐标系来确定空间点的位置(板书课题)
(二)师生互动、探究新知
1、空间直角坐标系的建立
【投影】问题4、空间中的点M用代数的方法又怎样表示呢?
(教师设问)空间直角坐标系该如何建立呢?
【投影】(1)直角坐标系的建立过程
如图:OABC-DABC是单位正方体,以O为原点,分别以射线OA,OC,OD的方向为正方向,以OA,OC,OD的长为单位长,建立三条数轴: x轴、y 轴、z 轴.这时我们说建立了一个空间直角坐标系O-xyz,其中点O 叫做坐标原点, x轴(横轴)、y 轴(纵轴)、z 轴(竖轴)叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz平面、zOx平面.(引导学生仔细观察和理解)
【说明】①三条数轴两两相互垂直且相交于原点O,同时都有相同的单位长度
②任意两条确定一个平面,共有三个平面,称坐标平面
③三个坐标平面把空间分成8个部分(让同学动手操作亲历感受)
【投影】(2)空间直角坐标系的画法
(3)右手直角坐标系
2、空间点的坐标表示
【投影】合作探究:
有了空间直角坐标系,那空间中的任意一点A怎样来表示它的坐标呢?
(设问)平面直角坐标系中的点与坐标有着一一对应关系,那么在空
间直角坐标系中点与三维有序实数组之间也有一一对应关系
吗?(学生自行阅读教材P134)
【点拨】是一一对应关系。
3、坐标平面及坐标轴上的点的特征
【投影】练习:如图,OABC—A’B’C’D’是单位正方体.以O为原点,分别以射线OA,OC, OD’的方向为正方向,以线段OA,OC, OD’的长为单位长,建立空间直角坐标系O—xyz.试说出正方体的各个顶点的坐标.并指出哪些点在坐标轴上,哪些点在坐标平面上y
(师生共同完成后,投影幻灯片)
【投影】想一想?
在空间直角坐标系中,x、y、z坐标轴上的点、xoy、xoz、yoz坐标平面
内的点的坐标各有什么特点?
(学生思考、讨论后教师总结)
(三)典型例题、解释应用
【投影】例1:如图在长方体OABC-A1B1C1D1 中,|OA|=3,|OC|=4,|OD1|=2,写出点D1,C,A1,B1的
坐标及BB1的中点M的坐标和A1AOO1的对角线的交点N的坐标.. 目标:学生在教师的指导下完成,加深对点的坐标的理解.
(解的分析和过程见投影)
【投影】例2:结晶体的基本单位称为晶胞,下图是食盐晶胞的示意图(可看成八1个棱长是的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表绿2
原子.如图建立空间直角坐标系,试写出全部钠原子所在的位置的坐标.
目标:教师引导学生先阅读教材,根据建立的空间直角坐标系,写出所求
点的坐标.
(解的分析和过程见投影)
( 四)随堂练习、巩固新知
练习1、教材P136练习第2小题
(五)课堂小结、温故知新
1、空间直角坐标系的建立
2、空间直角坐标系的画法
3、空间直角坐标系中点的坐标表示方法及点与坐标的一一对应关系
(六)布置作业
教材P136练习第1、3小题。
(七)板书设计:
4.3.1空间直角坐标系
一、空间直角坐标系的建立
1、建立过程
2、空间直角坐标系画法
3、空间直角坐标系是右手系
二、空间坐标系中点的坐标表示方法
三、坐标系中特殊点的坐标特征
1、坐标轴上点的坐标特征
2、坐标平面上点的坐标特点
四、例题分析
数学高二教学计划3
一.指导思想
根据湖北省的新课改教学实施指导意见,结合我们学校的实际教学情况,发挥备课组的集体力量,全力以赴的完成本学期的教学任务。同时加强对新课改理念的学习,相互协作,积极面对新课改的要求。
二.工作重点
认真落实组里每位老师的课堂常规教学任务,努力加强老师的课外教学科研工作;积极学习新课改的理论知识,认真研究新教材的教法,做一个教学科研全方位的教师;同时发挥备课组全体成员的集体力量,积极研讨新教材的教学内容,全力提升高二年级的数学水平,缩小和其它学校的差距。
三.具体措施
(1)落实好组里每位老师的两节公开课的任务,按照先议教案,再听课堂,最后评价的程序严格落实到位。
(2)充分利用每个星期二下午的集体备课时间,商讨教学中存在的问题,探究新教材的教法。同时争取机会出去学习教改名校的数学学科课改教学的经验。
(3)做好每一次阶段性的.考试工作,考前认真准备,阅卷客观公正,客观评价教学质量。
(4)分班落实数学学科的培优补差工作,尤其是文科班数学的提升。
(5)准备参加5月份的全国高中数学联赛的活动,积极安排年轻老师参加数学教学竞赛工作。
四.教学进度
(1)2,3月份,文科完成选修1-1和选修3-1,理科完成选修2-1和3-1的教学任务,建议把选修3-1的《数学史选讲》参插讲。
(2)4月份,理科完成选修2-2,文科完成选修4-5
(3)5月份,理科完成选修4-1,文科完成选修4-5。
(4)6月份,理科完成选修4-4,文科开始期末考试的复习。
说明:根据xx省新课程教学实施指导意见,本学期理科完成选修2-1和2-2的内容,文科完成选修1-2和1-1的教学内容,但是我们还是打算把选修3-1,4-5的内容都上完,为高三复习做好准备,从时间上看,文科的教学时间是充足的,但是理科的教学时间比较紧,希望各位老师合理安排好教学时间,确实落实好每章每节的教学任务。
数学高二教学计划4
一、指导思想:
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教法分析:
1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2.通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3.在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
三、教学措施:
1、认真落实,搞好集体备课。每周至少进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。
