- 相关推荐
函数教学教案设计
作为一位无私奉献的人民教师,往往需要进行教学设计编写工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。那要怎么写好教学设计呢?以下是小编收集整理的函数教学教案设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
函数教学教案设计1
一、学生起点分析
在七年级上期学习了用字母表示数,体会了字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用符号进行了表示;在七年级下期又学习了“变量之间的关系”,使学生在具体的情境中,体会了变量之间的相依关系的普遍性,感受了学习变量之间的关系的必要性和重要性,并且积累了一定的研究变量之间关系的一些方法和初步经验,为学习本章的函数知识奠定了一定的基础。
二、教学任务分析
《函数》是义务教育课程标准北师大版实验教科书八年级(上)第六章《一次函数》第一节的内容。
● 教材内容
本节内容安排了1个学时。
教材中的函数是从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量之间关系,进而抽象出函数的概念。与原传统教材相比,新教材更注重感性材料,让学生分析了大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,它们的表示方式是多样地,如可以通过列表的方法表示,可以通过画图像的方法表示,还可以通过列解析式的方法表示,但都有着共性:其中一个变量依赖于另一个变量。
● 教材地位及作用
函数是研究现实世界变化规律的一个重要模型,对它的学习一直是初中阶段数学学习的一个重要内容。本节内容是在七年级知识的基础上,继续通过对变量间的关系的考察,让学生初步体会函数的概念,为后续学习打下基础。同时,函数的学习可以使学生体会到数形结合的思想方法,感受事物是相互联系和规律的变化。
三、教学目标分析
教学目标:
● 知识与技能目标
1.初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;
2.根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;
3.了解函数的三种表示方法。
● 过程与方法目标
1.通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;
2.经历从具体实例中抽象概括的过程,进一步发展学生的抽象思维能力,体会函数的模型
思想;
3.通过对函数概念的学习,培养学生的语言表达能力。
●情感与态度目标
1.在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神 ●教学重点:
1.掌握函数的概念,以及函数的三种表示方法;
2.会判断两个变量之间是否是函数关系。
●教学难点:1.对函数概念的理解;
2.把实际问题抽象概括为函数问题。
四、教学准备
教具:教材,课件,电脑
学具:教材,笔,练习本
五、教学过程设计
本节课设计了六个教学环节:第一环节:创设情境、导入新课;第二环节:展现背景,提供概念抽象的素材;第三环节:概念的抽象;第四环节:概念辨析与巩固;第五环节:课时小结;第六环节:布置作业
第一环节:创设情境、导入新课
内容:
展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k线图等,提请学生思考问题。
意图:
承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。
效果:
生活实例,激发了学生的研究热情,起到很好的导入效果。
第二环节:展现背景,提供概念抽象的素材
内容:
问题1.你去过游乐园吗?你坐过摩天轮吗?你能
描述一下坐摩天轮的感觉吗?
当人坐在摩天轮上时,人的高度随时间在变
化,那么变化有规律吗?
摩天轮上一点的高度h与旋转时间t之间有
一定的关系,右图就反映了时间t(分)与摩天轮
上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?
2v问题2 .在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式s?
,300
其中v表示刹车前汽车的速度(单位:千米/时).
(1)公式中有几个变化的量?计算当v分别为50,60,100时,相应的滑行距离s是多少?
(2)给定一个v值,你都能求出相应的s值吗?
问题3.如图,搭一个正方形需要4根火柴棒,按图中方式,动手做一做,完成下表:
表格中有几个变量?按图中方式搭100个正方形,需要多少根火柴棒?若搭n个正方形,需要多少根火柴棒?
意图:
通过上面三个问题的展示,使学生们初步感受到:现实生活中存在大量的变量间的关系,并且一个变量是随着另一个变量的变化而变化的;变量之间的关系表示方式是多样的(图象、列表和解析式等).
效果:
通过图片展示和三个问题的探究,使学生感受生活中的确存在大量的两个变量之间的关系,并且这两个变量之间的关系可以通过三种不同的方式表现,初步了解三种方式表示两个变量之间关系的各自特点.
