当前位置:9136范文网>教育范文>教学设计>正比例教学设计

正比例教学设计

时间:2023-06-05 15:19:05 教学设计 我要投稿

正比例教学设计

  在教学工作者实际的教学活动中,总不可避免地需要编写教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。我们应该怎么写教学设计呢?下面是小编收集整理的正比例教学设计,希望能够帮助到大家。

正比例教学设计

正比例教学设计1

  教学内容:

  苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。

  教材学情分析:

  本节课是《正比例和反比例》复习的第二教时,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。

  “练习与实践”第7题让学生根据提供的两组数据判断相应的两种量分别成什么比例,有利于学生巩固对成正比例和反比例量的认识,掌握判断两种量是否成比例以及成什么比例的基本思考方法;“练习与实践”第8题让学生结合生活经验以及相关数量关系的理解,继续练习成正比例和反比例量的判断方法;“练习与实践”第9题的第一题让学生根据表示一辆汽车在高速公路上行驶的千米数和耗油量关系的图象,先判断这两种量是否成正比例,再根据其中一个量的数值估计另一个量的数值。第二题要求学生根据一辆汽车在市区行驶的千米数和耗油量关系的数据,在方格纸上画出表示它们关系的图象。通过上述活动,一方面可以使学生加深对正比例关系的认识,另一方面可以使进一步体会数学结合在解决问题方面的价值;“练习与实践”第10题是一个与比例尺有关的实际问题。教材先让学生量出一幅平面图上相关的图上距离,再让学生利用给出的比例尺求出相应的实际距离。教材这样的安排,主要让学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容有着密切联系的。

  教学目标:

  ⑴使学生进一步认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

  ⑵让学生进一步体会比和比例知识的应用价值,感受不同领域的数学内容有着密切联系的。

  ⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。

  教学重点:

  进一步认识成正比例和反比例的量。

  教学难点:

  感受比的应用价值,在活动中获得一些新的认识。

  教学具准备:

  教学流程:

  一、教师谈话,揭示课题。

  ⑴教师谈话。

  教师谈话:上一节课我们复习了“比和比例”的有关知识,本节课我们继续复习这方面的知识。板书:正比例和反比例。

  ⑵揭示课题。

  揭示课题——正比例和反比例。

  二、师生互动,合作交流。

  ⑴完成“练习与实践”第7题。

  呈现“练习与实践”第7题,明确要交流的主题:表中的两种量分别成什么比例?为什么?

  班级交流判断的方法:一是利用表中的数据进行判断,在次体会正比例和反比例量在变化中的`不同规律。成正比例关系的两种量同时扩大或缩小,它们扩大或缩小的倍数是相同的;成反比例的两种量,一个量扩大,另一种量反而缩小,它们扩大或缩小的倍数也是相同的;二是利用数量关系式判断,表格一:因为钢材质量:钢材体积=比重(一定),所以钢材质量和钢材体积成正比例;表格二:圆柱底面积×圆柱高=圆柱的体积(一定),所以圆柱底面积和圆柱高成反比例;利用图象判断,用描点的方法画出图象,如果是直线,则成正比例。

  ⑵完成“练习与实践”第8题。

  呈现完成“练习与实践”第8题,明确要思考的内容:先写出数量关系式,再判断是否成比例?成什么比例?为什么?独立写出数量关系式,同桌交流。

  第一问:因为每块砖的面积×砖的块数=一间教室的面积(一定),所以每块砖的面积和砖的块数成反比例;

  第二问:因为圆的周长÷半径=2π,所以圆的周长和半径成正比例。

  ⑶完成“练习与实践”第9题。

  呈现完成“练习与实践”第9题,明确要交流的内容:判断行驶的路程和耗油量是否成正比例;根据图象用一种数据判断另一种数据是多少。

  班级交流理解、完成题目的情况,进行“根据图象用一种数据判断另一种数据是多少”的练习;反馈学生形成的正比例图象的情况;比较汽车高速公路和市区耗油量的不同情况,体会比例知识在日常生活中的应用价值。

  ⑷完成“练习与实践”第10题。

  呈现完成“练习与实践”第10题,理解题目的意思,分别量出学校到各个地方的图上距离,形成以下板书:

  图上距离实际距离

  学校-少年宫4厘米?米

  学校-体育场3.5厘米?米

  学校-市民广场2.5厘米?米

  学校-火车站7厘米?米

  多种角度理解比例尺的意思:图上距离1厘米表示实际距离600米;图上距离1厘米表示实际距离60000厘米;……

  解答:在多种书写形式的基础上,体会用“图上距离1厘米表示实际距离600米”的优越性。沟通和正比例之间的联系。

  ⑸谈谈本节课的收获。

正比例教学设计2

  老师执教的《正比例的意义》这课,对我感受很深。

  一.结合生活实际

  周老师利用学校慈善一日捐的例子,引出了两个相关联的量,为新课后区别判断正比例关系提供了很好的材料。同时使学生感悟到生活中处处有数学,数学来源于生活。

  二.突出学生的主体地位

  周老师教态自然,语言幽默,轻松自如,具有大师风范。周老师利用汽车和自行车行驶的.路程和时间变化的表格让学生去比较,去发现。寻找相同点和不同点,使学生发现汽车行驶的路程和时间的变化是有规律的,自行车行驶的路程和时间的变化是没有规律的。从而周老师点出了正比例的意义,使学生感悟到汽车行驶路程和时间的比值一定。让学生主动探究学习,突出了学生的主体地位,老师真正起到了引导作用。

  三.练习设计具有阶梯性

  周老师自从引出正比例定义后,让学生判断这两个量是否成正比例关系。首先出示表格让学生观察数量变化进行判断;其次出示文字叙述题进行判断;最后利用带有字母的等式进行判断。练习设计由易到难,符合了学生的认知规律。