2、详细计划,保证练习质量。教学中用配备资料《创新设计》,要求学生按教学进度完成相应的.习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容滚动式编两份练习试卷,做后老师要收齐批改,存在的普遍性问题要安排时间讲评。
3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。竞赛班的教学进度要加快,教学难度要有所降低,各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。
4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。
高二年级数学科进度表
日期周次节/周教学内容(课时)附注
9月1日~9月7日15一元二次不等式(组)与简单的线性规划(5)正式上课
8日~14日26基本不等式(3)测试与讲评(3)中秋节放假1天
15日~21日36命题及其关系(3),充分条件与必要条件(2),简单逻辑连接词(1)
22日~28日46简单逻辑连接词(2),全称量词与存在量词(2),复习(2)
29日~10月5日56曲线与方程(2),椭圆(4)国庆节放假3天
6日~12日66椭圆(2),双曲线(4)
13日~19日76,抛物线(4),复习(2)
20日~26日86空间向量及其运算(5),立体几何中的向量方法(1)
27日~11月2日96立体几何中的向量方法(4),小结与复习(2)
3日~9日106期中考试
10日~16日116,段考讲评(2),变化率与导数(4)
17日~23日126导数的计算(2)导数在研究函数中的应用(4)
24日~30日136生活中的优化问题举例(4),定积分的概念(2)
12月1日~7日146定积分的概念(2),微积分基本定理(2)、定积分的简单应用(2)
8日~14日156复习与测试(4),合情推理与演绎推理(2)
15日~21日166合情推理与演绎推理(2)、直接证明与间接证明(4)
22日~28日176数学归纳法(3),复习(3)
29日~1月4日186数系的扩充和复数的概念(3)、复数代数形式的四则运算(3)元旦放假一天
5日~11日196期末复习(6)
12日~18日206期末考试
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高二数学第一学期教学计划进度表,希望大家喜欢。
数学高二教学计划5
一、指导思想
以培养创新型人材为目标,以联合办学为契机,深入钻研教材,靠集体智慧处理教研、教改资源及多媒体信息,根据我校实际,合理运用现代教学手段、技术,提高课堂效率。
二、目标要求
1.深入钻练教材,在借鉴她校课件基础上,结合所教学生实际,确定好每节课所教内容,及所采用的教学手段、方法。
2.本期还要帮助学生搞好《数学》必修内容的复习,一是为学生学业水平检测作准备,二是为高三复习打基础。
3.本期的专题选讲务求实效。
4.继续培养学生的学习兴趣,帮助学生解决好学习教学中的困难,提高学生的数学素养和综合能力。
5.本期重点培养和提升学生的抽象思维、概括、归纳、整理、类比、相互转化、数形结合等能力,提高学生解题能力。
三、教学措施:
一、认真落实,搞好集体备课。每周至少进行一次集体备课,每位老师都要提前一周进行单元式的备课,集体备课时,由一名老师作主要发言人,对下一周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。在星期一的'集合备课中,主要是对上周备课中的情况作补充。每次备课都要用一定的时间交流一下前一段的教学情况,进度、学生掌握情况等。
二、详细计划,保证练习质量。教学中用配备资料是《高中数学新新学案》,要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。每周以内容滚动式编一份练习试卷,星期五发给学生带回家完成,星期一交,老师要进行批改,存在的普遍性问题最好安排时间讲评。试题量控制为10道选择题(4旧6新)、4道填空题(1旧3新)、4道解答题。
三、抓好第二课堂,稳定数学优生,培养数学能力兴趣。本学期第二课堂与数学竞赛准备班继续分开进行辅导。平常意义上的第二课堂辅导学生,主要是以兴趣班的形式,以复习巩固课堂教学的同步内容为主,一般只选用常规题为例题和练习,难度低于高考接近高考,用专题讲授为主要形式开展辅导工作。
四、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要,所以每位老师必须重视搞好辅导工作。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。
数学高二教学计划6
一、教材分析
1、教材地位、作用
本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3。2。1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。
2、学情分析
学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。
二、教学目标
1、知识与技能目标
⑴、理解等可能事件的概念及概率计算公式;⑵、能够准确计算等可能事件的概率。
2、过程与方法
根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。
3、情感态度与价值观
概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。
三、重点、难点
重点:理解古典概型的概念及利用古典概型求解随机事件的概率。
难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
四、教学过程
1、创设情境提出问题
师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?