第三环节:概念的抽象
内容:
1.引导学生思考以上三个问题的共同点,进而揭示出函数的概念:
在上面的问题中,都有两个变量,给定其中一个变量(自变量)的值,相应的就确定了另一个变量(因变量)的值.
一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.
2.点明函数概念中的两个关键词:两个变量,一个x值确定一个y值,它们是判断函数关系的关键。
3.再通过对上面3个情境的比较,引导学生思考三个情境呈现形式的不同(依次以图像、代数表达式、表格的形式反映两个变量之间的关系),得出函数常用的三种表示方法:
(1) 图象法 ; (2)列表法 ; (3)解析法。
意图:
通过比较异同点,揭示函数的本质概念和不同的表示方法。
效果:
教学过程中,由于有了七年级较好的铺垫,学生都能顺利地抽象出有关概念。
第四环节:概念辨析与巩固
内容:
1.介绍常量与变量的概念
常量:在某一变化过程中,始终保持不变的量;
变量:在某一变化过程中,可以取不同数值的量.
指出下列关系式中的变量与常量:
22(1)球的表面积S(cm)与球半径R(cm)的关系式是S=4?R
(2)以固定的速度V0(米/秒)向上抛一个球,小球的高度h(米)与小球运动的时间t
2 (秒)之间的关系式是h=V0t-4.9t.
2.概念应用举例
1. 小明骑车从家到学校速度是15千米/时,你能表示出他走过的路程s与时间t之间的变化关系吗?S是t的函数吗?路程s随时间t的变化的图像是什么?
略解:S=15t,是函数,图像略.
2. 如果A、B路程为200千米,一辆汽车从A地到B地行驶的速度v与行驶时间t是怎样的变化关系?V是t的函数吗?速度v随时间t的变化的图像是什么? 200v?略解:,是函数,图像略. t3. 若正方形的边长为x,则面积y与边长x之间的关系是什么?y是x的函数吗?面积y随边长x的变化的图像是什么?
2略解:s=x,是函数,图像通过课件展示给同学们
意图:
通过常量与变量的区别阐述,进一步理解函数的关键;通过三个例题,对函数概念进行更深入的探讨,再次揭示函数概念的本质特征.
效果:
通过对函数基本特征的反复比较与探究,学生能比较深刻地理解函数的概念;同时三个例题涉及了初中阶段将要学到一次函数、反比例函数和二次函数,也为学生将来学习这三种函数留下了一个初步的印象.
第五环节:课时小结
内容:请同学们针对本节的内容进行自我小结,学生之间相互补充后;最后教师总结。 意图:
引导学生自己总结本节课的知识要点和数学学习方法,使学生从感性上升到理性,形成系统的知识。
效果:
学生各抒己见,然后相互补充完善,最后师生共同完成了小结内容。当然,在学生发言时,教师要注意学生的语言表述的准确性。
最终总结了下面的内容:
1.初步掌握函数的概念,并能判断两个变量之间的关系是否是函数的关系。
理解函数的.概念应抓住以下三点:
(1)函数的概念由三句话组成:“两个变量”,“x的每一个值”,“y有确定的值”;
(2)判断两个变量是否有函数关系不是看它们之间是否有关系是存在,更重要的是看对于x的每一个确定的值,y是否有唯一确定的值与之对应;
(3)函数不是数,它是指在某一变化的过程中两个变量之间的关系。
2.在一个函数关系式中,能识别自变量与因变量,并能由给定的自变量的值,相应的求出函数的值。
3.函数的三种表达式:
(1)图象法(用图像来表示函数的方法);
(2)列表法(把自变量x的一系列值和函数y的对应值列成一个表格来表示函数的反方法);
(3)解析法(用代数式来表示函数的方法,用来表示函数关系的式子叫做函数关系式,
函数关系式是等式,在书写时有顺序性,一般写成:“函数=函自变量的代数式”的形式)。
4.学会用辩证唯物主义的观点的看待一个问题。
5.本节课用到的基本思想是:通过观察、分析、对比、归纳等过程获取数学知识.