  建议:我觉得在某些环节有点快。例如引出正比例定义后,应该完整出示正比例的定义让学生读一读;在做练习时,第一题填空题和最后一题深化题不要马上让学生齐读,应该让学生看一看,想一想,再指名说一说。在教学正比例时最好和斜线图结合起来,这样可以使学生加深对正比例的理解。

正比例教学设计3

  【教学内容】

  《义教课标实验教科书数学》(人教版)六年级下册第39-41页成正比例的量。

  【教学目标】

  1、使学生理解正比例的意义,会正确判断成正比例的量。

  2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

  【教学重点】

  正比例的意义。

  【教学难点】

  正确判断两个量是否成正比例的关系。

  【教学准备】

  多媒体课件

  【自学内容】

  见预习作业

  【教学预设】

  一、自学反馈

  1、揭题:今天这节课,我们一起学习成正比例的量。板书:成正比例的量

  2、通过自学,你能说说什么叫做成正比例的量?

  3、你是怎样理解成正比例的量的含义的?

  4、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

  在教师的引导下,学生会举出一些简单的例子。

  二、关键点拨

  1、正比例的意义

  (1)出示表格。

  高度/㎝24681012

  体积/㎝350100150200250300

  底面积/㎝2

  问:你有什么发现?

  学生不难发现:杯子的底面积不变,是25平方厘米。

  板书:

  教师:体积与高度的.比值一定。

  (2)说明正比例的意义。

  因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

  板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

  (3)用字母表示。

  如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

  2、判断正比例关系:下面哪些是成正比例的两个量?

  长方形的宽一定,面积和长成正比例。

  每袋牛奶质量一定,牛奶袋数和总质量成正比例。

  衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

  地砖的面积一定,教室地板面积和地砖块数成正比例。

  三、巩固练习

  1、学生独立完成例2后反馈交流。

  (1)从图中你发现了什么?

  这些点都在同一条直线上。

  (2)看图回答问题。

  ①如果杯中水的高度是7㎝,那么水的体积是多少?

  ②体积是225㎝3的水,杯里水面高度是多少?

  ③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

  (3)你还能提出什么问题?有什么体会?

  2、做一做。

  过程要求:

  (1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

  (2)表中的路程和时间成正比例吗?为什么?

  (3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

  (4)行驶120KM大约要用多少时间?

  (5)你还能提出什么问题?

  3、独立完成第44页练习七第1、2题。

  4、判断并说明理由。

  (1)圆的周长和直径成正比例。

  (2)圆的周长和半径成正比例。

  (3)圆的面积和半径成正比例。

  四、分享收获畅谈感想

  这节课,你有什么收获?听课随想

正比例教学设计4

  尊敬的各位评委:

  你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。

  一、教材分析

  1、教学内容:人教版六年级下册P39正比例的意义。

  2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。

  3、教学重点,难点、关键:

  教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。

  4、教学目标:

  根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。

  知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。

  过程与方法:学生经历从具体实例中认识成正比例的量的.过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。

  情感态度:在主动参与数学活动的过程中,进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  二、学况分析

  六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。

  三、教法

  遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。

  四、学法

  引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。

  五、教学过程

  本节课我安排了六个教学环节

  第一个环节:游戏导入,激发兴趣

  用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。

  第二环节:引导观察,启发思考

  教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。

  第三环节:创设情景,观察实验

  用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。

  第四环节:探究成正比例的量

  学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。

  第五环节:巩固练习,拓展提高

  第六环节:全课小结

  六、效果预测

  在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。

  本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。

正比例教学设计5

  教学内容:

  九年义务教育六年制小学数学第十二册P62——63

  教学目

  1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

  3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

  教学重点:认识正比例的意义

  教学难点:掌握成正比例量的变化规律及其特征

  设计理念:课堂教学中从学生的已有的生活经验出发,引导学生观察、分析,从而发现成正比例量的规律,概括成正比例量的特征。课堂教学中给学生提供探究的平台,凡是能让学生自己发现的,就让学生亲自去探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去,进一步培养学生的观察能力和发现规律的能力。

  一、复习铺垫激情促思

  1、说出下列每组数量之间的关系。

  (1)速度时间路程

  (2)单价数量总价

  (3)工作效率工作时间工作总量

  2、师:这些是我们已经学过的一些常见数量关系,每组数量之间是有联系的,存在着相依关系。当其中一种量变化时,另一种量也随着变化,而且这种变化是有一定的规律的,你想知道其中的奥秘吗?今天,我们就来研究和认识这种变化规律。

  学生口答,相互补充

  二、初步感知探究规律1、出示例1的表格(略)

  说说表中列出了哪两种量。

  (1)引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。

  初步感知两种量的变化情况,得出:路程和时间是两种相关联的量,时间变化,路程也随着变化。(板书:相关联的量)

  (2)引导学生观察表中数据,寻找两种量的变化规律。

  根据学生交流的实际情况,及时肯定并确认这一规律,特别是有意识地从后一种角度突出这一规律。

  根据发现的规律启发学生思考:这个比值表示什么?上面的`规律能否用一个式子表示?

  根据学生的回答,板书关系式:路程/时间=速度(一定)

  (3)揭示概括成正比例的量:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量,

  (板书:路程和时间成正比例)

  2、教学“试一试”

  学生填表后观察表中数据,依次讨论表下的4个问题。

  根据学生的讨论发言,作适当的板书

  3、抽象表达正比例的意义

  引导学生观察上面的两个例子,说说它们的共同点。启发学生思考:如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用怎样的式子来表示?

