当前位置:9136范文网>教育范文>教学反思>《圆柱的表面积》教学反思

《圆柱的表面积》教学反思

时间:2022-08-30 15:32:07 教学反思 我要投稿

《圆柱的表面积》教学反思 15篇

  身为一位优秀的老师,我们要有一流的教学能力,对教学中的新发现可以写在教学反思中,写教学反思需要注意哪些格式呢?以下是小编为大家收集的《圆柱的表面积》教学反思 ,希望能够帮助到大家。

《圆柱的表面积》教学反思 15篇

《圆柱的表面积》教学反思 1

  [头疼问题]

  近期六年级的任课教师都会头疼我们也不例外

  年级组集体备课时会叹气

  在走廊里碰头时会感慨

  叹气、感慨地主要原因就是:近期作业的错误率很高(特别是学困生)

  这使我不免停下“匆匆的步伐”凝望着这些作业叉叉多的孩子

  什么地方出问题了?

  [细细掂量]

  一轮本子改下来错误有以下几类

  1、优等生:列出一个长长的算式,直接得出错误的结果(看不出是哪一步出错,反正计算错)

  2、中等生:求表面积时,大概知道侧面积+两个底面积;但真正列式的时候底面积没乘2;而到了只需要加一个底面积的时候(无盖水桶等实际问题的时候)却乘2;

  3、学困生:列出的算式都有问题。一查,圆面积计算公式都不会(够厉害),最基本的都不会,圆柱的表面积和体积又如何能正确求出;个别的20多分钟头都不抬,就在计算一个图形题,仔细一看列式出错,后面的脱式计算过程中的结果有的有6、7位小数;依然不知疲倦的算啊算,看着都累

  4、不知灵活变通,一般来讲3.14最好是最后再乘,这样可以降低计算的复杂程度,减轻计算的强度;但部分学困生勇气可嘉,不管那一套,列式中3.14在前面就先算;放在后头就最后算,老实得可爱;当你在讲计算技巧的时候可爱的孩子们还在埋头苦算,结果错误百出。

  [标本兼治]

  1、学优生:提出要求:不能一步得出结果,要脱式:关注做作业、打草稿的态度、习惯,养成草稿本清晰、数字清楚,可以避免匆忙之中抄错数字导致整题出错。

  2、中等生、学困生:

  (1)重视公式的熟练程度:通过演示、推导、同桌互说、单独抽问、上黑板默写等方法帮助夯实基础。

  (2)重点分析典型习题,帮助学生找到审题、列式、解题的方法和策略,并针对性练习,提高技能

  (3)重点强记:3.14*1=…………………3.14*9= 常用计算结果,达到熟练程度,提高练习时的计算速度和正确率,也可以用于检验计算过程中的结果正确与否。

  (4)抓听讲习惯:要求要严格,教师针对问题进行分析、讲评的时候,应要求所有学生抬头关注,集中精力听讲(往往这样的.时候学困生是不睬你的,要适当的喊他起来站个1分多钟,点一点他。),有了这个保证,讲评的效果就有了,出错的几率就就会降低了。再结合以上措施,效果就会更好。

  [写在结尾]

  有了措施,就需要有行动——老师的行动、学生的行动都要跟上,希望一段日子后会有好效果。

  也欢迎大家说说自己的好的做法,共同提高第二单元的质量

《圆柱的表面积》教学反思 2

  今天教学的内容是《圆柱的表面积》,圆柱的表面积教学,重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,让学生在玩中学,学中玩,以游戏闯关的形式愉悦地完成本课教学。课下,听取了老师们的评课,又联系课堂教学,我进行了深刻地反思。

  一、激情导课,激发学生的求知欲。复习开始前,我问“同学们,老师今天把你们刚认识的新朋友带来了,你们猜,他是谁?”就在学生们的猜测下,我拿出了课前藏好的圆柱。我继续发问“你们认识它吗,是怎样认识的?你们还想知道它的什么?”由此展开圆柱的表面展开图。复习引入——提出长方体、正方体的表面积,导出圆柱的表面积的意义。

  二、探究新知,闯关激发学习兴趣。本课教学,以闯关的'形式将课程分为三部分,以闯关成功奖励一节活动课为诱饵,激发学习兴趣。第一关是侧面积的计算,探究新知时,让学生通过讨论、交流,明确圆柱侧面沿高打开是长方形,长方形的长相当于圆柱的底面周长,宽相当于圆柱的高。由此导出圆柱的侧面积的计算方法。在学生学会计算圆柱的侧面积以后,设疑:你会计算这圆柱的表面积吗?(第二关开始)学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学。第三关是练习阶段,以生活中的圆柱物体为例求出所需要的材料,要求学生说出要计算哪几个面,体现了数学来源于生活,数学应用于生活。

