当前位置:9136范文网>教育范文>教学设计>高中数学教学设计

高中数学教学设计

时间:2024-01-14 08:30:16 教学设计 我要投稿

高中数学教学设计

  作为一名优秀的教育工作者,往往需要进行教学设计编写工作,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。如何把教学设计做到重点突出呢?下面是小编整理的高中数学教学设计,仅供参考,欢迎大家阅读。

高中数学教学设计

高中数学教学设计1

  一、问题导入,引发探究

  师:我在旅游时买回来一种磁性蛇蛋玩具(如图),所谓生活处处皆学问嘛,我把它运动过程中的轴截面用图形计算器做出了以下有趣的现象:

  两个全等的椭圆形卵,相互依偎旋转(动画)。你能通过所学解析几何知识,构造出这种有趣的现象吗?

  二、实验探究,交流发现

  探究1:卵之由来——椭圆的形成

  (1)单个定椭圆的形成

  椭圆的定义:平面内到两定点、的距离之和等于常数(大于)的点的轨迹叫做椭圆。(即若平面内的动点到两定点、的距离之和等于常数(大于),则点的轨迹为以、为焦点的椭圆。)

  思考1:如何使为定值?

  (不妨将两条线段的长度和转化为一条线段,即在线段的延长线上取点,使得,此时,为定值则可转化为为定值。)

  思考2:若为定值,则点的轨迹是什么?定点与点轨迹的位置关系?

  (以定点为圆心,为半径的圆。由于>,则点在圆内。)

  思考3:如何确定点的位置,使得,且?

  (线段的中垂线与线段的交点为点。)

  揭示思路来源:(高中数学选修2—1P497)如图,圆的半径为定长,是圆内一个定点,是圆上任意一点,线段的垂直平分线l和半径相交于点,当点在圆上运动时,点的轨迹是什么?为什么?

  (设圆的半径为,由椭圆定义,(常数),且,所以当点在圆周上运动时,点的轨迹是以为焦点的椭圆。)

  图形计算器作图验证:以圆与定点所在直线为轴,中垂线为轴建立直角坐标系,设圆半径,,即圆,点,则点轨迹是以以为焦点的椭圆,椭圆方程为。

  (2)单个动椭圆的形成

  思考4:构造一种动椭圆的方式

  (由于椭圆形状不变,即离心率不变,而长轴长为定值,则也要为定值,因此可将圆内点取在圆的同心圆上,当点在圆上动时,即可得到动椭圆。)

  图形计算器作图验证:当圆内动点取在圆的同心圆上,运动点,即得到动椭圆。

  (3)两个椭圆的'形成

  观察两个椭圆相互依偎旋转的几个画面,分析两椭圆的位置关系。判断两个椭圆关于对称轴对称,且直线过两椭圆公共点,所以直线为两椭圆的公切线。

  因而找到公切线,作椭圆关于切线的对称椭圆即可。

  探究2:卵之所依——切线的判断与证明

  线段的垂直平分线与椭圆的位置关系

  (1)利用图形计算器中的“图象分析”工具直观判断与椭圆的位置关系、设圆上动点,则线段的中垂线的方程为,将动点的横坐标保存为变量,纵坐标保存为变量,随着点的改变,在Graphs中画出相应的动直线、用图形计算器中的“图象分析”工具找出椭圆所在区域内的直线与椭圆的交点,拖动点,动态观测交点个数的变化,发现无论点在何处,动直线与椭圆只有一个交点,因此判断直线与椭圆相切,并可求出该切点的坐标、也可以将椭圆方程与直线方程联立,用“代数”工具中的solve()求出方程组的解,从而判断根的情况、

  (2)证明椭圆与直线相切、

  不妨设直线:,其中,,与椭圆方程联立,得,因此

  ,

  将,,代入上式,用“代数”工具中的expand()化简式子,得,所以椭圆与直线相切,切点为、

  (3)证明由任意圆上的动点和圆内一点确定的椭圆与线段中垂线均相切(反证法)