  根据学生的回答,板书:=k(一定)

  揭示板书课题。

  先观察思考,再同桌说说

  大组讨论、交流

  学生可能发现一种量扩大(缩小)到原来的几倍,另一种量也随着扩大(缩小)到原来的几倍。也可能发现两种量中相对应的两个数的比值不变。

  学生根据板书完整地说一说表中路程和时间成什么关系

  学生独立填表

  完整说说铅笔的总价和数量成什么关系

  学生概括

  三、巩固应用深化规律

  1、练一练

  生产零件的数量和时间成正比例吗?为什么?

  2、练习十三第1题

  先算一算、想一想,再组织讨论和交流。

  要求学生完整地说出判断的思考过程。

  3、练习十三第2题

  先独立判断,再有条理地说明判断的理由。

  4、练习十三第3题

  先说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再画一画。

  分别求出每个图形的周长和面积,并填写表格。

  讨论、明确:只有当两种相关联的量的比值一定时,它们才成正比例。

  5、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?

  讨论、交流

  独立完成,集体评讲

  说明判断的理由

  说一说,画一画

  填一填,议一议

  讨论

  四、总结回顾评价反思

  这节课你学会了什么?你有哪些收获?还有哪些疑问?

正比例教学设计6

  教学目标

  1.使学生理解正比例的意义.

  2.能根据正比例的意义判断两种量是不是成正比例.

  3.培养学生的抽象概括能力和分析判断能力.

  教学重点

  使学生理解正比例的意义.

  教学难点

  引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的'概念.

  教学过程

  一、复习准备

  口答(课件演示:成正比例的量)

  1.已知路程和时间,怎样求速度?

  2.已知总价和数量,怎样求单价?

  3.已知工作总量和工作时间,怎样求工作效率?

  二、新授教学

  (一)导入新课

  这些都是我们已经学过的常见的数量关系.这节课,我们继续研究这些数量关系中的一些特征.

  (二)教学例1.(课件演示:成正比例的量)

  1.一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米

  2.出示下表,并根据上述内容填表.

正比例教学设计7

  教学要求:

  1、使学生认识正比例关系的意义,理解,掌握成正比例量的变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。

  2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

  教学过程:

  一、复习铺垫

  1、说出下列每组数量之间的关系。

  (1)速度时间路程

  (2)单价数量总价

  (3)工作效率工作时间工作总量

  2、引入新课

  我们已经学过的`一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。

  二、教学新课

  1、教学例1。

  出示例1。让学生计算,在课本上填表。

  让学生观察表里两种量变化的数据,思考。

  (1)表里有哪两种数量,这两种数量是怎样变化的?

  (2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

  引导学生进行讨论。

  提问:这里比值50是什么数量?(谁能说出它的数量关系式?)

  想一想,这个式子表示的是什么意思?

  2、教学例2

  出示例2和想一想

  要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。

  学生观察思考后,指名回答。然后再提问,这两种数量的变化规律是什么?你是怎样发现的?

  比值1.6是什么数量,你能用数量关系式表示出来吗?

  谁来说说这个式子表示的意思?

  3、概括正比例的意义。

  像例1、例2里这样的两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。

  4、具体认识

  (1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?

  例2里的两种量是不是成正比例的量?为什么?

  (2)做练习八第1题。

  5、教学例3

  出示例3,让学生思考/

  提问:怎样判断是不是成正比例?

  请同学们看一看例3,书上怎样判断的,我们说得对不对。

  强调:关键是列出关系式,看是不是比值一定。

  三、巩固练习

  1、做练一练第1题。

  指名学生口答,说明理由。

  2、做练一练第2题。

  指名口答,并要求说明理由。

  3、做练习八第2题(小黑板)

  让学生把成正比例关系的先勾出来。

  指名口答,选择几题让学生说一说怎样想的?

  四、课堂小结

  这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示Y和X这两种相关的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

  五、家庭作业。

正比例教学设计8

  教学目标:

  1 使学生理解什么是相关联的量。

  2 掌握正比例的意义及字母表达式。

  3 学会判断两个量是否成正比例关系。

  教学过程:

  一、导入

  师(板书:关联):知道关联是什么意思吗?

  生:指事物之间有联系。

  生:也可以指事物之间相互影响。

  师:对,关联就是指事物之间发生牵连和影响。

  师:能举一些生活中相互关联的例子吗?

  生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。

  生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)

  生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。

  这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”

  生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。

  二、新授

  师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?

  师:从这个表格中。你还知道什么?

  生:答对一题得10分,答对两题得20分,答对三题得30分……

  师:表中有哪两个量?它们的关系怎样?

  生:答对的题目与最后的.成绩,它们是两个相关联的量。

  师:你们能够从中发现什么规律?

  生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。

  师:还能发现什么呢?

  生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。

  师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。

  师:你能在这两种量中,找到一组对应的数吗?谁能说说在成绩和答对的次数两种量中,相对应的数的比吗?比值是多少?

  (随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)

  师:刚才这位同学在算出比值的时候,你们发现了什么?

  生:不管怎样,它们的比值不变。

  师:这个比值实际上就是什么呀?(板书:每题的分数)

  师:你能用一个关系式表示吗?

  板书关系式:成绩/答对的题目=每题的分数(一定)

  师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)

  1表中有( )和( )两种量。

  2 路程是怎样随着时间的变化而变化的?

  3 任意写出三个相对应的路程和时间的比,并算出它们的比值。

  4 比值实际上表示( ),请用式子表示它们的关系。

  (学生交流汇报,师板书关系式)

  师(指着刚刚学习的两个表格):这是我们刚才分析过的两个表,它们有什么共同点吗?(板书:两个相关联的量)它们之间有什么关系呢?