  三、把握重、难点,合理利用教材。“圆柱表面积”这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。教材安排了三道例题,但在教学中,我将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学,将用“进一法”取似值作为一个知识点。在突破侧面积的计算方法这个难点时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?让学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这圆柱的表面积吗?学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时又体现了数学与生活的联系。在这节课的教学中,还存在着一些不足:

  一、实践操作展示得不够。在动手探索圆柱侧面积的计算方法时,大部分学生联系上节课的经验说出看法,而没有实际操作,我也没有让他们展示推导的过程,加深印象,只是让他们说一说,导致一部分学困生只能听听而已。

  二、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。

《圆柱的表面积》教学反思 3

  一、创设情境,悬念导入。

  上课铃响了,教师戴着厨师帽进教室,并设下悬念:做这样一顶厨师帽需要准备多少面料?

  板书课题:圆柱的表面积

  二、合作探究,发现方法。

  1、圆柱的表面积包括哪些面的面积?

  2、研究圆柱的侧面积。

  (1)大家猜测一下,圆柱的侧面展开来可能会是什么样的?

  (2)学生想办法亲自验证。

  (学生通过动手剪、拆课前准备的圆柱体,发现侧面展开有的是长方形、有的是正文形、有的是平行四边形,还有的可能是不规则图形。)

  师问:①剪、拆的过程中你有什么发现?

  ②长方形的长当于什么,宽相当于什么?

  ③你能把展开的平行四边形想办法变成长方形吗?不规则图形呢?

  (3)推导圆柱体侧面积的计算公式:

  通过学生动手操作、观察比较得出,因为:长方形的`面积=长×宽

  所以:圆柱的侧面积=底面周长×高

  3、明确圆柱的表面积的计算方法。

  师生共同展示圆柱的表面积展开图,问:现在你会求圆柱的表面积吗?

  板书:圆柱的表面积=圆柱的侧面积+两个底面的面积

  三、实际应用

  现在你能求出做这样一顶厨师帽需要多少面料吗?

  出示例4:一顶圆柱形的厨师帽,高28cm,帽顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  1、引导:①求需要用多少面料,实际是求什么?

  ②这个帽子的表面积 的是什么?

  2、学生同桌讨论,列式计算,师巡视指导。

  3、汇报计算情况。

  板书:帽子的侧面积:3.14×20×28=1758.4(cm2)

  帽子的底面积:3.14×(20÷2)2=314(cm2)

  需要用面料: 1758.4+314=20xx.4≈20xx(cm2)

  答:需用20xxcm2的面料。

  四、巩固练习:课本第14页“做一做”。

  五、畅谈收获,总结升华:这节课你有什么收获?说说自己的表现。

  六、作业:课内:练习二第5、7题;课外:练习二第6、8题。

  附:板书设计

  圆柱的表面积

  长方形的面积= 长 × 宽

  圆柱的侧面积=底面周长 × 高

  圆柱的表面积=圆柱的侧面积+两个底面的面积

  例4:一顶圆柱形的厨师帽,高28cm,冒顶直径20cm,做这样一顶帽子需要用多少面料?(得数保留整十平方厘米)

  帽子的侧面积:3.14×20×28=1758.4cm2)

  帽子的底面积:3.14×(20÷2)2=314(cm2)

  需要用面料: 1758.4+314=20xx.4

  ≈20xx(cm2)答:需用20xxcm2的面料。

《圆柱的表面积》教学反思 4

  1、把握重点,突破难点,合理利用教材。

  对于圆柱体侧面面积计算公式的推导,严格遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。

  2、直观演示和实际操作相结合。

  通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知,

  3、让学生自主学习,探究圆柱的侧面积和表面积的计算方法。

  让学生自主学习,对培养学生的学习兴趣和学习能力有较大的帮助,使学生在学习过程中获得数学知识,并感受学习的快乐与成功感。

  4、讲解与练习相结合。

  本节课,改变了传统的先讲后练的教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的.知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。

  5、使学生能正确计算圆柱的侧面积和表面积。

  为了让学生能正确地计算圆柱体的表面积,我要求学生先用分部算式计算,并写清s侧=和s表=,以便学生分清自己每一个算式计算的是哪部分的面积。

  6、发展学生空间观念,并能利用知识合理灵活地分析、解决实际问题。

  在这方面的练习题中,学生往往对题意理解不够,不知道是计算哪些部分的面积,通风管的材料,有不少学生加上两个底的面积。为了让学生发展空间想象能力,我提示学生在解决问题前,一定要弄清题意,并尽量回忆一上实物的结构,自己没有见过的,应通过日常应用知识来想一想、画一画,看看它应是个什么样了的,再作解答。学生中出现的共性问题,教师再集中讲一讲。这样一来,就大大地提高了学生灵活运用知识解决问题的能力。