【设计意图】通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的'认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。
2、抽象思维形成概念
师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?
生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。
师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。
师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?
生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。
师:那基本事件有什么特点呢?
问题:(1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?
(2)事件“出现偶数点”包含了哪几个基本事件?
由如上问题,分别得到基本事件如下的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。(让学生交流讨论,教师再加以总结、概括)
【设计意图】让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力
例1从字母中任意取出两个不同字母的试验中,有哪些基本事件?
师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。
解:所求的基本事件共有6个:
【设计意图】由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。
师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)
试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;
试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;
例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;
经概括总结后得到:
①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。
我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。
【设计意图】学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。
3、概念深化,加深理解
试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?
生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。
试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?
生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。
【设计意图】这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。
4、观察比较推导公式
【设计意图】学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。
师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:
①要判断该概率模型是不是古典概型;
②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
【设计意图】深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。
5、应用与提高
【设计意图】本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。
6、知识梳理课堂小结
1、本节课你学习到了哪些知识?
2、本节课渗透了哪些数学思想方法?
7、作业布置
1、阅读本节教材内容
2、必做题课本130页练习第1,2题,课本134页习题3。2A组第4题
3、选做题课本134页习题B组第1题
8、教学反思
本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。
数学高二教学计划7
一、指导思想:
在学校教学工作意见指导下,在年级部工作的框架下,认真落实学校对备课组工作的各项要求,严格执行学校的各项教育教学制度和要求,强化数学教学研究,提高全组老师的教学、教研水平,明确任务,团结协作,圆满完成教学教研任务。
二、教材简析
使用人教版《普通高中课程标准实验教科书数学(A版)》,教材在坚持我国数学教育优良传统的前提下,认真处理继承、借鉴、发展、创新之间的关系,体现基础性、时代性、典型性和可接受性等,具有亲和力、问题性、科学性、思想性、应用性、联系性等特点。
三、教学任务
本学期上半期授课内容为《选修1—2》和《选修4—4》,中段考后进入第一轮复习。
四、学生基本情况及教学目标
认真贯彻高中数学新课标精神,树立新的教学理念,以双基教学为主要内容,坚持抓两头、带中间、整体推进,使每个学生的数学能力都得到提高和发展。
高二文科学生共有10个班,其中尖尖班2个,8个平行重点班。尖尖班的学生重点是数学尖子生的培养,冲刺高考数学高分为目标。平行班学生的主要任务有两点,第一点:保证重点学生的数学成绩稳步上升,成为学生的优势科目;第二点:加强数学学习比较困难学生的辅导培养,增加其信息并逐步缩小数学成绩差距。
五、教法分析:
1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的'思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2、通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
六、教学措施:
1、认真落实,搞好集体备课。每两周进行一次集体备课。各组老师根据自已承担的任务,提前一周进行单元式的备课,并出好本周的单页练习。教研会时,由一名老师作主要发言人,对本周的教材内容作分析,然后大家研究讨论其中的重点、难点、教学方法等。
2、详细计划,保证练习质量。教学中用配备资料《导学案》,要求学生按教学进度完成相应的习题,教师要提前向学生指出不做的题,以免影响学生的时间,每周以内容滚动式编一份练习试卷,学生完成后老师要收齐批改,对存在的普遍性问题要安排时间讲评。
3、抓好第二课堂,稳定数学优生,培养数学能力兴趣。尖尖班的教学进度可适当调整,教学难度要有所提升;其他各班要培育好本班的优生,注意激发学生的学习兴趣,随时注意学生学习方法的指导。备课组也将组织学生上培优班。
4、加强辅导工作。对已经出现数学学习困难的学生,教师的下班辅导十分重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。并根据需要在年级开设数学困难生补充辅导班。
数学高二教学计划8
一、指导思想:
以1215课堂教学模式为指引,以学校教导处、教研组、年级部工作计划为指南,加强高二数学备课组教师的教育教学理论学习,更新教学观念,落实教学常规,全面提高学生的数学能力,尤其是提高创新意识和实践能力,为社会培养创造型人才。
二、学情分析及相关措施:
今年高二重新分班后我接了高二(1)和高二(13)一理一文两个班的数学教学,学生程度不是太好而且新来的学生需要适应过程,教学中要从学生的认知水平和实际能力出发,及时纠正不合理学习方法,研究学生的心理特征,做好高二与高一的衔接工作。注重培养学生良好的数学思维方法,良好的学习态度和学习习惯。具体措施如下:
(1)注意研究学生,做好高二与高一学习方法的衔接。
(2)集中精力打好基础,分项突破难点.所列基础知识依据课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,讲难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进。
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过周月考和单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备,用周周练及时的巩固复习所学内容知识点,以及一些常见的题型和方法。
(5)合理利用晚自习的时间抓好尖子生与后进生的'辅导工作,分析周周练的作业和课外辅导资料。适当安排时间将高一的重点内容带着学生们复习回顾。
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
三、教学进度(草稿):
第1周 | 数学必修2:立体几何 1.1空间几何体的结构 |
第2周 | |
第3周 | |
第4周 | |
第5周 | 2.2直线、平面平行的判定及其性质(1)(2)(3)(4) |
第6周 | 2.3直线、平面垂直的判定及其性质(1)(2)(3)(4) |
第7周 | 2.3直线、平面垂直的判定及其性质(4) 空间点、线、面复习 |
第8周 | 选修2-1:空间向量 第三章3.1空间向量及其运算 |
第9周 | 空间向量及其运算 |
第10周 | 期中考试 |
第11周 | 空间向量 |
第12周 | 1.1命题及其关系 |
第13周 | 1.3简单的逻辑连结词 |
第14周 | |
第15周 | 2.1椭圆(3课时) |
第16周 | 2.2双曲线(2课时) |
第17周 | 2.3抛物线(1课时) |
第18周 | 曲线与方程(2课时) |
第19周 | 总复习 |
第20周 | 期末考试 |
数学高二教学计划9
一、指导思想
1、培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
2、根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
3、使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、目的要求
1。深入钻研教材,以教材为核心,“以纲为纲,以本为本”深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系和网络结构,细致领会教材改革的精髓,把握通性通法,逐步明确教材对教学形式、内容和教学目标的影响。
2。因材施教,以学生为学习的主体,构建新的'认知体系,营造有利于学生学习的氛围。
3。加强课堂教学研究,科学设计教学方法,扎实有效的提高课堂教学效果,全面提高数学教学质量。
三、具体措施
1。不孤立记忆和认识各个知识点,而要将其放到相应的体系结构中,在比较、辨析的过程中寻求其内在联系,达到理解层次,注意知识块的复习,构建知识网路。注重基础知识和基本解题技能,注意基本概念、基本定理、公式的辨析比较,灵活运用;力求有意识的分析理解能力;尤其是数学语言的表达形式,推力论证要思路清晰、整体完整。
2。学会分析,首先是阅读理解,侧重于解题前对信息的捕捉和思路的探索;其次是解题回顾,侧重于经验及教训的总结,重视常见题型及通法通解。
3。以“错”纠错,查缺补漏,反思错误,严格训练,规范解题,养成:想明白,写清楚,算准确的习惯,注意思路的清晰性、思维的严谨性、叙述的条理性、结果的准确性,注重书写过程,举一反三,及时归纳,触类旁通,加强数学思想和数学方法的应用。
4。协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果,注重实效,努力提高复习教学的效率和效益;精心设计教学,做到精讲精练,不加重学生的负担,避免“题海战” ,精心准备,讲评到为,做到讲评试卷或例题时:讲清考察了那些知识点,怎样审题,怎样打开解题思路,用到了那些方法技巧,关键步骤在那里,哪些是典型错误,是知识和是逻辑,是方法、是心理上、策略上的错误,针对学生的错误调整复习策略,使复习更加有重点、针对性,加快教学节奏,提高教学效率。
5。周密计划合理安排,现数学学科特点,注重知识能力的提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力。
6。多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的。不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强。教学中,不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力。
新的学期是新的起点,新的希望。通过上面的计划,我相信自己在本学期一定能够将两个班的数学成绩带上去,我相信,我能行。
数学高二教学计划10
教学目标:
1、知识与技能
(1)了解算法的含义,体会算法的思想;
(2)能够用自然语言叙述算法;
(3)掌握正确的算法应满足的要求;
(4)会写出解线性方程(组)的算法;
(5)会写出一个求有限整数序列中的最大值的算法.
2、过程与方法
(1)通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法;
(2)同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法.
3、情感与价值观
通过本节的学习,对计算机的算法语言有一个基本的了解;明确算法的要求,认识到计算机是人类征服自然的一个有力工具,进一步提高探索、认识世界的能力.
教学重点、难点:
重点:算法的含义,解二元一次方程组、判断一个数为质数和利用“二分法”求方程近似解的算法设计.
难点:把自然语言转化为算法语言.
教学过程:
(一)创设情景、导入课题
问题1:把大象放入冰箱分几步?
第一步:把冰箱门打开;
第二步:把大象放进冰箱;
第三步:把冰箱门关上.
问题2:指出在家中烧开水的过程分几步?(略)
问题3:如何求一元二次方程 的解?
第一步:计算 ;
第二步:如果 ,
如果 ,方程无解
第三步:下结论.输出方程的根或无解的信息.
注意:在以上三个问题的求解过程中,老师要紧扣算法定义,带领学生总结,反复强调,使学生体会以下几点:
①有穷性:步骤是有限的,它应在有限步操作之后停止,而不能是无限地执行下去。
②确定性:每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可的。
③逻辑性:从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。
④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法。
⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。
注:其他还有输入性、输出性等特征,结论不固定.
提问:算法是如何定义?
(二)师生互动、讲解新课
x-2y=-1 ①
回顾(课本P2内容): 写出解二元一次方程组 2x y=1 ② 的算法.
解:第一步,②×2 ①,得5x=1;③
第二步,解③,得x= ;
第三步,②-①×2得5y=3;④
第四步,解④ ,得y= ;
第五步,得到方程组的解为 x= ;y= 。
思考1:你能写出求解一般的二元一次方程组的步骤吗?