  (结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)

  反思:

  从学生感兴趣的事情入手,关注学生已有的知识与经验,并通过现实生活中的生动素材引入新课 ,使抽象的数学知识具有丰富的现实基础,为学生的数学学习创设了生动活泼的情境,课堂气氛活跃。

  以往教学此内容时,学生理解相关联的量仅仅局限于“比值一定”,与后面学习“反比例的意义”教学未能形成有效的联系,因而教学收效不大。此次教学,首先从教学目标上进行修改,增加了第一个教学目标,即“理解什么是相关联的量”。教学设计大胆开放,真正关注学生的经验和兴趣。教材的重点并不一定是学生学习的难点在这里得到了充分的体现,给抽象的数学知识赋予了浓厚的现实背景,体现了新课程标准的教学理念,改变了传统教学强调接受、机械训练的学习方式。最后,由学生独立得出结论,培养了学生解决问题的能力。看似在新授之前浪费了不少时间,实则高效地完成了教学任务,使学生有了更多自主、个性探究的机会,值得借鉴与提倡。

正比例教学设计9

  教学目标

  使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。2。培养学生概括能力和分析判断能力。3。培养学生用发展变化的观点来分析问题的能力。

  教学重难点

  重点:成正比例的量的特征及其断方法。

  难点:理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。

  教学过程

  一、四顾旧知,

  复习铺垫商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?

  学生独立完成后

  师提问:你们是怎样比较的?

  生:我先求出每种袜子的单价,再进行比较。

  师:你是根据哪个数量关系式进行计算的?

  生:因为总价=单价×数量,所以单价=总价÷数量。

  师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。

  (板书:正比例)

  二、引导探索,学习新知

  1、教学

  例1,学习正比例的意义。

  (1)结合情境图,观察表中的数据,认识两种相关联的量。

  师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?

  学生自学并在组内交流。

  全班交流。

  (2)认识相关联的量。

  明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。

  2、计算表中的数据,理解正比例的意义。

  (1)计算相应的总价与数量的比值,看看有什么规律。

  学生计算后汇报:===…=3。5,每一组数据的比值一定。

  (2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)

  (3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。

  (4)明确成正比例的量及正比例关系的意义。

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

  如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:

  3、列举并讨论成正比例的量。

  (1)生活中还有哪些成正比例的量?

  预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。

  (2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?两种量中相对应的两个数的比值一定,这是关键。

  4、认识正比例图象。

  (课件出示例1的表格及正比例图象)

  (1)观察表格和图象,你发现了什么?

  (2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?无论怎样延长,得到的都是直线。

  (3)从正比例图象中,你知道了什么?

  生1:可以由一个量的值直接找到对应的另一个量的值。

  生2:可以直观地看到成正比例的量的变化情况。

  (4)利用正比例图象解决问题。

  不计算,根据图象判断,如果买9 m彩带,总价是多少?49元能买多少米彩带?小明买的.彩带的米数是小丽的2倍,他花的钱是小丽的几倍?

  生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。

  设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。

  三、课堂练习:

  1、P46“做一做”

  2、练习九第1、3~7题

正比例教学设计10

  【教学目标】

  1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

  2、培养学生概括能力和分析判断能力。

  3、培养学生用发展变化的观点来分析问题的能力。

  【教学重难点】

  重点:

  成正比例的量的特征及其断方法。

  难点:

  理解两个变量之间的比例关系,发现思考两种相关联的量之间的变化规律。

  【教学过程】

  一、四顾旧知,复习铺垫

  商店里有两种包装的袜子,一种是5双一包的,售价为25元,一种是8双一包的,售价为32元。哪种袜子更便宜?

  学生独立完成后师提问:你们是怎样比较的?

  生:我先求出每种袜子的单价,再进行比较。

  师:你是根据哪个数量关系式进行计算的?

  生:因为总价=单价×数量,所以单价=总价÷数量。

  师:如果单价不变,商品的总价和数量的变化有什么规律呢?这节课,我们就来研究正比例。(板书:正比例)

  二、引导探索,学习新知

  1、教学例1,学习正比例的意义。

  (1)结合情境图,观察表中的数据,认识两种相关联的量。师出示自学提示:表中有哪两种量?总价是怎样随着数量的变化而变化的?学生自学并在组内交流。全班交流。

  (2)认识相关联的量。明确:像这样,一种量变化,另一种量也随着变化,这两种量叫做相关联的量。

  2、计算表中的数据,理解正比例的意义。

  (1)计算相应的总价与数量的比值,看看有什么规律。学生计算后汇报:===…=3、5,每一组数据的比值一定。

  (2)说一说,每一组数据的比值表示什么?(彩带的单价,也就是彩带的单价是一个固定的数)

  (3)请学生用公式把彩带的总价、数量、单价之间的关系表示出来。

  (4)明确成正比例的量及正比例关系的意义。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。如果用字母y和x表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以用下面的式子表示:

  3、列举并讨论成正比例的量。

  (1)生活中还有哪些成正比例的量?预设:速度一定,路程与时间成正比例;长方形的宽一定,面积和长成正比例。

  (2)小结:成正比例的量必须具备哪些条件?哪个条件是关键?

  两种量中相对应的`两个数的比值一定,这是关键。

  4、认识正比例图象。(课件出示例1的表格及正比例图象)

  (1)观察表格和图象,你发现了什么?

  (2)把数对(10,35)和(12,42)所在的点描出来,再和上面的图象连起来并延长,你还能发现什么?

  无论怎样延长,得到的都是直线。

  (3)从正比例图象中,你知道了什么?

  生1:可以由一个量的值直接找到对应的另一个量的值。

  生2:可以直观地看到成正比例的量的变化情况。

  (4)利用正比例图象解决问题。

  不计算,根据图象判断,如果买9m彩带,总价是多少?49元能买多少米彩带?