第六环节:布置作业
习题6.1
六、教学设计反思
(1)突出重点、突破难点的策略
函数是研究现实世界变化规律的一个重要模型,对函数的学习一直以来都是中学阶段的一个重要的内容。函数的概念是学习后续“函数知识”的最重要的基础内容,而函数的概念又是一个比较抽象的,对它的理解一直是一个教学难点,学生对这些问题的探索以及研究思路都是比较陌生的,因此,在教学过程中,注意通过对以前学过的“变量之间的关系”的回顾与思考,力求提供生动有趣的问题情境,激发学生的学习兴趣;并通过层层深入的问题设计,引导学生进行观察、操作、交流、归纳等数学活动,在活动中归纳、概括出函数的概念;并通过师生交流、生生交流、辨析识别等加深学生对函数概念的理解。
(2)评价方式
根据新课标的评价理念,教师在课堂中应尊重学生的个体差异,满足多样化的学
习需求,鼓励学生探索方式、表达方式和解题方法的多样化。在教学活动中教师要关注学生的参与程度和表现出来的思维水平,应关注的是学生对概念的理解水平和学生的语言表达的能力,应关注学生对概念理解的程度和是否能准确的判断所给的问题是否是函数关系,关注学生能否用辩证唯物主义的观点看待事物,教学中又通过学生“议一议”、“想一想”等活动情况和学生对反馈练习的完成情况,分析学生的认识状况和列出函数关系的能力水平。另外,对于学生的回答教师应给预恰当的评价和鼓励,帮助学生认识自我,建立自信,发挥评价的教育功能。
附:板书设计
函数教学教案设计2
教学目标
(一)知道函数图象的意义;
(二)能画出简单函数的图象,会列表、描点、连线;
(三)能从图像上由自变量的值求出对应的函数的近似值。
教学重点和难点
重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。
难点:对已知图象能读图、识图,从图象解释函数变化关系。
教学过程设计
(一)复习
1。什么叫函数?
2。什么叫平面直角坐标系?
3。在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?
4。如果点A的横坐标为3,纵坐标为5,请用记号表示点A(答:A(3,5))。
5。请在坐标平面内画出A点。
6。如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序数对一一对应)
(二)新课
我们在前几节课已经知道,函数关系可以用解析式表示。像y=2x+1就表示以x为自变量时,y是x的函数。
这个函数关系中,y与x的对应关系,我们还可以用在坐标平面内画出图象的方法表示。
具体做法是
第一步:列表。(写出自变量x与函数值的对应表)先确定x的若干个值,然后填入相应的y值。
(这种用表格表示函数关系的方法叫做列表法)
第二步:描点,对于表中的每一组对应值,以x值作为点的横坐标,以对应的y值作为点的纵坐标,便可画出一个点。也就是由表中给出的'有序实数时,在直角坐标中描出相应的点。
第三步:连线,按照横坐标由小到大的顺序把相邻两点用线段连结起来,得到的图形就是函数式y=2x+1图象。
例1 在同一直角坐标系中画出下列函数式的图像:
(1) y=-3x; (2)y=-3x+2; (3) y=-3x-3。
分析:按照列表、描点、连线三步操作。
解:
它们的图象分别是图13-25中的(1),(2),(3)。
例2 某化我厂1月到12日生产某种产品的统计资料如下:
(1) 在直角坐标系中以月份数作为点的横坐标,以该月的产值作为点的纵坐标画出对应的点。把12个点画在同一直角坐标系中。
(2) 按照月份由小到大的顺序,把每两个点用线段连接起来。
(3) 解读图像:从图说出几月到几月产量是上升的、下降的或不升不降的。
(4) 如果从3月到6月的产量是持逐平稳增长的,请在图上查询4月15日的产量大约是多少吨?