  总之,这节教学内容是本册教材中的一个重难点,如何能达到更好的教学效果,有待我们教师去探索、去研究适合学生心理接受的更好之法。

《圆柱的表面积》教学反思 5

  1、重学生学习的过程。传统中的教学是教师直接出示圆柱的.表面积计算公式让学生进行死记硬背,然后套公式计算。这是只重结果,不重过程的现象。这节课,学生初步了解了圆柱的表面是由两个相同的底面和一个侧面构成的,计算圆柱底面积就是计算圆面积。我在学生初步理解圆柱表面积的含义后,重点安排学生进行圆柱侧面积计算方法的探索。学生通过剪、卷、滚等一系列活动探索出圆柱的侧面是一个长方形,从而推导出圆柱侧面积计算公式。

  2、学生成为有效学习者。有效地复习了圆的面积计算方法,有效地掌握了圆的表面积计算方法

《圆柱的表面积》教学反思 6

  苏霍姆林斯基曾指出:“在人们内心深处都有一种根深蒂固的需要,这就希望自己是一个发现者。研究者,在儿童的精神世界中,这种需要特别强烈。”那么在实际教学中,如何给学生提供一个发现、研究、探索的机会就显得尤为重要。这就必须在新的教学理念指导下,把生动的课堂还给学生,给学生一个自主学习的机会,下面就《圆柱的侧面积与表面积》谈谈自己的教学体会。

  一、创设问题的情景

  在新授时我打破以前拿出一个圆柱放在桌上直接进行侧面积公式推导模式,而是提供给学生两个空心纸圆柱,一个矮胖型,一个瘦高型,鼓励学生大胆猜想,“谁的侧面积大一些”。学生们看到两个圆柱表现得非常积极,兴趣十分浓厚,思维也很活跃。有的说:“我认为矮胖型侧面积较大。”我就追问他为什么?他说:“矮胖型圆柱比较粗,我认为圆柱侧面积与它的粗细程度有关。”有的说:“我认为瘦高型的圆柱侧面积较大。”我也追问他为什么?他说:“瘦高型圆柱比较高,我认为圆柱侧面积与他的高低有关。”当然还有一部分认为它们的侧面积相等或无法判断的,因为他们认为圆柱的侧面积与圆柱的粗细和高低都有关系,甚至还把小的那个圆柱放在大圆柱内,再把大圆柱底面捏起来让我看。对子上面的回答我都没有给予直接肯定或否定,关键是我认为通过学生们对两个圆柱的观察都已认识到了非常重要的两点,即圆柱侧面积大小与圆柱粗细和高低有关。通过这样创设情景设疑大大激发了学生的直觉思维,而不是像以前对照公式直接去讲解。与此同时我再设一疑,这两个圆柱到底谁的侧面积大,你们能否通过动手来证明呢?

  二、动手操作,实践领悟

  在允许学生想一切办法证明自己的猜测时,学生们再一次表现了良好的学习兴趣,个个动手动脑,有的沿高直往下剪,把圆柱侧面剪开得到了一个长方形的展开图;有的斜着剪下来得到一个平行四边形;有的剪成各种不规则图形;还有的剪成若干个三角形,梯形等等,体现了学生思维的多样性,差异性。也使学生一下子明白其实求圆柱的侧面积完全可以转化为我们以前学过的图形。既然圆柱的侧面积可以转化成这么多以前学过的图形,那你们觉得把它转化成哪一种来求更为合理呢?

  三、讨论交流,合作探索

  因为任何知识获得的最佳途径是自己去发现,因为这种发现理解最深,也最容易掌握其中内在规律、性质联系.在学生自己发现圆柱侧面积可以转化成何种图形来求最简单、合理.而且对于一些不能剪开的圆柱,如铁圆柱、石圆柱、玻璃圆柱……,也发现了他们的底面积即长方形的长,圆柱的高即长方形的宽之间的对应关系。求圆柱侧面积只要用圆柱底面周长乘以高。通过这样的'讨论交流不仅可以让学生发现,掌握圆柱侧面积计算公式,更进一步认识到长方形、平行四边形与圆柱的内在联系,从而使学生思维也从具体形象走向抽象概括。

  四、实践应用,发展能力

  在学生自主发现圆柱侧面积=底面周长×高后,我马上给出题目:一个圆柱底面直径0.3米,高2米,求它的侧面积?让学生独立进行解答。侧面积会求了又如何求圆柱的表面积呢?独立解决,一个圆柱高是15厘米,底面半径5厘米,它的表面积是多少?最后我还启发学生思考:学了这个公式,你能用它解决哪些实际问题?如有的学生提出圆柱侧面包装纸的用料问题,只需求一具侧面;如制造一种圆柱形无盖茶杯或水桶的表面积,只需计算一个底面加一个侧面;再如圆柱形汽油桶表面积,就要求两个底面和一个侧面……这样就拉近了所学数学知识与实际生活的联系,从而也培养了学生的能力。