  因为椭圆是点的轨迹,而点是直线与线段中垂线的交点,所以点既在椭圆上,也在直线上。因此,直线与椭圆至少有一个公共点,即直线与椭圆相切或相交。

  假设直线与椭圆相交,设另一个交点为(与不重合)、因为,所以;又因为,

  所以为定值,而,矛盾、因此直线与椭圆相切。

  探究3:两卵相依——对称旋转椭圆的形成与动画

  当圆内动点取在圆的同心圆上,作椭圆关于切线的对称椭圆,运动点,隐藏相关坐标系与辅助圆等图形,呈现两卵相互依偎旋转的有趣效果。

  改变一些问题条件,进行深入探究与发现。

  探究4:改变点位置,探究点轨迹

  (1)曲线判断:利用TI图形计算器作图分析,拖动点,当点在定圆内且不与圆心重合时,交点的轨迹是椭圆;当点在定圆外时,则,交点的轨迹是双曲线;当点与圆心重合时,点的轨迹是圆的同心圆;当点在圆周上时,点的轨迹是是一点(圆心)、

  (2)方程证明:圆,设点,可解得点的轨迹方程为

  当或时,点的轨迹为圆心;

  当且时,点的轨迹方程为

  当时,点的轨迹为圆:;

  当且时,点的轨迹为椭圆;

  当或时,点的轨迹为双曲线。

  探究5:改变切线位置,探究由切线得到的包络图形

  查阅有关参考书籍,了解圆锥曲线的包络线,并利用图形计算器作出椭圆、双曲线的包络图形,自主探究抛物线的包络线(将定圆改为定直线)。

  结论:所谓包络图,就是指有一条曲线按照一定运动规律运动,保留其所有瞬间位置的影像,会有一条曲线能够和该运动曲线所有位置相切,这条曲线就成为该运动曲线的包络线。

  探究6:拓展延伸:椭圆切线的几个性质及其应用

  性质1:是椭圆的两个焦点,若点是椭圆上异于长轴两端点的任一点,则点的切线平分的外角。

  性质1′:点处的法线(过点且垂直于切线)平分。(即为椭圆的光学性质:从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线交于椭圆的另一个焦点上。)

  课后探究:阅读数学选修2—1P75阅读与思考——圆锥曲线的光学性质及其应用,了解双曲线、抛物线的光学性质。

  练习1:已知为椭圆的左、右焦点,点为椭圆上任一点,过焦点向作垂线,垂足为,则点的轨迹是_____________,轨迹方程是_______________。

  解:(1)直观判断:作轨迹

  (2)严谨证明:圆的定义

  由此得到:

  性质2:是椭圆的两个焦点,是长轴的两个端点,过椭圆上异于的任一点的切线,过做切线的垂线,垂足分别为,则在以长轴为直径的圆上。

  练习2:已知为椭圆的左、右焦点,点为椭圆上任一点,直线与椭圆相切与点,且到的垂线长分别为,求证:为定值。

  解:

  (1)直观判断:作图

  (2)严谨证明:利用性质2及圆的相交弦性质,

  由此得到:

  性质3:已知椭圆为,则焦点到椭圆任一切线的垂线长乘积等于。

  课后探究2:已知为椭圆的左、右焦点,点为椭圆上任一点,直线过点,且到的垂线长分别为,则

  ①当时,直线与椭圆的位置关系;(相交)

  ②当时,直线与椭圆的位置关系。(相离)

  (类比直线与圆位置关系的几何法,此为直线与椭圆位置关系的几何法)

  课后探究:双曲线、抛物线的切线是否有类似性质?

高中数学教学设计2

  一、单元教学内容

  (1)算法的基本概念

  (2)算法的基本结构:顺序、条件、循环结构

  (3)算法的基本语句:输入、输出、赋值、条件、循环语句

  二、单元教学内容分析

  算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在中学教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力

  三、单元教学课时安排:

  1、算法的基本概念3课时

  2、程序框图与算法的基本结构5课时

  3、算法的基本语句2课时

  四、单元教学目标分析

  1、通过对解决具体问题过程与步骤的分析体会算法的思想,了解算法的含义

  2、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。在具体问题的解决过程中理解程序框图的三种基本逻辑结构:顺序、条件、循环结构。

  3、经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句:输入、输出、斌值、条件、循环语句,进一步体会算法的基本思想。

  4、通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  五、单元教学重点与难点分析

  1、重点

  (1)理解算法的含义

  (2)掌握算法的基本结构

  (3)会用算法语句解决简单的实际问题

  2、难点

  (1)程序框图

  (2)变量与赋值

  (3)循环结构

  (4)算法设计

  六、单元总体教学方法

  本章教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这些方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