解:(1),(2)见图13-26。
(3) 产量上升:1月到2月;3月,4月,5月,6月逐月上升;10月,11月,12月逐月上升。产量下降:8月到9月,9月到10月。产量不升不降:2月到3月;6月到7月,7月到8月。
(4)过x轴上的4。5处作y轴的平行线,与图象交于点A,则点A的纵坐标约4。5,所以4月15日的产量约为4。5吨。
(三)课堂练习
已知函数式y=-2x。用列表(x取-2,-1,0,1,2),描点,连线的程序,画出它的图象。
(四)小结
到现在,我们已经学过了表示函数关系的方法有三种:
1。解析式法——用数学式子表示函数关系。
2。列表法——通过列表给出函数y与自变量x的对应关系。
3。图象法——把自变量x作为点的横坐标,对应的函数值y作为点的纵坐标,在直角坐标系描出对应的点。所有这些点的集合,叫做这个。用图象来表示函数y与自变量x对应关系。
这三种表示函数的方法各有优缺点。
1。用解析法表示函数关系
优点:简间明了。能从解析式清楚看到两个变量之间的全部相依关系,并且适合于进行理论分析和推导计算。
缺点:在求对应值时,有进要做较复杂的计算。
2。用列表法表示函数关系
优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便。
缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律。
3。用图象法表示函数关系
优点:形象直观。可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化。
缺点:从自变量的值常常难以找到对应的函数的准确值。
函数的三种基本表示方法,各有各的优点和缺点。因此,要根据不同问题与需要,灵活地采用不同的方法。在数学或其他科学研究与应用上,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图像。
(五)作业
1。在图13-27中,不能表示函数关系的图形有( )。
(A) (a),(b),(c) (B)(b),(c),(d) (C) (b),(c)(e) (D)(b),(d),(e)
2。函数 的图象是图13-28中的( )。
3。矩形的周长是12cm,设矩形的宽为x(cm),面积为y(cm2)。
(1) 以x为自变量,y为x的函数,写出函数关系式,并在关系式后面注明x的取值范围;
(2) 列表、描点、连线画出此函数的图象。
4。(1) 画出函数y=- x+2的图象(在-4与4之间,每隔1取一个x值,列表;并在直角坐标系中描点画图);
(2) 判断下列各有序实数地是不是函数。y=- x+2的自变量x与函数y的一对对应值,如果是,检验一下具有相庆坐标的点是否在你所画的函数图像上:
5。画出下列函数的图象:
(1) y=4x-1; (2)y=4x+1。
6。图13-29是北京春季某一天的气温随时间变化的图象。根据图象回答,在这一天:
(1)8时,12时,20时的气温各是多少;
(2)最高气温与最低气温各是多少;
(3)什么时间气温高,什么时间气温最低。
7。画出函数y=x2的图象(先填下表,再描点,然后用平滑曲线顺次连结各点);
8。画出函数 的图象(先填下表,再描点,然后用平滑曲线顺序连结各点):
作业的答案或提示
1。选(C)。因为对应于x的一个值的y值不是唯一的。
2。选(D)。当x<0时,|x|=-x,所以 ,当x>0时,|x|=x,所以
3。
(1) y=x(6-x)其中0<x<6,(图13-30)。
(2)
4。
5。
见图13-32。
6。(1) 8时约5℃,12时约11℃,20时约10℃。
(2) 最高气温为12℃,最低气温为2℃。
(2) (2) 14时气温最高,4时气温最低。
7。
课堂教学设计说明
1。在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应。把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法。
2。本课的目标是使学生会画函图象,并会解读图象,即会从图象了解到抽象的数量关系。为此,先在复习旧课时,着重提问会标平面上的点与有序实数对一一对应。接着在新课开始时介绍了画函数图象的三个步骤。
3。教学设计中的例3,即训练学生从已有数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力。对函数图象功能有一个完整的认识。
4。在小结中,介绍了函数关系的三种不示方法,并说明它们各自的优缺点。有利于对函数概念的透彻理解。
5。作业中的第1~3题,对训练函数概念及函数图象很有帮助。
第1题,目的要说明,对于x的一个值,必须是唯一的值与之对应。而(b),(c),(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数。本题还训练解读形的能力。
第2题,训练学生分类讨论的数学思想,在去掉绝对值符号对,必须分x≥0与x<0讨论。
第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力。
这些都是学习函数问题时应具备的基本功。
函数教学教案设计3
教学目标
(一)知道函数图象的意义;
(二)能画出简单函数的图象,会列表、描点、连线;
(三)能从图象上由自变量的值求出对应的函数的近似值。
教学重点和难点
重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。
难点:对已恬图象能读图、识图,从图象解释函数变化关系。
教学过程设计
(一)复习
1.什么叫函数?