  这节课在教学时我并没有把大量时间放在如何讲解侧面积公式及其公式应用上,而是让学生大胆猜想,自主探索,也培养了他们人与人之间的交流合作,使他们的思维发生碰撞,充分发挥内在潜能,从而有效地培养了学生主动探索精神,动手操作能力与创新精神。

《圆柱的表面积》教学反思 7

  因为疫情迟迟没有好转,离开学时间还是遥遥无期,所以培育小学秉着“停课不停学”的理念,开始了网课教学。

  我今天教学的内容是人教版六年级下册《圆柱的表面积》,本节课的教学难点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,重点是灵活运用侧面积、表面积的有关知识解决实际问题。本节课的教学,从始至终贯穿着“以学生为主体,教师为主导,训练思维为主线”的原则,在各个环节中让学生自己去解决,让学生在动手操作、合作探究中学习。

  一、激情导课,激发学生的求知欲。

  复习开始时,我问“同学们,老师今天把你们刚认识的新朋友带来了,你们猜,他是谁?”就在学生们的猜测下,我拿出了课前藏好的圆柱。我继续发问“谁能给大家介绍一下这位新朋友?你们还想知道它的什么?”然后,让学生动手摸一摸手中的圆柱体,“谁能告诉大家你摸到了什么?”形成圆柱表面积的表象,从而很轻松的得出:圆柱的表面积等于圆柱的侧面积和两个底面面积之和。

  二、把握重点,突破难点,合理利用教材。

  “圆柱表面积”这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。教材安排了两道例题,但在教学中,我将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学,将用“近一法”取似值作为一个知识点。再结合学生的实际,巧妙的把他们联系成一个整体,做到收中有放,放中有收。

  三、教学方法上,采用直观演示和实践操作相结合。

  新课开始,教师通过圆柱教具直观演示,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作。让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的.计算公式。

  再让学生以小组为单位,通过看一看、摸一摸,自己观察、发现,思考怎样求圆柱体的表面积? 讨论:求圆柱体的表面积需要知道哪些数据? 从而得出圆柱体表面积的计算公式。充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式,并运用幻灯片辅助教学,有利于学生对知识的理解及掌握。

  四、练习题的设计上由易到难,讲练结合。

  在练习题的设计中,遵循了从易到难的原则,先是已知周长、半径和直径求圆柱的侧面积,在此基础上再想一想已知这三个条件怎样求出圆柱的表面积。采用分步口答的方法,让学生说出自己的想法,从而达到熟练掌握求圆柱的表面积的计算方法。例4主动放手让学生独立解答,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的联系。

  当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练;另外,在练习题的设计上都是只列式不计算的方法,没有让学生真正计算出侧面积和表面积;小组合作的初衷是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。

《圆柱的表面积》教学反思 8

  教学《圆柱的表面积》重点在于通过圆柱的侧面展开图推导出圆柱的侧面积计算公式,难点是灵活运用侧面积、表面积的有关知识解决实际问题。在本节课的教学中,我从始至终贯穿着“以学生为主体,教师为主导,思维训练为主线”的原则,筛选了圆柱表面积的计算方法和灵活应用为关键要素,搭建了多向度、多角度的学生合作平台,让学生在玩中学,学中玩,以游戏闯关的形式愉悦地完成本课教学。课下回顾整节课的教学同时又和同年组的老师进行了交流,反思如下:

  一、激情导课,激发学生的学习能动性。

  复习开始前,我问“同学们,老师今天把你们刚认识的新朋友带来了,你们猜,他是谁?”就在学生们的猜测下,我拿出了课前藏好的圆柱。我继续发问“你们认识它吗,是怎样认识的?你们还想知道它的什么?”由此展开圆柱的表面展开图。复习引入——提出长方体、正方体的表面积,导出圆柱的表面积的意义。

  二、探究新知,搭建平台经历知识形成的过程。

  本课教学分为三部分:第一部分是教学圆柱表面积的概念和侧面积的计算。探究新知时,让学生动手操作、观察、发现,通过小组的讨论、交流,呈现出不同圆柱的侧面展开图体现多向度、多角度的合作平台,从而进一步明确圆柱侧面沿高打开是长方形,长方形的长相当于圆柱的底面周长,宽相当于圆柱的高。由此导出圆柱的侧面积的计算方法。在学生学会计算圆柱的侧面积以后,设疑:你会计算这圆柱的表面积吗?(第二部分开始)学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学。最后一部分是练习阶段,以生活中的圆柱物体为例求出所需要的材料,要求学生说出要计算哪几个面,体现了“数学来源于生活,数学应用于生活”的思想。