  七、单元展开方式与特点

  1、展开方式

  自然语言→程序框图→算法语句

  2、特点

  (1)螺旋上升分层递进

  (2)整合渗透前呼后应

  (3)三线合一横向贯通

  (4)弹性处理多样选择

  八、单元教学过程分析

  1.算法基本概念教学过程分析

  对生活中的实际问题通过对解决具体问题过程与步骤的分析(喝茶,如二元一次方程组求解问题),体会算法的思想,了解算法的含义,能用自然语言描述算法。

  2.算法的流程图教学过程分析

  对生活中的.实际问题通过模仿、操作、探索,经历通过设计流程图表达解决问题的过程,了解算法和程序语言的区别;在具体问题的解决过程中,理解流程图的三种基本逻辑结构:顺序、条件分支、循环,会用流程图表示算法。

  3.基本算法语句教学过程分析

  经历将具体生活中问题的流程图转化为程序语言的过程,理解表示的几种基本算法语句:赋值语句、输入语句、输出语句、条件语句、循环语句,进一步体会算法的基本思想。能用自然语言、流程图和基本算法语句表达算法,4.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。

  九、单元评价设想

  1、重视对学生数学学习过程的评价

  关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。

  2、正确评价学生的数学基础知识和基本技能

  关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法

高中数学教学设计3

  一、探究式教学模式概述

  1、探究式教学模式的含义。探究式教学就是学生在教师引导下,像科学家发现真理那样以类似科学探究的方式来展开学习活动,通过自己大脑的独立思考和探究,去弄清事物发展变化的起因和内在联系,从中探索出知识规律的教学模式。它的基本特征是教师不把跟教学内容有关的内容和认知策略直接告诉学生,而是创造一种适宜的认知和合作环境,让学生通过探究形成认知策略,从而对教学目标进行一种全方位的学习,实现学生从被动学习到主动学习,培养学生的科学探究能力、创新意识和科学精神。可见,探究式教学主张把学习知识的过程和探究知识的过程统一起来,充分发挥学生学习的自主性和参与性。

  2、堂探究式教学的实质。课堂探究式教学的实质是使学生通过类似科学家科学探究的过程来理解科学探究概念和科学规律的本质,并培养学生的科学探究能力。具体地说,它包括两个相互联系的方面:一是有一个以“学”为中心的探究性学习环境。在这个环境中有丰富的教学资源,而且这些资源是围绕某个知识主题来展开的。这个学习环境具有民主和谐的课堂气氛,它使学生很少感到有压力,能自主寻找所需要的信息,提出自己的设想,并以自己的方式检验其设想。二是教师可以给学生提供必要的帮助和指导,使学生在研究中能明确方向。这说明探究式教学的本质特征是不直接把与教学目标有关的概念和认知策略告诉学生,取而代之的是教师创造出一种智力交流和社会交往的环境,让学生通过探究自己发现规律。

  3、探究式教学模式的特征。

  (1)问题性。问题性是探究式教学模式的关键。能否提出对学生具有挑战性和吸引力的问题,使学生产生问题意识,是探究教学成功与否的关键所在。恰当的问题会激起学生强烈的学习愿望,并引发学生的求异思维和创造思维。现代教育心理学研究提出:“学生的学习过程和科学家的探索过程在本质上是一样的,都是一个发现问题、分析问题、解决问题的过程。”所以培养学生的问题意识是探究式教学的重要使命。

  (2)过程性。过程性是探究式教学模式的重点。爱因斯坦说:“结论总以完成的形式出现,读者体会不到探索和发现的喜悦,感觉不到思想形成的生动过程,也就很难达到清楚、全面理解的境界。”探究式教学模式正是考虑到这些人的认知特点来组织教学的,它强调学生探索知识的经历和获得新知识的亲身感悟。

  (3)开放性。开放性是探究式教学模式的难点。探究式教学模式总是综合合作学习、发现学习、自主学习等学习方式的长处,培养学生良好的学习态度和学习方法,提倡和发展多样化的学习方式。探究式教学模式要面对大量开放性的问题,教学资源和探究的结论面对生活、生产和科研是开放的,这一切都为教师的教与学生的学带来了机遇与挑战。