  小明买的彩带的米数是小丽的2倍,他花的钱是小丽的几倍?预设生:因为在单价一定的情况下,数量与总价成正比例关系,小明买的彩带的米数是小丽的2倍,他花的钱也应是小丽的2倍。设计意图:先从观察图象入手,引导学生直观认识相关联的量,再结合表中的数据,引导学生发现总价与数量的比值一定,使学生理解正比例的意义,最后结合正比例图象,把数据与点联系起来,根据图象,不用计算就能找到一个量的值所对应的另一个量的值,使学生在解决问题的同时,感受数形结合思想。

  三、课堂练习:

  1、P46“做一做”

  2、练习九第1、3~7题

正比例教学设计11

  一、教学目标

  (一)知识与技能

  在具体情境中认识、理解成正比例的量的意义,掌握和运用正比例知识解决问题。

  (二)过程与方法

  通过让学生尝试解决问题的过程,培养学生分析问题和解决问题的能力。

  (三)情感态度和价值观

  主动参与数学活动,感受数学与生活的联系,树立学习数学的信心。

  【目标解析】本节课的主要内容是用正比例的意义解决问题。学生在之前的学习中实际上已经接触过这类问题,可用归一、归总和列方程的方法来解答。这里主要是学习用正比例知识来解答,通过解答使学生进一步熟练地进行判断成正比例的量,加深对正比例概念的理解,也为学生的后续学习打下基础做好准备。同时也巩固和加深对所学的简易方程的认识。

  二、教学重难点

  教学重点:使学生能正确判断题中涉及的量是否成正比例关系,并能利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题

  教学难点:利用正比例的关系列出含有未知数的等式。

  三、教学准备

  课件。

  四、教学过程

  (一)复习回顾

  1.说说正比例、反比例的相同点和不同点。

  2.判断下列每题中的两个量是不是成比例,成什么比例?

  (1)已知A÷B=C。

  当A一定时,B和C()比例;

  当B一定时,A和C()比例;

  当C一定时,A和B()比例。

  (2)购买课本的单价一定时,总价和数量的关系。

  (3)总路程一定时,速度和时间的关系。

  【设计意图】通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。

  (二)探究新知,培养能力

  1.提出问题。

  教师:看来同学们能正确判断这两种量成什么比例关系了,这节课我们一起运用比例知识来解决一些实际问题。

  课件出示教材第61页例5。

  思考:题中告诉了我们哪些信息?要解决什么问题?

  教师:你能利用数学知识帮李奶奶算出上个月的水费吗?

  2.解决问题。

  (1)学生尝试解答。

  (2)交流解答方法,并说说自己的想法。

  教师:谁愿意来说一说你是怎么解决的?

  预设1:

  28÷8×10

  =3.5×10

  =35(元)

  (先算出每吨水的价钱,再算出10吨水需要多少钱)

  预设2:

  10÷8×28

  =1.25×28

  =35(元)

  (也可以先求出用水量的'倍数关系,再求总价)

  教师:谁和这位同学的方法一样?

  【设计意图】用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。

  3.激励引新。

  教师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

  课件出示以下问题,让学生思考和讨论:

  (1)题目中相关联的两种量是()和( ),说说变化情况。

  (2)()一定,()和()成()比例关系。

  (3)用关系式表示是()。

  (4)集体交流、反馈。

  板书:

  教师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

  (5)根据正比例的意义列出比例式(方程)。

  学生独立完成,教师巡视。

  反馈学生解题情况。

  解:设李奶奶家上个月的水费是x元。

  28:8=x:10或()

  8x=28×10

  x=280÷8

  x=35

  答:李奶奶家上个月的水费是35元。

  (6)将答案代入到比例式中进行检验。

  教师:你认为李奶奶用了10吨水的水费为35元钱,这个答案符合实际吗?你是怎么判断的?

  (7)学生交流,汇报。

  【设计意图】“人人都能获得良好的数学教育,不同的人在数学上获得不同的发展”是课标的教学理念,为此让学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。

  4.变式练习。

  教师:刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?(出现下面的练习)

  张大妈:我们家上个月用了8吨水,水费是28元。王大爷家上个月的水费是42元,他们家上个月用了多少吨水?

  (1)比较一下此题和例5有什么联系和区别?

  (2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

  (3)集体订正,请学生说一说是怎样想的。

  5.概括总结。

  教师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用正比例解决问题的思考过程是怎样的。

  学生讨论交流,汇报。

  (1)分析找出题目中相关联的两种量。

  (2)判断它们是否是正比例关系。

  (3)根据正比例的意义列出比例。

  (4)最后解比例。

  (5)检验作答。

  教师总结:同学们不但会解决问题,而且还善于归纳总结方法。就像大家想的那样,先分析题中的数量关系,判断相关联的两种量成什么关系,根据问题中的等量关系列出方程,解方程并检验作答。

  【设计意图】本着“以学生发展为本”的理念,围绕生活中的水费问题,让学生经历“尝试──理解──总结”的全过程,从而理解、掌握用正比例解决问题的方法,使学生解决问题的能力有一个提升。

  (三)巩固练习

  1.只列式不计算。

  (1)一个小组3天加工零件189个,照这样计算,9天可加工零件x个。

  (189:3=x:9)

  (2)小明买了4支圆珠笔用了6元。小刚想买3支同样的圆珠笔,要用x元钱。

  (x:3=6:4)

  2.用正比例解决问题。

  (1)小兰的身高1.5米,她的影长是2.4米。如果同一时间、同一地点测得一棵树的影子长是4米,这棵树有多高?

  (2)小红计划每天跳绳600下,2分钟跳了240下,照这样计算,还要跳多少分钟才能完成计划?

  【设计意图】通过即时练习巩固,增强学生对具体情境中成正比例的量作出判断和解释的能力,能有条理地解释问题解决的思考过程,有助于提高学生解决问题的能力。

  (四)课堂小结,拓展延伸

  同学们,谁来说说,上了这节课,你收获了什么?