上题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法
对于一般的二元一次方程组 可以写出类似的'求解步骤:
第一步,①×b2-②×b1,得 ;③
第二步,解③,得 .
第三步,②×a1-①×a2,得 ;④
第四步,解④,得 ;
第五步,得到方程组的解为
(高斯消去法)
思考2:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”.我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组.那么解二元一次方程组的算法包括哪些内容?
思考3:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的.
你认为:
(1)这些步骤的个数是有限的还是无限的?
(2)每个步骤是否有明确的计算任务?
总结:在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法.
算法(algorithm)一词出现于12世纪,源于算术(algorism),即算术方法.指的是用阿拉伯数字进行算术运算的过程.在数学中,算法通常是指按照一定的规则解决某一类问题的明确的和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法.
广义地说,算法就是做某一件事的步骤或程序.菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算
法,歌谱是一首歌曲的算法.在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序.比如解方程的算法、函数求值的算法、作图的算法,等等.
(三)例题剖析,巩固提高
例1(课本P3例1):如果让计算机判断7是否为质数,如何设计算法步骤?
算法:
第一步,用2除7,得到余数1,所以2不能整除7.
第二步,用3除7,得到余数1,所以3不能整除7.
第三步,用4除7,得到余数3,所以4不能整除7.
第四步,用5除7,得到余数2,所以5不能整除7.
第五步,用6除7,得到余数1,所以6不能整除7.
因此,7是质数.
课堂练习1:
整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤?
思考4:用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,我们可以按下面的思路改进这个算法,减少算法的步骤.
(1)用i表示2~88中的任意一个整数,并从2开始取数;
(2)用i除89,得到余数r. 若r=0,则89不是质数;若r≠0,将i用i 1替代,再执行同样的操作;
(3)这个操作一直进行到i取88为止.
你能按照这个思路,设计一个“判断89是否为质数”的算法步骤吗?
算法设计:
第一步,令i=2;
第二步,用i除89,得到余数r;
第三步,若r=0,则89不是质数,结束算法;若r≠0,将i用i 1替代;
第四步,判断“i>88”是否成立?若是,则89是质
数,结束算法;否则,返回第二步.
探究:一般地,判断一个大于2的整数是否为质数的算法步骤如何设计?
在中央电视台幸运52节目中,有一个猜商品价格的环节,竟猜者如在规定的时间内大体猜出某种商品的价格,就可获得该件商品.现有一商品,价格在0~8000元之间,采取怎样的策略才能在较短的时间内说出比较接近的答案呢?
例2、一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少只小兔多少只鸡?
算法1:S1 首先计算没有小兔时,小鸡的数为:17只,腿的总数为34条。
S2 再确定每多一只小兔、减少一只小鸡增加的腿数2条。
S3 再根据缺的腿的条数确定小兔的数量: (48-34)/2=7只
S4 最后确定小鸡的数量:17-7=10只.
算法2:S1 首先设 只小鸡, 只小兔。
S2 再列方程组为:
S3 解方程组得:
S4 指出小鸡10只,小兔7只。
算法3:S1 首先设 只小鸡,则有 只小兔
S2 列方程
S3 解方程得 ,则
S4 指出小鸡10只,小兔7只.
算法4:S1 “请一名驯兽师”所有小鸡抬一条腿,所有小兔抬两条腿
S2 有小兔 只
S3 有小鸡 只
S4 指出小鸡10只,小兔7只.
算法5:S1 有小兔 只
S2 有小鸡 只
二分法:
对于区间[a,b ]上连续不断,且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,而得到零点近似值的方法叫做二分法.
例3(课本P4例2):写
出用“二分法”求方程 的近似解的算法.
算法分析:
令f(x)= ,则方程 的解就是函数f(x)的零点.
第一步,令f(x)= ,给定精确度d.
第二步,确定区间[a,b],满足f(a)·f(b)<0.
第三步,取区间中点 .
第四步,若f(a)·f(m)<0,则含零点的区间为[a,m],否则,含零点的区间为[m,b].
将新得到的含零点的区间仍记为[a,b];
第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.
(四)课堂小结,巩固反思
1、算法的主要特点:
(1)有限性:一个算法在执行有限步后必须结束;
(2)确切性:算法的每一个步骤和次序必须是确定的;
(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.
(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.
2、计算机解决任何问题都要依赖算法,算法是建立在解法基础上的操作过程,算法不一定要有运算结果.设计一个解决某类问题的算法的核心内容是将解决问题的过程分解为若干个明确的步骤,即算法,它没有一个固定的模式,但有以下几个基本要求:
(1)符合运算规则,计算机能操作;
(2)每个步骤都有一个明确的计算任务;
(3)对重复操作步骤作返回处理;
(4)步骤个数尽可能少;
(5)每个步骤的语言描述要准确、简明.