  二、教学设计案例

  1、教学内容:数字排列中3、9的探究式教学。

  2、教学目标。

  (1)知识与技能:掌握数字排列的知识,能灵活运用所学知识。

  (2)过程与方法:在探究过程中掌握分析问题的方法和逻辑推理的方法。

  (3)情感态度与价值观:培养学生观察、分析、推理、归纳等综合能力,让学生体会到认识客观规律的一般过程。

  3、教学方法:谈话探究法,讨论探究法。

  4、教学过程。

  (1)创设情境。教师:在高中数学第十章的教学中,有关数字排列的问题占有重要位置。我们曾经做过的有关数字排列的题目,如“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的`数的个位数字为0或5时,则这个数就能被5整除。那么能被3整除的数,能被9整除的数有何特点?

  (2)提出问题。

  问题1:在用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的共有()

  A、36个B、18个C、12个D、24个

  问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?

  (3)探究思考。点评:乍一看问题1,对于由若干个数字排列成9的倍数的问题,如:81、72、63、54、45、36、27、18、9这些能够被9整除的数的个位数字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的数,不能只考虑个位数字了。于是,需另辟蹊径,探究能被9整除的数的特点,寻求解决问题的途径。

  教师:同学们观察81、72、63、54、45、36、27、18、9这些数,甚至再写出几个能被9整除的数,如981、1872等,看看它们有何特点?

  学生:它们都满足“各位数字之和能被9整除”。

  教师:此结论的正确性如何?

  学生:老师,我们证明此结论的正确性,好吗?

  教师:好。

  学生:证明:不妨以n是一个四位数为例证之。

  设n=1000a+100b+10c+d(a,b,c,d∈N)依条件,有a+b+c+d=9m(m∈N)

  则n=1000a+100b+10c+d

  =(999a+a)+(99b+b)+(9c+c)+d

  =(999a+99b+9c)+(a+b+c+d)

  =9(111a+11b+c)+9m

  =9(111a+11b+c+m)

  ∵ a,b,c,m∈N

  ∴ 111a+11b+c+m∈N

  所以n能被9整除

  同理可证定理的后半部分。

  教师:看来上述结论正确。所以得到如下定理。

  定理:如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。

  教师:利用该定理可解决“能被3、9整除”的数字排列问题,请同学们先解答问题1。

  学生:尝试1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。

  教师:启发学生观察这些数字有何特点?提问学生。

  学生:可以看出只要从1、2、3、4、5、6这六个数中,选取的四个数字中含1(或2),或者同时含1、2,选取的四个数字之和都不是9的倍数。

  教师:请学生们继续尝试选取其他数字试一试。

  学生:3+4+5+6=18是9的倍数。

  教师:因此用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的数,就是由3、4、5、6进行全排列所得,共有=24(个)。

  故应选D。

  (4)学以致用。

  问题2:在用0、1、2、3、4、5这六个数字组成没有重复数字的自然数中,有多少个能被6整除的五位数?

  教师:从上面的定理知:如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。同学们对问题2有何想法?

  学生讨论:

  学生1:被6整除的五位数必须既能被2整除,又能被3整除,故能被6整除的五位数,即为各位数字之和能被3整除的五位偶数。

  学生2:由于1+2+3+4+5=15,能被3整除,所以选取的5个数字可分两类:一类是5个数字中无0,另一类是5个数字中有0(但不含3)。

  学生3:第一类:5个数字中无0的五位偶数有。

  第二类:5个数字中含有0不含3的五位偶数有两类,第一,0在个位有个;第二,个位是2或4有,所以共有+ 。

  学生4:由分类计数原理得:能被6整除的无重复数字的五位数共有+ + =108(个)。

  (5)概括强化。

  重点:了解数字排列问题的特点,理解掌握数字排列中3、9问题的规律。

  难点:数字排列知识的灵活应用。

  关键:证明的思路以及定理的得出。

  新学知识与已知知识之间的区别和联系:已知知识“由若干个数字排列成偶数”、“能被5整除的数”等问题,只要使排列成的数的个位数字为偶数,则这个数就是偶数,当排列成的数的个位数字为0或5时,则这个数就能被5整除”。新学知识“如果一个自然数n各个数位上的数字之和能被9整除,那么这个数n就能够被9整除;如果一个自然数n各个数位上的数字之和能被3整除,那么这个数n就能够被3整除。都是数字排列知识,要学会灵活应用。