  【设计意图】课堂总结,引导学生反思每节课的收获,整理一节课所学习的知识,提高学生归纳、整理的能力,起总结提升的作用。

正比例教学设计12

  教材分析:

  正比例这个资料是学生在学习了比的好处、比的化简与比的应用等资料的基础上进行的。本课是有关比例知识的初步认识,结合具体情境,理解正比例的好处,决定两个量是否成正比例。教材带给了三个情境,其中一个是图像,两个是表格,让学生在具体问题、具体情境中认识成正比例的量,初步感受生活中存在很多成正比例的量;让学生透过观察、比较、分析、归纳等数学活动,自主发现正比例的变化规律,理解正比例的好处,会决定两个量是否成正比例。

  学情分析:

  学生在学习乘法时,已经明白一个因数扩大几倍,另一个因数不变,积就扩大几倍这个规律,这个规律实际上就是正比例的一个变化规律,所以,学生对这个资料是有个初步的接触。在这个资料的学习中,学生最容易掌握的是根据表格中的具体数据决定两个量是否成正比例,最难掌握的是离开具体数据,根据文字叙述决定两个量是否成正比例,个性是学生对学过的数量关系不熟悉时就更难了。

  教学目标:

  1、结合丰富的事例,认识正比例,理解正比例的好处,并初步感受生活中存在很多成正比例的量。

  2、能根据正比例的好处,决定两个相关联的量是不是成正比例。

  教学重点:

  1、结合丰富的事例,认识正比例,理解正比例的好处。

  2、能根据正比例的好处,决定两个相关联的量是不是成正比例。

  教学难点:

  能根据正比例的好处,决定两个相关联的量是不是成正比例。

  教学用具:

  课件

  教学过程:

  一、在情境中感受两种相关联的量之间的变化规律。

  (一)情境一

  1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下

  2、请把下表填写完整。

  3、从表中你发现了什么规律?

  说说你发现的规律:路程与时间的比值(速度)相同。

  (二)情境二

  1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

  2、把表填写完整。

  3、从表中发现了什么规律?

  应付的钱数与质量的比值(也就是单价)相同。

  4、说说以上两个例子有什么共同的特点。

  小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

  (三)情境三

  1、观察图,分别把正方形的周长与边长,面积与边长的变化状况填入表格中。请根据你的观察,把数据填在表中。

  2、填完表以后思考:这两个表格中的变化状况与上两题的变化规律相同吗?

  说说从数据中发现了什么?

  3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的`比值必须都是4。正方形的面积一边长的比是边长,是一个不确定的值。

  (四)归纳正比例的好处

  1、时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

  2、购买苹果应付的钱数与质量有什么关系?

  3、正方形的周长与边长有什么关系?

  4、观察思考成正比例的量有什么特征?

  一个量变化,另一个量也随着变化,并且这两个量的比值相同。

  5、小结

  两种相关联的量,一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,并且这两种量中相对应的两个数的比值(也就是商)必须,这两种量就是成正比例的量,它们的关系就是正比例关系。

  二、巩固练习

  1、想一想

  正方形的周长与边长成正比例吗?面积与边长呢?为什么?

  师小结:

  (1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

  请你也试着说一说。

  (2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

  请生用自己的语言说一说。

  2、小明和爸爸的年龄变化状况如下

  小明的年龄/岁67891011

  爸爸的年龄/岁3233

  (1)把表填写完整。

  (2)父子的年龄成正比例吗?为什么?

  (3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

  与同桌交流,再群众汇报

  三、全课总结:

  说说你在这节课中学到了什么知识?有什么不明白的地方?

  板书设计:

  正比例

  路程÷时间=速度(必须)

  总价÷数量=单价(必须)

  正方形的周长÷边长=4(必须)

  两种相关联的量,一种量扩大(或缩小),另一种量也随着扩大(或缩小),并且这两种量的比值(也就是商)必须,这两种量就成正比例。

正比例教学设计13

  教学内容:苏教版六数下83-84页“整理与反思”和“练习与实践”1-6题。

  教材分析:教材第83页的“整理与反思”主要是复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求说说比的基本性质与分数的基本性质、商不变的规律有什么联系与区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变规律内在的一致性,有利于学生加深对比与分数、除法的理解,促进学生对数学知识的灵活运用。

  教学目标

  1.使学生进一步理解比的意义和基本性质以及比与分数、除法的关系;理解比的基本性质与分数的基本性质、商不变的规律内在一致性;理解比例的意义和基本性质。

  2.运用比较的方法,有利于学生对所学知识的理解,促进学生对数学知识的灵活运用。

  3.能运用比和比例的.知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

  教学重、难点重点:正确理解正比例、反比例的意义,运用比例的基本性质判断两个比能否组成比例。

  难点:运用比例的知识解决一些简单的实际问题。

  课前准备课件。

  教学流程设计意图

  一、比的知识:

  1.举例说说什么是比?什么是比的基本性质?

  2.说一说用比的知识可以解决哪些实际问题。

  3.完成教科书第83页“练习与实践”。

  (1)完成第一题:学生独立数出班上男女生人数,再完成此题。

  (2)完成第二题:两人一组,互相量一量,算一算合作完成后,全班交流结果,让学生比较后回答有什么发现。

  二、比和分数、除法的联系

  出示:a∶b=()÷()=(b≠0)

  1.先填空,再说说这样填的根据是什么?

  2.说说比的基本性质与分数的基本性质、商不变的规律的联系。

  3.练一练:

  (1)判断:比的前项和后项都乘或都除以相同的数,比值不变。()

  (2)填空:

  =()÷()=()∶()

  (填好后展示学生不同的结果。)

  三、比例的知识

  1.什么是比例?

  2.比和比例有什么关系?(小组讨论后交流)

  3.比例的基本性质是什么?