2.什么叫平面直角坐标系?
3.在坐标平面内,什么叫点的横坐标?什么叫点的纵坐标?
4.如果点A的横坐标为3,纵坐标为5,请用记号表示A(3,5).
5.请在坐标平面内画出A点。
6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)
(二)新课
我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x 为自变量时,y是x的函数。
这个函数关系中,y与x的函数。
这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的.方法来表示。
课堂教学设计说明
1.在建立平面直角坐标系后,点的坐标(有序实数对)与坐标平面内的点一一对应;不同的坐标与不同的点一一对应;函数关系与动点轨迹一一对应,把抽象的数量关系与形象直观的图形联系起来,通过解读图象,了解抽象的数量关系,这种“数形结合”,是数学中的一种重要的思想方法。
2.本课的目标是使学生会画函数图象,并会解读图象,即会从图象了解到抽象的数量关系。为此,先在复习旧课时,着重提问坐标平面上的点与有序实数对一一对应,接着在新课开始时介绍了画函数图象的三个步骤。
3.教学设计中的例3,既训练学生从已数据画图象,又训练学生逆向思维、解读图象、在图象上估计某日产量的能力,对函数图象功能有一个完整的认识。
4.在小结中,介绍了函数关系的三种表示方法,并说明它们各自的优缺点,有利于对函数概念的透彻理解。
5.作业中的第1-3题,对训练函数图象很有帮助。
第1题,目的要说明,对于x的一个值,y必须是唯一的值与之对应,而(b)(c)(e)都是对于x一个值,y有不止一个值与之对应,所以y不是x的函数,本题还训练解读图形的能力。
第2题,训练学生分类讨论的数学思想,在去掉绝对值符号时,必须分x≥0与x<0讨论。
第3题,训练学生根据已知条件建立函数解析式,并列表、描点、连线画出图象的能力,这些都是学习函数问题时应具备的基本功。
函数教学教案设计4
第一课时
教学设计思想
本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
教学目标
知识与技能
1.能灵活列反比例函数表达式解决一些实际问题。
2.能综合利用几何、方程、反比例函数的知识解决一些实际问题。
过程与方法
1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2.体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
情感态度与价值观
体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
教学重难点
重点:掌握从实际问题中建构反比例函数模型。
难点:从实际问题中寻找变量之间的`关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
教学方法
启发引导、合作探究
教学媒体
课件
教学过程设计
(一)创设问题情境,引入新课
[师]有关反比例函数的表达式,图像的特征我们都研究过了,那么,我们学习它们的目的是什么呢?
[生]是为了应用。
[师]很好。学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学。
问题:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。
函数教学教案设计5
教学目标:
知识目标—— 通过丰富的实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型;用集合与对应的思想理解函数的概念;理解函数的三要素及函数符号的深刻含义. 能力目标—— 培养学生观察、类比、推理的能力;培养学生分析、判断、抽象、归纳概括的能力;强化“形”与“数”结合并相互转化的数学思想.
情感目标——探究过程中,强化学生参与意识,激发学生观察、分析、探求的兴趣和热情;体会由特殊到一般、从具体到抽象、运动变化、相互联系、相互制约、相互转化的辩证唯物主义观点;逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识;感受数学的`抽象性和简洁美渗,透数学思想和文化.