  (6)作业。请同学们自拟练习题,以求达到熟练解决此类问题的目的。

  总之,探究式教学模式是针对传统教学的种种弊端提出来的,新课程改革强调改变课程过于注重知识的传授和过于强调接受式学习的状况,倡导学生主动参与乐于探究、勤于动手,让学生经历科学探究过程,学习科学研究方法,并强调获得知识、技能的过程成为学会学习和形成价值观的过程,以培养学生的探究精神、创新意识和实践能力。

高中数学教学设计4

  教学目标:

  1.掌握基本事件的概念;

  2.正确理解古典概型的两大特点:有限性、等可能性;

  3.掌握古典概型的概率计算公式,并能计算有关随机事件的概率.

  教学重点:

  掌握古典概型这一模型.

  教学难点:

  如何判断一个实验是否为古典概型,如何将实际问题转化为古典概型问题.

  教学方法:

  问题教学、合作学习、讲解法、多媒体辅助教学.

  教学过程:

  一、问题情境

  1.有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取一张,则抽到的牌为红心的概率有多大?

  二、学生活动

  1.进行大量重复试验,用“抽到红心”这一事件的频率估计概率,发现工作量较大且不够准确;

  2.(1)共有“抽到红心1” “抽到红心2” “抽到红心3” “抽到黑桃4” “抽到黑桃5”5种情况,由于是任意抽取的,可以认为出现这5种情况的可能性都相等;

  (2)6个;即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”,

  这6种情况的可能性都相等;

  三、建构数学

  1.介绍基本事件的概念,等可能基本事件的概念;

  2.让学生自己总结归纳古典概型的两个特点(有限性)、(等可能性);

  3.得出随机事件发生的概率公式:

  四、数学运用

  1.例题.

  例1

  有红心1,2,3和黑桃4,5这5张扑克牌,将其牌点向下置于桌上,现从中任意抽取2张共有多少个基本事件?(用枚举法,列举时要有序,要注意“不重不漏”)

  探究(1):一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球,共有多少个基本事件?该实验为古典概型吗?(为什么对球进行编号?)

  探究(2):抛掷一枚硬币2次有(正,反)、(正,正)、(反,反)3个基本事件,对吗?

  学生活动:探究(1)如果不对球进行编号,一次摸出2只球可能有两白、一黑一白、两黑三种情况,“摸到两黑”与“摸到两白”的可能性相同;而事实上“摸到两白”的机会要比“摸到两黑”的机会大.记白球为1,2,3号,黑球为4,5号,通过枚举法发现有10个基本事件,而且每个基本事件发生的可能性相同.

  探究(2):抛掷一枚硬币2次,有(正,正)、(正,反)、(反,正)、(反,反)四个基本事件.

  (设计意图:加深对古典概型的特点之一等可能基本事件概念的理解.)

  例2

  一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中

  一次摸出2只球,则摸到的两只球都是白球的概率是多少?

  问题:在运用古典概型计算事件的概率时应当注意什么?

  ①判断概率模型是否为古典概型

  ②找出随机事件A中包含的基本事件的个数和试验中基本事件的总数.

  教师示范并总结用古典概型计算随机事件的概率的步骤

  例3

  同时抛两颗骰子,观察向上的'点数,问:

  (1)共有多少个不同的可能结果?

  (2)点数之和是6的可能结果有多少种?

  (3)点数之和是6的概率是多少?

  问题:如何准确的写出“同时抛两颗骰子”所有基本事件的个数?

  学生活动:用课本第102页图3-2-2,可直观的列出事件A中包含的基本事件的个数和试验中基本事件的总数.

  问题:点数之和是3的倍数的可能结果有多少种?

  (介绍图表法)

  例4

  甲、乙两人作出拳游戏(锤子、剪刀、布),求:

  (1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.

  设计意图:进一步提高学生对将实际问题转化为古典概型问题的能力.

  2.练习.

  (1)一枚硬币连掷3次,只有一次出现正面的概率为_________.

  (2)在20瓶饮料中,有3瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率为_________..

  (3)第103页练习1,2.

  (4)从1,2,3,…,9这9个数字中任取2个数字,

  ①2个数字都是奇数的概率为_________;

  ②2个数字之和为偶数的概率为_________.