  4.比例的基本性质有什么作用?怎样解比例?

  5.练一练:完成教材第83页的“练习与实践”。

  (1)完成第3题:在做第二小题时先让学生估计,再说估计的理由。

  估计后再算一算,来验证估计。

  (2)完成第3题:解比例,做好后选两题验算一下。

  四、完成教材第84页“练习与实践”。

  (1)完成第4题:先学生独立做最后交流,第二小题应弄清东部地区的耕地面积占全国耕地面积的93%,可理解为东部地区的耕地面积占全国耕地面积的。换句话说把全国耕地面积看作100份,东部占93份,西部占7份。使学生加深对比与百分数关系的理解。

  (2)完成第5题:

  第一小题让学生独立得出:深色与浅色地砖铺地面积的

  比是20∶40,化简得1∶2。

  第二小题这两种地砖铺地面积,让学生利用按比例分配的方法计算。

  (3)完成第6题。

  五、评价小结:

  学了本课你对所学知识有什么新认识?还有什么问题?

  通过让学生回忆比和比的基本性质,从而自然进入复习序列,从比到比例。

  沟通比、分数和除法的关系,为接下来比较比的基本性质、分数的基本性质、除法商不变的规律奠定基础。

  对比和比例进行比较,强化理解,进一步优化知识结构。

  复习解比例。

  应用比例分配知识解决实际问题。

正比例教学设计14

  教学内容:

  苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。

  教材学情分析:

  《正比例和反比例》复习教材上分为两个部分,“整理与反思”部分主要复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求学生说说比的基本性质与分数的基本性质、商不变的规律有什么联系和区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变的规律的一致性,有利于学生加深对比与分数、除法关系的理解,促进学生对数学知识的灵活运用。接下来,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。

  “练习与实践”第1题让学生写出本班的男、女生人数,再要求学生分别写出男生和女生人数,在要求学生分别写出男生和女生人数的比以及女生和全班人数的比,帮助学生在练习中进一步理解比的意义,掌握用比表示数量之间关系的基本方法;“练习与实践”第2题让学生先分小组量一量人体有关部分的长度,再按要求写出部分长度的比,再求出比值。然后启发学生通过进一步的交流和比较,发现一些有趣的现象。这样的活动,既有较强的趣味性,又能较好体现比的应用价值,有利于吸引学生积极主动参与活动,并在活动中获得一些新的认识;“练习与实践”第3题结合直观的图片,先让学生按要求写出一些比,再估计写出的这些比中哪两个比可以组成比例,并通过计算加以验算。这里的估计即可以依据每一个比中前项和后项之间的关系,也可以依据相应长方形图片的形状,因而这个活动既能帮助学生复习比例的意义,又有利于学生进一步体会图形的放大和缩小与比例的内在联系;“练习与实践”第4题是解比例的练习。练习的目的主要是让学生进一步理解比例的基本性质,并掌握解比例的基本方法;“练习与实践”第5题提供了对我国东、西部地区各类土地资源面积进行比较的百分数,要求学生把其中一些用百分数表示的数量关系改写成用比表示,并交流从这组数据中所获得的其他信息。通过练习,可以使学生进一步体会比和百分数在表示数量关系方面的各自特点,加深对比与百分数关系的理解;“练习与实践”第6题先让学生看图写出一个房间中两种地砖面积的比,再让学生联系这个房间算出这两种地砖的面积,帮助学生进一步理解比的意义,掌握解决按比例分配的实际问题的基本方法。

  教学目标:

  ⑴使学生进一步理解比的意义和基本性质,理解比与分数、除法的关系,能根据要求求比值、化简比;理解比例的意义和基本性质,会解比例;认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

  ⑵通过量一量等操作活动,吸引学生积极主动参与,感受比的应用价值,在活动中获得一些新的认识;

  ⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。

  教学重点:进一步理解比和比例的一些知识。

  教学难点:感受比的应用价值,在活动中获得一些新的认识。

  教学具准备:

  教学流程:

  一、自主学习,完成练习。

  ⑴揭示课题。

  教师谈话:今天我们复习《正比例和反比例》。板书课题——“正比例和反比例”。

  ⑵自主练习。

  教师谈话:用5-8分钟的时间阅读课本94页的'内容,完成“练习与实践”1-6题,其中“练习与实践”第2题作为课前活动,“练习与实践”第1题本班的男女生人数板书在黑板上,男生24人、女生27人。

  学生自主练习,教师巡视。

  二、交流讨论,梳理知识。

  ⑴整理比的知识。

  交流“练习与实践”第1题的答案,并矫正;理解“男生和女生人数的比是8:9”的意思,一般表示男生是女生人数的8/9,男生和女生人数是除法关系;“男生和女生人数的比是8:9”由比24:27化简而来,回忆比的基本性质;体会“女生和全班人数的比是9:17”答案由来的多种途径。

  ⑵感受生活中的比例。

  交流头长和身高的比,让多名学生将自己头长和身高的比和比值板书在黑板上;指导学生取近似值,整理答案,再说说自己的发现,比值一般很接近的,感受生活中的比例。

  ⑶整理比例的知识。

  交流“练习与实践”第3题的答案,并矫正;根据写成的比例理解比例的意义,根据图形的放大或缩小沟通比的基本性质和分数基本性质的一致性;根据图形的放大或缩小体会和比例的关系。

  ⑷整理解比例的知识。

  交流“练习与实践”第4题的答案,并矫正;理解比例的基本性质,以及在解比例中运用,掌握解比例的方法。

  ⑸解决实际问题。

  交流“练习与实践”第5题,先说说对表中百分数的理解,交流我国东西部各自的特点;掌握把两个数量的百分数关系改写成比的一般方法,用对应的分数表示前项和后项,再化简。交流“练习与实践”第6题,说说得到两种地砖铺地面积比的思考过程,因为每块地砖的大小是相同的,所以可以转化成块数来写出面积的比;交流问题2的解决过程,体会比的应用。