  三、把握重、难点,创造性的'使用教材和教学资源。

  “圆柱表面积”这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用“进一法”取近似值。教材安排了三道例题,但在教学中,我将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学,将用“进一法”取似值作为一个知识点。在突破侧面积的计算方法这个难点时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?让学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这圆柱的表面积吗?学生在充分练习铺垫的基础上,合理自然地就计算出了圆柱的表面积。在练习表面积的实际应用时又体现了数学与生活的联系。

  四、教学方法:

  直观演示和实践操作相结合,呈现梯度形态。 在侧面积和表面积的计算环节中,我首先让学生摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。教学侧面积的计算方法时,让学生以小组为单位,通过观察、操作推导出侧面积的计算方法。调集多种要素让学生亲身实践了,记忆一定就会更加深刻。这样充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式,并运用幻灯片辅助教学,有利于学生对知识的理解及掌握。

  当然,在这节课的教学中,还存在着一些不足:

  首先,实践操作展示得不够。在动手探索圆柱侧面积的计算方法时,小部分同学的学具较小,展示时没有达到预期的效果。。

  其次,学生的计算能力有待加强,在计算圆柱的侧面积和表面积时显得费时费力。

  在以后的教学中,我还应该多吸取经验,弥补自己的不足,提升自己的教学能力。

《圆柱的表面积》教学反思 9

  1、直观演示和实际操作相结合

  新课开始,引导学生复习圆柱体的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆柱形纸筒进行实际操作,最后探究出侧面积的计算方法。

  2、讲练结合。

  教学这节课,是以讲练结合贯穿教学的始终。而且使练习随着讲解由易到难,层层深入,一环紧扣一环。每一步练习都是下一步练习的基础。生理解了圆柱的表面积的意义(即:表面积=底面积×2+侧面积)以后,作为检查复习,我首先按从左到右的顺序依次出示三个圆柱体,并分别告诉条件:(单位:厘米)r=3 d=4 c=6.28,然后让学生练习求它们的`底面积,并做好记录;在学生发现了圆柱侧面积的计算方法以后,仍以上面三个圆柱为主,从右向左依次给出三个圆柱的高:(单位:厘米)h=7 h=6 h=3,要求计算出这三个圆柱的侧面积,同样做好记录;在学生学会计算圆柱的底面积和侧面积以后,设疑:你会计算这三个圆柱的表面积吗?学生在充分练习铺垫的基础上,利用计算所得数据,合理自然地就计算出了三个圆柱的表面积。再练习表面积的实际应用时,又很自然进行了“进一法”的教学。使讲练真正做到了有机结合,学生学得轻松,练得有趣。

《圆柱的表面积》教学反思 10

  在认识圆柱体的课堂上,我设计了让学生分小组进行自主合作学习的教学形式。学生的小组活动各不相同,比较突出的优点是学生对圆柱的特征认识都是在自己动手操作的过程中体验到出现的主要问题:

  ①学生对自己所探索的知识不会归纳,表述;

  ②学生的探研学习是无序的,随意的;

  ③各组的各位成员对知识的探究和思考,差异很大;

  ④学生的自学能力较差;

  ⑤学生不会交流学习。

  研究“圆柱的认识以及表面积”是在学生已有的有关圆面积和长(正)方体的表面积等有关知识,已具有了独立研究表面积的能力,而且圆柱形在小学生的显示生活中处处可见,比较熟悉,因此,我们备课组将此学习内容作为学生进行探索,研究学习的'材料。

  通过试验课:我们对以下几个方面进行反思:

  1、这样的课,让学生进行探研学习,教师进行引导的关键是设计好一张让学生有序进行知识归纳和理解的表格。

  2、这样的课还要多让学生上逐渐培养学生交流学习的能力和独立思考分析的能力。

  3、在学生动手探索的过程中,教师要做的是帮助,不是引导、指责,指导也应是在学生需要的时候,再给予

  4、这样的课,有利于教师对学生的学习特点进行观察和分析。

  只有看清了学生的学习,才能有方向努力做好我们的教。

《圆柱的表面积》教学反思 11

  在教学圆柱的表面积时,由于学生已经学习了长方体和正方体的表面积,而且上节课已经制作过圆柱模型,所以学生对表面积含义的理解并不困难。因此在教学圆柱的表面积时,我让学生通过讨论交流并观察圆柱展开图,很快就理解了圆柱的表面积是由一个曲面和两个完全相同的圆围成的。但在计算表面积时,侧面积的计算方法是本课中的教学难点。学生往往不能将圆柱的底面半径及圆柱的高,和圆柱侧面的长宽建立起联系,因此在教学时我加强了学生的操作活动,让学生预先在展开后的图形中标明圆柱的底面和侧面,以便把展开后的每个面与展开前的位置对应起来但在计算时却出现周长与面积混淆,所以我及时帮助学生理清解题思路,让学生明确计算侧面积的直接条件是底面周长和高;圆柱的底面是圆形,计算圆的`面积的直接条件是半径。而且要能熟练区分圆的周长和面积的计算公式。尽管如此学生在解决实际问题时还是问题很多,因为步骤较多,计算粗心不规范也影响了解题速度和准确率,所以一节课下来,课堂容量不大,效率较低,看来在这个单元的教学中要结合学生实际再改进教学方法,提高课堂教学效率。

《圆柱的表面积》教学反思 12

  本节课是在初步认识圆柱的基础上,理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  根据教学内容的特点和我班学生的实际,本节课的教学我采用了直观演示和实际操作,讲解和尝试练习相结合的方法,使新课与练习有机地融为一体,做到讲与练,相结合,有效地培养了学生的空间观念和解决实际问题的能力。

  1、把握重点,突破难点,合理利用教材

  本课教学重点是掌握圆柱侧面积和表面积的计算方法。对于圆柱体侧面面积计算公式的推导,我遵循主体性原则,让学生动手操作、观察、发现,促进知识的迁移,使学生轻松地理解掌握圆柱侧面面积的计算方法,较好地突破难点。

  2、直观演示和实际操作相结合

  通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知,让学生经历知识形成的过程,同时培养了学生的空间观念。

  3、讲解与练习相结合

  本节课,我改变了传统的先讲后练的`教学模式,做到讲、练结合,贯穿教学的始终,使练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进行了“进一法”的教学,使讲、练,真正做到了有机结合,学生学习的知识是有效的、实用的,同时也激发了学生学习数学和运用解决实际问题的兴趣,培养了学生的应用意识。

  4、还要进一步加强学生解决问题能力的培养。

  学生学习了圆柱侧面积和表面积的计算方法后,在做稍复杂一点的补充作业时,出错的同学较多,这说明学生灵活运用所学知识解决实际问题的能力还不够,还要进行有针对性的训练。

《圆柱的表面积》教学反思 13

  《圆柱的表面积》这节课是我从教以来上的第一节市级公开课,若干年后改用苏教版教材,又在市级六年级新教材培训时上了这节课。“圆柱的表面积”是学生学习的难点。难点在于:理解难,圆柱的侧面是一个曲面,探索侧面积的计算过程,有一个“化曲为直”的过程;易混淆,在计算圆柱的表面积时涉及到圆柱的侧面积、底面积以及圆的周长与面积等概念,学生容易混淆;计算难,无论是圆的周长和面积计算中都涉及圆周率。这学期再一次教学圆柱的表面积,我深入钻研教材,并对以往的教学经验进行了整理,注重了知识的系统化教学,取得了较好的教学效果。

  一、化曲为直沟通联系。

  课前布置预习作业,找一贴有商标纸的椰子汁罐,沿高剪开你有什么发现,然后给罐的上下底面剪两个底面给贴上。课上由一张长方形纸卷成圆柱,平面到立体,而后由圆柱展开成一个长方形,立体到平面。渗透了“化直为曲”“化曲为直”的思想。学生碰到圆柱侧面积问题时自然能运用,交流时,说沿着侧面上的一条高剪开,把侧面展开,成为一个长方形。让学生观察后说出:展开后的长方形与圆柱侧面积的关系。两者面积相等,长方形的长等于圆柱的底面周长,长方形的宽等于圆柱的高,因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高。通过“展”、“围”的几次操作,让学生切实建立这两者之间的联系。

  二“生活课堂”建立表象

  本节课中,现实生活问题的解决,根据学生原有的知识结构,从实际出发,给学生充分的思考时间,对问题进行独立探索尝试、同桌讨论交流,学生充分展示自己的思维过程,圆柱体的侧面积就推导出来了。创建“生活课堂”,就要让学生在自然真实的主体活动中去“实践”数学、在实践中探索,在“实践”中发现。实践使我们体会到,创建“生活课堂”应从学生的生活实际出发,关注学生的情感体验,调动学生的生活积累,帮助他们架设并构建新的平台,让学生发现数学问题,并激励学生在实践中探索解决问题的方法,从而提高学生整体素质,个性得以发展。