数学高二教学计划11
这学期对于我来说,是一个挑战,因为本学期我接手了两个理科班。以前我带的始终是文科班,对于文科班的学生的情况比较理解,但对于理科班来说,我不知道他们对学习会有怎样的想法与做法。高二七班与八班在人数上基本一致,但通过我的了解,两班还是有一定的差距:七班学生活泼且聪明的学生也大有人在,但是不学习的比较多,甚至有些学生已经彻底放弃了;八班的学生比较老实些,每个人都在认真学,但是数学成绩没有七班那么突出,而且学生在课堂上表现的也不是很积极。针对这两个陌生的理科班,本学习我制定了如下的教学计划:
一、指导思想
在学校、数学组的领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务,严格执行“三规”、“五严”。利用有限的时间,使学生在获得所必须的基本数学知识和技能的同时,在数学能力方面能有所提高,为20xx年的高考做准备,为学生今后的发展打下坚实的数学基础。
二、教学措施
1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的`能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。
2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。教学基本模式为:
基础练习→典型例题→作业→课后检查
(1)基础练习:一般5道题,主要复习基础知识,基本方法。要求所有的学生都过关,所有的学生都能做完。
(2)典型例题:一般4道题,例1为基础题,要直接运用课前练习的基础知识、基本方法,由学生上台演练。例2思路要广,让有生能想到多种方法,让中等生能想到1—2种方法,让中下生让能想到1种方法。例3题目要新,能转化为前面的典型类型求解。例4为综合题,培养学生运用数学思想方法分析问题解决问题的能力。
(3)作业:本节课的基础问题,典型问题及下一节课的预习题。
(4)课后检查;重点检查改错本及复习资料上的作业。
3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。
4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。
5.注重对所选例题和练习题的把握:
(1)注重对“四基五能力”的考察把握,贴近课本;
(2)注重学科内容的联系与综合;
(3)注重数学思想方法、通性、通法,淡化特殊技巧;
(4)注重能力立意,以考察学生逻辑思维能力为核心,全面考察能力;
(5)注重考查学生的创新意识和实践能力,设计应用性、探索性的问题;
(6)试题体现层次性、基础性,梯度安排合理,坚持多角度,多层次的考察,有效地检测对数学知识中所蕴含的数学思想和方法掌握的程度。
(7)精心选做基础训练题目,做到不偏、不漏、不怪,即不偏离教材内容和考试说明的范围和要求。不选做那些有孤僻怪诞特点、内容和思路的题目,做到不凭个人喜好选题,不脱离学生学习状况选题,不超越教学基本内容选题,不大量选做难度较大的题目。
6.周密计划合理安排,现数学学科特点,注重知识能力的提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力。
7.多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的。不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强。教学中不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力。
三、对自己的要求——落实教学的各个环节
1.精心上好每一节课
备课时从实际出发,精心设计每一节课,备课组分工合作,利用集体智慧制作课件,充分应用现代化教育手段为教学服务,提高四十五分钟课堂效率。
2.严格控制测验,精心制作每一份复习资料和练习
教学中配备资料应要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。三类练习(大练习、限时训练、月考)试题的制作分工落实到每个人(备课组长出月考卷,其他教师出大练习、限时训练卷),并经组长严格把关方可使用。注重考试质量和试卷分析,定期组织备课组教师进行学情分析,发现问题,寻找对策,及时解决,确保学生的学习积极性不断提高。
3.做好作业批改和加强辅导工作
我们的工作对象是活生生的对象──学生,这里需要关心、帮助及鼓励。我们要对学生的学习情况做大量的细致工作,批改作业、辅导疑难、及时鼓励等,特别是对已经出现数学学习困难的学生,教我们的辅导更为重要。在教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,不仅要给他们解疑难,还要给他们鼓信心、调动自身的学习积极性,帮助他们树立良好的学习态度,积极主动地去投入学习,变“要我学”为“我要学”。
数学高二教学计划12
一、教材分析。
1、教材地位、作用。
本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。
2、学情分析。
学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。
二、教学目标。
1、知识与技能目标。
(1)理解等可能事件的概念及概率计算公式。
(2)能够准确计算等可能事件的概率。
2、过程与方法。
根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。
3、情感态度与价值观。
概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。
三、重点、难点。
1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。
2、难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
四、教学过程。
1、创设情境,提出问题。
师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?
通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。
2、抽象思维。形成概念、
师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?
生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。
师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。
师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?
生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。
师:那基本事件有什么特点呢?
问题:
(1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?
(2)事件“出现偶数点”包含了哪几个基本事件?
由如上问题,分别得到基本事件如下的两个特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
(让学生交流讨论,教师再加以总结、概括)
让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力
例1:从字母中任意取出两个不同字母的试验中,有哪些基本事件?
师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。
解:所求的基本事件共有6个:
____________________________________________________________________________________。
由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。
师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)
试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;
试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;
例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;
经概括总结后得到:
①试验中所有可能出现的基本事件只有有限个;
②每个基本事件出现的可能性相等。
我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。
学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。
3、概念深化,加深理解。
试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?
生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。
试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?
生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。
这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。
4、观察比较,推导公式。
师:在古典概型下,随机事件出现的概率如何计算?(让学生讨论、思考交流)
生:试验二中,出现各个点的概率相等,即
P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)
由概率的加法公式,得
P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1
因此P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=
进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,
P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++==
P(“出现偶数点”)=?=
师:根据上述试验,你能概括总结出,古典概型计算任何事件的概率计算公式吗?