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1.基本事件,古典概型的概念和特点;

  2.古典概型概率计算公式以及注意事项;

  3.求基本事件总数常用的方法:列举法、图表法.

高中数学教学设计5

  函数的奇偶性

  函数的奇偶性是函数的重要性质,是对函数概念的深化.它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称.这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析.教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义.然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例.最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系.这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性.

  教学目标:

  1.通过具体函数,让学生经历奇函数、偶函数定义的.讨论,体验数学概念的建立过程,培养其抽象的概括能力.

  2.理解、掌握函数奇偶性的定义,奇函数和偶函数图像的特征,并能初步应用定义判断一些简单函数的奇偶性.

  3.在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的任务分析

  这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数,(k≠0),二次函数y=ax,(a≠0),故可在此基础上,引入奇、偶函数的概念,以便于学生理解.在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔.对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=f(x),一定有f(0)=0;既是奇函数,又是偶函数的函数有f(x)=0,x∈R.在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数.关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果.

  一、问题情景

  1.观察如下两图,思考并讨论以下问题:

  (1)这两个函数图像有什么共同特征?

  (2)相应的两个函数值对应表是如何体现这些特征的?可以看到两个函数的图像都关于y轴对称.从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同.

  对于函数f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事实上,对于R内任意的一个x,都有f(-x)=(-x)2=x2=f(x).此时,称函数y=x2为偶函数.

  2.观察函数f(x)=x和f(x)=的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征.

  22可以看到两个函数的图像都关于原点对称.函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值f(x)也是一对相反数,即对任一x∈R都有f(-x)=-f(x).此时,称函数y=f(x)为奇函数.

  二、建立模型

  由上面的分析讨论引导学生建立奇函数、偶函数的定义

  1.奇、偶函数的定义

  如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫作奇函数.如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫作偶函数.

  2.提出问题,组织学生讨论

  (1)如果定义在R上的函数f(x)满足f(-2)=f(2),那么f(x)是偶函数吗? (f(x)不一定是偶函数)

  (2)奇、偶函数的图像有什么特征?

  (奇、偶函数的图像分别关于原点、y轴对称) (3)奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)

  三、解释应用[例题]

  1.判断下列函数的奇偶性.

  注:①规范解题格式;②对于(5)要注意定义域x∈(-1,1].

  2.已知:定义在R上的函数f(x)是奇函数,当x>0时,f(x)=x(1+x),求f(x)的表达式.

  解:(1)任取x<0,则-x>0,∴f(-x)=-x(1-x),

  而f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=x(1-x).

  (2)当x=0时,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

  3.已知:函数f(x)是偶函数,且在(-∞,0)上是减函数,判断f(x)在(0,+∞)上是增函数,还是减函数,并证明你的结论.

  解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x)在(0,+∞)上是增函数,证明如下:

  任取x1>x2>0,则-x1<-x2<0.

  ∵f(x)在(-∞,0)上是减函数,∴f(-x1)>f(-x2).又f(x)是偶函数,∴f(x1)>f(x2).

  ∴f(x)在(0,+∞)上是增函数.

  思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?

  [练习]

  1.已知:函数f(x)是奇函数,在[a,b]上是增函数(b>a>0),问f(x)在[-b,-a]上的单调性如何.

  2. f(x)=-x3|x|的大致图像可能是()

  3.函数f(x)=ax2+bx+c,(a,b,c∈R),当a,b,c满足什么条件时,(1)函数f(x)是偶函数.(2)函数f(x)是奇函数. 4.设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

  四、拓展延伸

  1.有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2.设f(x),g(x)分别是R上的奇函数,偶函数,试研究:(1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.

  3.已知a∈R,f(x)=a-,试确定a的值,使f(x)是奇函数.

  4.一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?