教学重点: 理解函数的模型化思想,用集合与对应的语言来刻画函数. 教学难点:函数符号y=f(x)的理解,函数概念的整体性认识. 教学方法: 问题式教学法、探究式教学法. 教学用具:多媒体 教学流程:
教学过程:
函数教学教案设计6
一、教学内容解析
本节课的主要内容有函数零点的的概念、函数零点存在性判定定理。
函数f(x)的零点,是中学数学的一个重要概念,从函数值与自变量对应的角度看,就是使函数值为0的实数x;从方程的角度看,即为相应方程f(x)=0的实数根,从函数的图形表示看,函数的零点就是函数f(x)与x轴交点的横坐标.函数是中学数学的核心概念,核心的根本原因之一在于函数与其他知识具有广泛的联系性,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起。
函数零点的存在性判定定理,其目的就是通过找函数的零点来研究方程的根,进一步突出函数思想的应用,也为二分法求方程的近似解作好知识上和思想上的准备。定理不需证明,关键在于让学生通过感知体验并加以确认,由些需要结合具体的实例,加强对定理进行全面的认识,比如定理应用的局限性,即定理的前提是函数的图象必须是连续的,定理只能判定函数的“变号”零点;定理结论中零点存在但不一定唯一,需要结合函数的图象和性质作进一步的判断。
对函数与方程的关系有一个逐步认识的过程,教材遵循了由浅入深、循序渐进的原则.从学生认为较简单的`一元二次方程与相应的二次函数入手,由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形。
函数与方程相比较,一个“动”,一个“静”;一个“整体”,一个“局部”。用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础。
本节是函数应用的第一课,因此教学时应当站在函数应用的高度,从函数与其他知识的联系的角度来引入较为适宜。
二、教学目标解析
1.结合具体的问题,并从特殊推广到一般,使学生领会函数与方程之间的内在联系,从而了解函数的零点与方程根的联系。
2.结合函数图象,通过观察分析特殊函数的零点存在的特点,通过问题,理解连续函数在某个区间上存在零点的判定方法,并能由此方法判定函数在某个区间上存在零点。了解定理应用的前提条件,应用的局限性,及定理的准确结论。
3.通过具体实例,学生能结合函数的图象和性质进一步判断函数零点的个数。
4.在学习过程中,体验函数与方程思想及数形结合思想。
三、教学问题诊断分析
1.通过前面的学习,学生已经了解一些基本初等函数的模型,掌握了函数图象的一般画法,及一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础。对于函数零点的概念本质的理解,学生缺乏的是函数的观点,或是函数应用的意识,造成对函数与方程之间的联系缺乏了解。由此作为函数应用的第一课时,有必要点明函数的核心地位,即说明函数与其他知识的联系及其在生活中的应用,初步树立起函数应用的意识。并从此出发,通过问题的设置,引导学生思考,再通过实例的确认与体验,从直观到抽象,从特殊到一般的学习方式,捅破学生认识上的这层“窗户纸”。
2.对于零点存在的判定定理,教材不要求给予其证明,这需要教师提供一定量的具体案例让学生操作感知,同时鼓励学生举例来验证,最终能自主地获得并确认该定理的结论。对于定理的条件和结论,学生往往考虑不够深入,需要教师通过具体的问题,引导学生从正面、反面、侧面等不同的角度重新进行审视。
3.函数的零点,体现了函数与方程之间的密切联系,教学中应遵循高中数学以函数为主线的这一原则进行联结,侧重在从函数的角度看方程,同时为二分法求方程的近似解作知识和思想上的准备。
四、教学过程设计
(一)创设情景,揭示课题
函数是中学数学的核心内容,它不仅在生活中有着大量的应用,与其他数学知识有着千丝万缕的联系,若能抓住这一联系,你就拥有了一把解决问题的金钥匙。
案例1:周长为定值的矩形
不妨取l=12
问题1:求其面积的值:
显然面积是一个关于x的一个二次多项式
,用几何画板演示矩形的变化:
问题2:求矩形面积的最大值?
当x取不同值时,代数式的值也相应随之变化,你能从函数的角度审视其中的关系吗?
问题3:能否使得矩形的面积为8?你是如何分析的?
(1)实验演示的角度进行估计,拖动时难以恰好出现面积为8的情况;
(2)解方程:x(6-x)=8
(3)方程x(6-x)=8能否从函数的角度来进行描述?
问题4:
一般地,对于一般的二次三项式,二次方程与二次函数,它们之间有何联系?
结论:
代数式的值就是相应的函数值;
方程的根就是使相应函数值为0的x的值。
更一般地
方程f(x)=0的根,就是使函数值y=f(x)的函数值为0的x值,从函数的角度我们称之为零点。
设计意图:本节课是函数应用的第一课,有必要让学生对函数的应用有所了解。从具体的问题出发,揭示函数与代数式、方程之间的内在联系,并从学生所熟悉的具体的二次函数,推广到一般的二次函数,再进一步推广到一般的函数。
(二) 互动交流 研讨新知
1.函数零点的概念:
对于函数
,把使
成立的实数
叫做函数
的零点.