生:_________________________________________________________________。
学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。
师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:
①要判断该概率模型是不是古典概型;
②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。
深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。
5、应用与提高。
例2:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择惟一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?
解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,从而由古典概型的概率计算公式得:
探究:在标准化考试中既有单选题又有不定项选择题,不定项选择题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?
解:这是一个古典概型,因为试验的可能结果只有15个:选择A、选择B、选择C、选择D,选择AB、选择AC、选择AD、选择BC、选择BD、选择CD、选择ABC、选择ABD、选择ACD、选择BCD、选择ABCD,从而由古典概型的概率计算公式得:
P(“答对”)=1/15
解决了课前提出的思考题,让学生明确解决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的`个数和试验中基本事件的总数。
例3:同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
(教师先让学生独立完成,再抽两位不同答案的学生回答)
学生1:
①所有可能的结果是:
(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种。
②向上的点数之和为5的结果有2个,它们是(1,4)(2,3)。
③向上点数之和为5的结果(记为事件A)有2种,因此,由古典概型的概率计算公式可得
学生2:
①掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,我们可以用列表法得到(如图),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。
由表中可知同时掷两个骰子的结果共有36种。
②在上面的所有结果中,向上的点数之和为5的结果有4种:(1,4),(2,3),(3,2),(4,1)。
③由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得
师:上面同一个问题为什么会有两种不同的答案呢?(先让学生交流讨论,教师再抽学生回答)
生:答案1是错的,原因是其中构造的21个基本事件不是等可能发生的,因此就不能用古典概型的概率公式求解。
师:我们今后用古典概型的概率公式求解时,特别要验证“每个基本事件出现是等可能的”这个条件,否则计算出的概率将是错误的。
本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。
6、知识梳理,课堂小结。
(1)本节课你学习到了哪些知识?
(2)本节课渗透了哪些数学思想方法?
7、作业布置。
(1)阅读本节教材内容
(2)必做题课本130页练习第1,2题,课本134页习题3。2A组第4题
(3)选做题课本134页习题B组第1题
8、教学反思。
本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。
本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。
数学高二教学计划13
一、指导思想:
在学校教育工作意见指导下,严格执行学校各教育教育制度和要求,加强数学教育研究,提高全组教师教育、教育研究水平,明确任务,团结合作,圆满完成教育教育研究任务。具体任务如下:
1.让学生获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,理解概念、结论等产生的背景、应用,体验其中包含的数学思想和方法,以及其在后续学习中的作用。通过不同形式的自主学习、探索活动,体验数学发现和创造的历史。
2.提高学生空间想象力、抽象摘要、推理论证、运算解决、数据处理等基本能力。
3.提高学生提出、分析和解决数学问题(包括简单的实际问题)的能力,提高数学表现和交流的能力,发展独立获得数学知识的能力。
4.发展学生数学应用意识和创新意识,努力思考和判断现实世界包含的数学模式。
5.提高学生学习数学的兴趣,确立学习数学的自信,形成坚持不懈的钻研精神和科学态度。
6.使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的'思考习惯,崇尚数学的理性精神,体验数学的美学意义,进一步确立辩证唯物主义和历史唯物主义世界观。
二、教法分析:
1.选择与内容密切相关、典型、丰富、学生熟悉的素材,用生动活泼的语言创造数学概念和结论、数学思想和方法、数学应用的学习情况,使学生产生对数学的亲切感,引起学生看到最后的冲动,达到培养兴趣的目的。
2.通过观察、思考、探索等栏目,引起学生的思考和探索活动,切实改善学生的学习方式。
3.在教育中强调类比、普及、特殊化、归化等数学思想方法,尽量养成逻辑思维的习惯。
三、教育措施:
1.全体老师诚实团结,相互关心,相互支持,努力使我们的高二数学组成为充满活力的优秀集团。互相上课,取长补短,完善自己,加强形式、时间、场所的交流。在日常工作中,保持和优化个人特色,实现资源共享,同类班级相关工作基本统一。