  三、抓住本质,理清思路。

  本堂课中探究并掌握圆柱侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积相关的'一些简单实际问题。根据以往经验,在实施过程中有一定的困难,有的同学是因为对其中的公式或意义没有真正理解,不知道要求侧面积先求什么,求了圆底面周长又和圆的面积混淆,而且圆的周长和面积公式已有所遗忘,列式计算时漏洞百出,计算的难度又导致一部分学生前功尽弃。所以在上这节课之前,我利用时间帮助学生把圆的周长和面积公式复习到熟练程度,侧面积的计算学生自然没困难。为帮助学生理清思路,表面积的计算分三步去进行,侧面积、底面积、侧面积加上两个底面积就是表面积。课上遇到计算比较繁琐的将数字改简单易算的,这节课的容量大,我觉得不必在计算上花费大量的时间。

  实践下来,通过学生的作业反馈中,发现绝大部分算式列得都正确的,几个公式搞的还是清楚的,但是小数乘法由于3.14和带0整数的参与,有些错误。接下来的练习课中综合的表面积题中要继续加强。

《圆柱的表面积》教学反思 14

  教学内容:

  小学数学第十二册教材P33~P34

  教学目标:

  1、使学生理解圆柱表面积的含义,掌握表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学媒体:

  圆柱形物体、学具、多媒体课件

  教学重点:

  圆柱侧面积的计算方法推导。

  教学过程:

  一、猜测面积大小,激发情趣导入

  1、用你们手上的A4纸做一个尽量大的圆柱?(出现两种情况:一种是以长方形的长为底面周长的圆柱,另一种以长方形的宽为底面周长的圆柱。)

  2、这两个圆柱谁的侧面积谁大?为什么?

  3、复习:圆柱的侧面积=底面周长×高

  刚才的环节中,用现成的练习纸,以动手操作的形式做一个圆柱体,充分调动了学生的学习兴趣;在“做、比、评”中唤起对圆柱侧面积知识的回忆。

  二、组织动手实践,探究圆柱表面积

  1、我们把做好的圆柱加上两个底面后,这时候圆柱的表面积由哪些部分组成呢?(侧面积和两个底面面积)

  2、你们觉得这两个圆柱谁的表面积大?为什么?

  生:因为两个圆柱的侧面积一样大,只要看他们的底面积谁大那么这个圆柱的表面积就大。

  3、刚才我们是从直观的比较知道了谁的表面积大,如果要知道大多少,那怎么办呢?

  生:计算的方法

  师:怎么计算圆柱的表面积呢?

  圆柱的表面积=侧面积+两个底面的面积 (板书)

  4、那现在你们就算算这两个圆柱的表面积是多少?

  生:(不知所措)没有数字怎么算啊?

  师:哦!那你们想知道哪些数字呢?知道了这些数字后你打算怎么计算?

  生1:我想知道圆柱体的底面半径和高。

  生2:我想知道圆柱体的底面直径和高。

  生3:我想知道圆柱体的底面周长和高。

  师:老师现在告诉你的数字是这张纸的长是31.4厘米。宽是18.84厘米。那你们会算吗?怎样算,如果独立思考有困难的话可以小组讨论来共同完成。

  5、汇报展示:

  情况一:半径:31.4÷3.14÷2=5(cm)

  底面积:3.14×5×5=78.5(平方厘米)

  侧面积:31.4×18.84=591.576(平方厘米)

  表面积:591.576+78.5×2=748.576(平方厘米)

  情况二:半径:18.84÷3.14÷2=3(cm)

  底面积:3.14×3×3=28.26(平方厘米)

  侧面积:31.4×18.84=591.576(平方厘米)

  表面积:591.576+28.26×2=648.096(平方厘米)

  师:通过我们计算验证了我们刚才的判断是正确的。

  接下来我们打开书翻到33页自学例2,从这个例题中你学到什么?

  生:分三步来算,先算侧面积再算底面积然后把侧面积和两个底面积加起来。

  生2:这样做挺麻烦的有没有更简单一点的方法呢?

  6、好!我们一起来找一找有没有更简单的方法。(补充第二种方法)

  教具的演示:把圆柱体的侧面展开得到一个长方形,然后把圆柱体的两个底面通过剪拼成一个近似的长方形。

  问:这个近似的长方形的.长和宽分别是圆柱体的哪一部分?(底面周长,也就是圆柱体的侧面展开得到的长方形的长。宽是圆柱体底面半径)

  所以圆柱体表面积=长方形面积=底面周长×(高+半径)

  用字母表示:S=C×(h+r)

  我们用这个方法来验证一下我们的例2看是不是比原来简单?