2.对零点概念的理解
案例2:观察图象
问题1:此图象是否能表示函数?
问题2:你能从中分析函数有哪些零点吗?
问题3:从函数图象的角度,你能对函数的零点换一种说法吗?
结论:函数
的零点就是方程
实数根,亦即函数
的图象与
轴交点的横坐标.即:
方程
有实数根
函数
的图象与
轴有交点
函数
有零点.
设计意图:进一步掌握函数的核心概念,同时通过图象进行一步完善对函数零点的全面理解,为下面借助图象探究零点存在性定理作好一定的铺垫。
2.零点存在定理的探究
案例3:下表是三次函数
的部分对应值表:
问题1:你能从表中找出函数的零点吗?
问题2:结合图象与表格,你能发现此函数零点的附近函数值有何特点?
生:两边的函数值异号!
问题3:如果一个函数f(x)满足f(a)f(b)<0,在区间(a,b)上是否一定存在着函数的零点?
注意:函数在区间上必须是连续的(图象能一笔画),从而引出零点存在性定理.
问题4: 有位同学画了一个图,认为定理不一定成立,你的看法呢?
问题5:你能改变定理的条件或结论,得到一些新的命题吗?
如1:加强定理的结论:若在区间[a,b]上连续函数f(x)满足f(a)f(b)<0,是否意味着函数f(x)在[a,b]上恰有一个零点?
如2.将定理反过来:若连续函数f(x)在[a,b]上有一个零点,是否一定有f(a)f(b)<0?
如3:一般化:一个函数的零点是否都可由上述的定理进行判断?(反例:同号零点,如案例2中的零点-2)
设计意图:通过表格,是为了进一步巩固对函数这一概念的全面认识,并为观察零点存在性定理中函数值的异号埋下伏笔。通过教师的设问让学生进一步全面深入地领悟定理的内容,而鼓励学生提问,是培养学生学习主动性和创造能力必要的过程。
(三)巩固深化,发展思维
例1、求函数f(x)=㏑x+2x -6的零点个数。
设计问题:
(1)你可以想到什么方法来判断函数零点?
(2)你是如何来确定零点所在的区间的?请各自选择。
(3)零点是唯一的吗?为什么?
设计意图:对所学内容巩固,可以借助<几何画板>画出函数f(x)的图象观察,也可借助列出函数值表观察。
本题可以使学生意识对零点的区间是不唯一的,为下一节二分法求方程的近似解奠定基础。
让学生进一步领悟,零点的唯一性需要借助函数的单调性。
(四)归纳整理,整体认识
请回顾本节课所学知识内容有哪些?
所涉及到的主要数学思想又有哪些?
你还获得了什么?
(五)作业(略)
函数教学教案设计7
本节课选自《普通高中课程标准实验教科书数学Ⅰ必修本(A版)》的第一章1.2.1函 数的概念。函数是中学数学中最重要的基本概念之一,它贯穿在中学代数的始终,从初一字母表示数开始引进了变量,使数学从静止的数的计算变成量的变化,而且变量之间也是相互联系、相互依存、相互制约的,变量间的这种依存性就引出了函数。在初中已初步探讨了函数概念、函数关系的表示法以及函数图象的绘制。到了高一再次学习函数,是对函数概念的再认识,是利用集合与对应的思想来理解函数的定义,从而加深对函数概念的理解。函数与数学中的其他知识紧密联系,与方程、不等式等知识都互相关联、互相转化。函数的学习也是今后继续研究数学的基础。在中学不仅学习函数的概念、性质、图象等知识,尤为重要的是函数的思想要更广泛地渗透到数学研究的全过程。
函数是中学数学的主体内容,起着承上启下的作用。函数又是初等数学和高等数学衔接的枢纽,特别在应用意识日益加深的今天,函数的实质是揭示了客观世界中量的相互依存又互有制约的关系。因此对函数概念的再认识,既有着不可替代的重要位置,又有着重要的现实意义。本节的内容较多,分二课时。本课时的内容为:函数的'概念、函数的三要素、简单函数的定义域及值域的求法、区间表示等。(第二课时内容为:函数概念的复习、较复杂函数的定义域及值域的求法、分段函数、函数图象等)
【学情分析】
学生在学习本节内容之前,已经在初中学习过函数的概念,并且知道可以用函数描述变量之间的依赖关系。然而,函数概念本身的表述较为抽象,学生对于动态与静态的认识尚为薄弱,对函数概念的本质缺乏一定的认识,对进一步学习函数的图象与性质造成了一定的难度。初中是用运动变化的观点对函数进行定义,虽然这种定义较为直观,但并未完全揭示出函数概念的本质。例如,对于函数
?1,当x是有理数时
如果用运动变化的观点去看它,就不好解释,显得牵强。但f(x)??