  ⑹谈谈本节课的收获。

正比例教学设计15

  教学内容:

  本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。

  教材分析:

  本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。

  教学目标:

  1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。

  2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

  3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。

  4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。

  教学重点:

  认识正、反比例的意义

  教学难点:

  根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。

  课时安排:

  正比例和反比例(4课时)

  第1课时

  教学内容

  成正比例的量

  教材第62—63页的例1和试一试,练一练和练习十三的第1—3题

  课型

  新授

  本单元教时数:4本教时为第1教时备课日期月日

  教学目标

  1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  2、2、使学生在认识成正比例的量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。。

  3、使、学生进一步体会数学与日常生活的'密切联系,增强从生活现象中探索数学知识和规律的能力。

  教学重点

  使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

  教学难点

  根据正比例的意义正确判断两种相关联的量是不是成正比例。

  教学准备

  光盘课件

  教学过程设计

  教学内容

  教师活动

  学生活动

  二次备课

  一、教学例1

  1、谈话引出例1的表格

  2、这两种量的数据是怎样变化的?

  时间在扩大,路程也随着扩大,时间在缩小,路程也在缩小。

  小结:路程和时间是两种相关联饿量,时间在变化,路程也随着变化。

  3、但是,你能发现什么呢?

  如果学生发现不了,就要求学生写出几组路程与时间的比,并求出比值。

  这个比值是什么呢?

  谁能用一句话来概括例1中的变化与不变

  4、介绍成正比例的量

  指名说说,表中有哪两种量

  引导学生观察,

  指名说一说。

  启发学生从“变化”中寻找“不变”。

  学生试着回答,教师帮助完成。

  学生完整的说说路程和时间成正比例的量

  二、教学试一试

  1、出示教材试一试

  教师指导学生完成

  学试着完成,并交流回答四个问题。

  三、概括意义

  1、引导学生观察例1和试一试,它们有什么共同点。

  2、概括正比例的意义,揭示课题(板书)

  3、用字母怎样表示成正比例关系的两种量呢?

  y:x=k(一定)

  观察,说说自己的发现。

  学生完整的说一说例1和试一试成正比例关系。

  四、巩固练习

  1、完成练一练

  2、练习十三第1题

  重点让学生说出判断的理由

  3、做练习十三第2题

  4、做练习十三第3题

  引导学生根据计算的结果来判断。完成书上的问题

  重点让学生理解:只有当两种相关联的量的比值一定时,它们才成正比例的量。

  独立判断,交流时说出判断的理由。

  学生先各自算一算,交流,说出思考过程。

  指名判断,交流时说出思考过程,其它同学进行补充或纠正。

  学生理解题意,然后在书上画一画,算一算,填在书上。

  五、全课总结

  学习了什么?你有什么收获?

  说一说

  板书

  正比例的意义

  两种相关联的量=k(一定)y和x就成正比例的量

  课后感受

  第2课时

  教学内容

  正比例的意义及其图像

  教材第63页例2,随后的练一练和练习十三的第4、5题

  课型

  新授

  本单元教时数:4本教时为第2教时备课日期月日

  教学目标

  1、使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。

  2、使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

  教学重点

  使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。

  教学难点

  使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。

  教学准备

  光盘课件

  教学过程设计

  教学内容

  教师活动

  学生活动

  二次备课

  一、教学例2

  1、先出示例1的表格

  谈话:同学们,像例1中成正比例的量的数据,有时也可以用图象的形式来表示。

  出示已标出纵轴、横轴以及相噶关信息的方格图。教师先示范描一两个点(边讲解边示范),你们会描点吗?

  引导学生观察这些点的排布规律,并用直线连起来。

  提问:(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,你知道其它各点分别表示什么吗?(任意指几个点让学生回答)

  (2)图中所描的点在一条直线上吗?

  (3)根据图象判断一下,这辆汽车2。5小时行驶多少千米?行驶440千米需要多少小时?

  学生描点。

  学生按要求操作完成。

  指名回答

  如果学生回答有困难,可以启发先在横轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,从而得到与已知图象的交点;再从交点起作横轴的平行线,从而得到与纵轴的交点;最后依据与纵轴的交点进行估计。

  二、巩固练习

  1、练一练

  学生做好后展示学生画的图象,共同评议

  问:你们画出的表示打字时间和打字个数关系的图象有什么特点?

  指名回答第(3)个问题

  追问:你是怎样判断打750个字用多少分钟的?估计7分钟、10。5分钟呢?打450个字、625个字各用几分钟?

  2、练习十三第4题

  既可以根据图象的特点说明,也可以从图象上选取几个点,求出比值来作判断。

  第二题要求估计,答案出入是允许的

  3、第5题

  先让学生独立完成,在组织交流,帮助学生进一步明确方法,加深认识。

  学生独立完成

  指名回答第(2)个问题

  学生相互间说一说

  学生回答,要说明理由

  讨论第(4)小题后,引导学生在提出一些类似的问题并进行解答。

  三、全课总结

  今天学习了什么?你有了什么新的认识?你知道今后还可以根据什么来判断两种量是否成正比例的量吗?

  说说,议论议论。

  板书

  正比例的意义及其图像

  例2(图像)

  课后感受

【正比例教学设计】相关文章:

《正比例的意义》教学设计05-16

正比例教学反思03-14

正比例教学反思02-14

《正比例的意义》教学反思03-13

《正比例意义》教学反思03-13

《正比例函数》教学反思01-31

正比例的量教学反思03-09

正比例意义教学反思06-17

《正比例意义》教学反思03-14