  汇报:大部分学生都认为比原来的方法简单。(说一说认为简单的原因)

  那么今天我们学习了圆柱体的表面积的计算方法(出示课题),你们学会了吗?(会)那老师也得做几题验证一下你们掌握得怎么样。

  本环节通过提出一个实际问题,以小组合作的形式探究出:不同条件下用不同方法可以解决相同的问题。逐渐培养学生用多种途径解决实际问题的能力。

  三、 分组闯关练习

  1、多媒体出示题目。

  第一关(填空)

  沿圆柱体的高剪开,侧面展开后会得到一个( )形,长是圆柱的( ),宽是圆柱的( ),因此圆柱的侧面积=( )×( )。

  第二关

  一个圆柱的底面直径是2分米,高是45分米,它的侧面积是( )平方分米,它的底面积是( )平方分米,它的表面积是( )平方分米。

  第三关(用你喜欢的方法完成下面各题)

  一个圆柱,它的底面半径是2厘米,它的高是15厘米,求它的表面积?

  2、汇报结果,给予评价。

  我本着“重基础、验能力、拓思维”的原则,设计了以上几个层次的练习题。整个习题,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入。有效的培养了学生创新意识和解决问题的能力。

  四、 质疑(同学们还有什么疑问吗?)

  五、反馈小结:

  教学反思

  1、 自主探究,体验学习乐趣

  以解决问题为主线,打破了“例题――习题”的教学模式,给学生创设探究的舞台(也就是提出贯穿整节课的一个问题)。在解决这个问题的过程中,学生的认知冲突层层深入,思维碰撞时时激起,学生在学习知识的同时也体验到学习乐趣。

  2、合作交流,加深对知识的理解深度。

  给学生提供一个合作交流的平台,在相互的交流中大胆发表不同的见解,从而达到共识、共享、共进,共同归纳出计算圆柱表面积常用的三种形式,从而加深了对知识的理解深度。

《圆柱的表面积》教学反思 15

  一、在复习引入环节,我首先通过复习圆的周长和面积的计算,为下面的计算圆柱的侧面积和表面积打下基础;复习圆柱的特征为后面侧面积和表面积的公式推导做好铺垫。

  二、在侧面积和表面积的计算环节中,我首先让学生看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积的和。然后,在突破侧面积的计算方法这个难点时,让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式,在这一环节中,培养了学生的观察、分析能力,同时也培养了学生的合作意识。

  三、在练习题的设计中,遵循了从易到难的原则,在形式、难度、灵活性上都有体现。判断题有利于学生对知识的理解;动手测量并计算圆柱体实物表面积的题目,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的联系。

  四、在教学方法上,充分利用了学生现有的学具和准备的圆柱体实物,让学生自己去动手、观察,推导出了圆柱的表面积和侧面积的计算公式。

  在这节课的教学中,还存在着一些不足:

  1、实践操作展示得不够。在动手探索圆柱侧面积的计算方法时,大部分学生联系上节课的经验说出看法,而没有实际操作,我也没有让他们展示推导的.过程,加深印象,只是让他们说一说,导致一部分学困生只能听听而已;

  2、学生对圆周长和面积的计算不够熟练,所以,在计算圆柱的侧面积和表面积时显得费时费力;

  3、部分学生对生活问题中的圆柱表面积(不是三个面的)理解上有欠缺。

  本节课的教学主要让学生明确圆柱体表面积的计算方法,并能够在练习中灵用公式进行计算。针对本课的教学设计,主要做到以下几点:

  1、把握重点,突破难点,合理利用教材。

  对于圆柱体侧面面积计算公式的推导,严格遵循学生主体性原则,让学生在动于操作、观察发现中促进知识的迁移,让学生轻松地理解掌握圆柱侧面面积的计算方法,以此来较好地突破难点。

  2、直观演示和实际操作相结合,通过直观演示和实际操作,引导学生观察、思考和探索圆柱体表面积的计算方法,鼓励学生积极主动地获取新知。

  3、讲解与练习相结合。

  本节课,改变了传统的先讲后练的教学模式,使讲、练结合贯穿教学的始终,让练习随着讲解由易到难,层层深入。在练习表面积的实际应用时,又很自然地进了“进一法”的教学,使讲、练真正做到了有机结合,使学生学习的知识是有效的、实用的,同时也能激发学生学习数学和运用知识解决实际问题的兴趣,培养学生的应用意识。

【《圆柱的表面积》教学反思 】相关文章:

《圆柱的表面积》教学反思03-10

《圆柱的表面积》教学反思09-20

圆柱的表面积教学反思05-11

“圆柱的表面积”教学反思04-05

《圆柱的表面积》教学反思(15篇)03-14

《圆柱的表面积》教学反思15篇06-12

圆柱的表面积教学反思15篇03-07

圆柱的表面积教学反思(精选3篇)09-24

《圆柱的表面积》教学反思(精选15篇)04-14