?0,当x是无理数时
如果用集合与对应的观点来解释,就十分自然。因此,用集合与对应的思想来理解函数,对函数概念的再认识,就很有必要。由于数学符号的抽象性,学生因此会望而却步,从而影响了学生学习数学的积极性。高一学生虽然在初中已接触了函数的概念,但在重新学习它时还是存在一定的障碍,其中一个原因就是对新引进的函数符号“y=f(x)”不甚其解。教师应在教学中有意识地挖掘函数符号的审美因素,以美启真。在本节课的教学过程中,教师应该给学生提供实践动手的机会,为学生创设熟悉的问题情境,引导学生观察、计算、思考,从而理解问题的本质,归纳总结出结论。
【学法指导】
本节内容的学习要注意运动变化观和集合对应观两个观念下函数定义的对比研究;注意借助熟悉的一次函数、二次函数、反比例函数加深对函数这一抽象概念的理解;要重视符号f(x)的学习,借助具体函数来理解符号y=f(x)的含义,由具体到抽象,克服由抽象的数学符号带来的理解困难,从而提高理解和运用数学符号的能力。
【教学目标】
知识目标—— 通过丰富的实例,进一步体会函数是描述变量之间的依赖关系的重要数
学模型;用集合与对应的思想理解函数的概念;理解函数的三要素及函数符号的深刻含义;会求一些简单函数的定义域及值域。
能力目标—— 培养学生观察、类比、推理的能力;培养学生分析、判断、抽象、归纳
概括的逻辑思维能力;培养学生联系、对应、转化的辩证思想;强化“形”与“数”结合并相互转化的数学思想。
情感目标—— 渗透数学思想和文化,激发学生观察、分析、探求的兴趣和热情;强化
学生参与意识,培养学生严谨的学习态度,获得积极的情感体验;体会在探究过程中由特殊到一般、从具体到抽象、运动变化、相互联系、相互制约、相互转化的辩证唯物主义观点;感受数学的简洁美、对称美、数与形的和谐统一美;树立“数学源于实践,又服务于实践”的数学应用意识。
【教学重点】函数的概念及y=f(x)的理解与深化。
【教学难点】函数的概念及函数符号f(x)的理解。
【教学关键】在集合与对应的基础上理解函数的概念。
【教学方法】 以建构主义理论为指导,辅以多媒体手段,采用着重于学生探索研究的
启发式教学为主,变式教学为辅,及引导、探究、讲解、演练相结合。在教学过程中,多一点情境和归纳,多一点探索和发现,多一点思考和回顾。通过不同形式的自主学习、探究活动,丰富和改善教与学的方式,体验数学发现和创造的历程,发展创新意识和实践能力。
在课堂结构上,设计“创设情境——引入课题;引导探求——形成知识;变式训练——巩固知识;讨论研究——深化知识;总结反思——提高认识;任务后延——自主探究”这样几个主要环节,环环相扣,层层深入,以期达到教学目标。
设计思想
【函数教学教案设计】相关文章:
函数教学反思02-23
函数的概念教学反思06-03
幂函数教学反思04-22
对数函数教学反思02-17
指数函数教学反思04-22
函数的概念教学反思范文04-22
函数的概念教学反思(12篇)07-02
函数的概念教学反思12篇06-09
《正比例函数》教学反思01-31