2.认真执行,做好集体准备课程。每周四上午三四节集体备课,认真分析教材内容,研讨其中的重点、难点、教学方法等。
3.详细规划,保证练习质量。在教育中充分利用资料,要求学生根据教育进度完成相应的练习题,每周以内容滚动式制作周练试卷,老师必须整理,存在的普遍问题必须安排时间评价,成绩在星期四之前自己输入年级计算机。
4.抓住第二课,稳定数学优秀学生,培养数学能力兴趣。各班培养好本班优生,注意激发学员学习兴趣,随时注意学员学习方法辅导。
5.加强指导工作。对于数学学习困难的学生来说,教师的下班指导非常重要。在教师教育中,要尽快把握班级学生的数学学习状况,有目的地进行指导工作,注意班级优生层,不能忽视班级困难的学生。
数学高二教学计划14
一、 指导思想:
坚持以“学生发展为本,基于学生发展,关注学生发展,为了学生的发展”为教育课程改革的核心理念。不断研究课程标准。在教学中,要突出培养学生的创新和实践能力,收集处理信息的能力、获取新知识的能力、分析解决问题的能力,以及交流协作的能力,发展学生对自然和社会的责任感。从而实现全体学生的发展,以及学生个体的全面发展。为此,教师要发挥自己课程建设中的能动作用,要变“教教材”为“用教材教”,要变“经师”为“人师”,通过创造性地实施新课程,在知识、技能的传授过程中实现学生情感态度价值观的`目标,实现育人的功效。
二、合理安排本学期教学进度,扎扎实实完成教学任务:
本学期授课时间约为17周,约102课时,本学期的教学任务第一学段:数学必修5约42课时;第二学段:必修3约46课时,保证完成教学任务。
三、认真备课工作,保证质量:
备课做到既备教材又备学生,认真学习新课标,钻研教材,掌握教材知识结构,重点,难点,并与学生原有知识加以联系,做到有的放矢。
四、精选例题和作业:
为提高学生学习的主动性、积极性,培养学生的创新意识。在教学中既要照顾中、下层学生,也要注意培养优生,因此,例题和课外作业的选取一定要有梯度,结合教材,可适度增减例题。课外作业分层要求:A组题要求学生都要完成;B组题要求学生有选择地完成;练习册上的题目经教师精选的必做,其他选做。
五、信息共享,发挥集体智慧的作用:
为加快对试验课的理解和掌握,积极探索教改进程,建立备课组资料库,要积极借助网络信息收集和筛选资料存库,发挥集体智慧,及时应用到具体教学中。
六、认真抓好落实,全面提高:
认真做好学困生的工作,对他们的学习加以督促,对他们的不良习惯加以纠正,争取 不让一个学生掉队,大面积提高教学质量,为使提高高二学生的数学成绩而努力奋斗。
1,培养良好的学习兴趣。
两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?
(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
(3)思考问题注意归纳,挖掘你学习的潜力。
(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?
(5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。
2、 建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
数学高二教学计划15
一、指导思想:
以发展教育的理念为指引,以学校教务处、教研组、年级组工作计划为指南,加强备课组教师的教育教学理论学习,更新教学观念,落实教学常规,全面提高学生的数学能力,尤其是提高创新意识和实践能力,为社会培养创造型人才
二、学情分析及相关措施:
教学中要从学生的认识水平和实际能力出发,及时纠正不合理学习方法,研究学生的心理特征,做好高二第一学期与第二学期的衔接工作。注重培养学生良好的数学思维方法,良好的学习态度和学习习惯。具体措施如下:
(1)注意研究学生,做好高二第一学期与第二学期的衔接工作。
(2)集中精力打好基础,分项突破难点.所列基础知识依据新课程标准设计,着眼于基础知识与重点内容,要充分重视基础知识、基本技能、基本方法的教学,为进一步的学习打好坚实的基础,切勿忙于过早的拔高,讲难题。同时应放眼高中教学全局,注意高考命题中的知识要求,能力要求及新趋势,这样才能统筹安排,循序渐进。
(3)培养学生解答考题的能力,通过例题,从形式和内容两方面对所学知识进行能力方面的分析,引导学生了解数学需要哪些能力要求。
(4)让学生通过单元考试,检测自己的实际应用能力,从而及时总结经验,找出不足,做好充分的准备
(5)抓好尖子生与后进生的辅导工作。
(6)注意运用现代化教学手段辅助数学教学;注意运用投影仪、电脑软件等现代化教学手段辅助教学,提高课堂效率,激发学生学习兴趣。
三、教学进度:
第1周 开学报名
第2周 选修2-2 1.1变化率与导数
第3周 1.2导数的计算 1.3导数在研究函数中的应用
第4周 1.4生活中的优化问题举例 1.5定积分的'概念
第5周 1.6微积分基本定理 1.7定积分的简单应用
第6周 第一章复习2.1合情推理与演绎逻辑
第7周 2.2直接证明与间接证明 2.3数学归纳法
第8周 第二章复习 3.1数系的扩充和复数的概念
第9周 3.2复数代数形式的四则运算 第三章复习
第10周 期中复习
第11周 期中考试
第12周 选修2-3 1.1分类加法计数原理与分步乘法计数原理 1.2排列与组合
第13周 1.3二项式定理 第一章复习
第14周 2.1离散型随机变量及其分布列 2.2二项分布及其应用
第15周 2.3离散型随机变量的均值与方差 2.4正态分布
第16周 第二章复习
第17周 3.1回归分析的基本思想及其初步应用
第18周 3.2 独立性检验的基本思想及其初步应用
第19周 第三章复习
第20周 期末总复习
第21周 期末考试
【数学高二教学计划】相关文章:
高二数学教学计划05-01
高二文数学教学计划12-24
高二数学教学计划精选15篇02-20
精选高二数学教学计划4篇12-29
高二数学教学计划15篇12-24
高二数学教学计划(15篇)12-24
高二数学教学计划(集锦15篇)02-28
高二数学下学期教学计划03-05
【热门】高二数学教学计划三篇02-09