高中数学教学设计6

  一.教材分析。

  ( 1)教材的地位与作用:《等比数列的前n项和》选自《普通高中课程标准数学教科书·数学

  ( 5),是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思

  想方法,都是学生今后学习和工作中必备的数学素养。

  (2)从知识的体系来看:“等比数列的前n项和”是“等差数列及其前n项和”与“等比数列”内容的延续、不仅加深对函数思想的理解,也为以后学数列的求和,数学归纳法等做好铺垫

  二.学情分析。

  ( 1)学生的已有的知识结构:掌握了等差数列的概念,等差数列的'通项公式和求和公式与方法,等比数列的概念与通项公式。

  ( 2)教学对象:高二理科班的学生,学习兴趣比较浓,表现欲较强,逻辑思维能力也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因而片面、不够严谨。

  (3)从学生的认知角度来看:学生很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q = 1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

  三.教学目标。

  根据教学大纲的要求、本节教材的特点和本班学生的认知规律,本节课的教学目标确定为:(1)知识技能目标————理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上,并能初步应用公式解决与之有关的问题。

  (2)过程与方法目标————通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.

  (3)情感,态度与价值观————培养学生勇于探索、敢于创新的精神,从探索中获得成功的体验,感受数学的奇异美、结构的对称美、形式的简洁美。

  四.重点,难点分析。

  教学重点:公式的推导、公式的特点和公式的运用。

  教学难点:公式的推导方法及公式应用中q与1的关系。

  五.教法与学法分析.

  培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。”这个观点从教学的角度来理解就是:知识不是通过教师传授得到的,而是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而

  获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。因此,本节课采用了启发式和探究式相结合的教学方法,让老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。一句话:还课堂以生命力,还学生以活力。

  六.课堂设计

  (一)创设情境,提出问题。(时间设定:3分钟)

  [利用投影展示]在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

  [设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点]

  提出问题1:同学们,你们知道西萨要的是多少粒小麦吗?

高中数学教学设计7

  教学目标

  1.明确等差数列的定义.

  2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

  3.培养学生观察、归纳能力.

  教学重点

  1. 等差数列的概念;

  2. 等差数列的通项公式

  教学难点

  等差数列“等差”特点的理解、把握和应用

  教具准备

  投影片1张

  教学过程

  (I)复习回顾

  师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

  (Ⅱ)讲授新课

  师:看这些数列有什么共同的.特点?

  1,2,3,4,5,6; ①

  10,8,6,4,2,…; ②

  生:积极思考,找上述数列共同特点。

  对于数列①(1≤n≤6);(2≤n≤6)

  对于数列②-2n(n≥1)(n≥2)

  对于数列③(n≥1)(n≥2)

  共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

  师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

  一、定义:

  等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

  如:上述3个数列都是等差数列,它们的公差依次是1,-2, 。

  二、等差数列的通项公式

  师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

  若将这n-1个等式相加,则可得:

  即:即:即:……

  由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

  如数列①(1≤n≤6)

  数列②:(n≥1)

  数列③:(n≥1)

  由上述关系还可得:即:则:=如:三、例题讲解

  例1:(1)求等差数列8,5,2…的第20项

  (2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

  解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

  (Ⅲ)课堂练习

  生:(口答)课本P118练习3

  (书面练习)课本P117练习1

  师:组织学生自评练习(同桌讨论)

  (Ⅳ)课时小结

  师:本节主要内容为:①等差数列定义。

  即(n≥2)

  ②等差数列通项公式 (n≥1)

  推导出公式:(V)课后作业

  一、课本P118习题3.2 1,2

  二、1.预习内容:课本P116例2P117例4

  2.预习提纲:

  ①如何应用等差数列的定义及通项公式解决一些相关问题?

  ②等差数列有哪些性质?

高中数学教学设计8

  教学目标

  (1)理解四种命题的概念;

  (2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;

  (3)理解一个命题的真假与其他三个命题真假间的关系;

  (4)初步掌握反证法的概念及反证法证题的基本步骤;

  (5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;

  (6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;

  (7)培养学生用反证法简单推理的技能,从而发展学生的思维能力。

  教学重点和难点

  重点:四种命题之间的关系;

  难点:反证法的运用。

  教学过程设计

  一、导入新课

  【练习】

  1、把下列命题改写成“若p则q”的形式:

  (1)同位角相等,两直线平行;

  (2)正方形的四条边相等。

  2、什么叫互逆命题?上述命题的逆命题是什么?

  将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论。

  如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题。

  上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线平行,则同位角相等”。

  值得指出的是原命题和逆命题是相对的。我们也可以把逆命题当成原命题,去求它的逆命题。

  3、原命题真,逆命题一定真吗?

  “同位角相等,两直线平行”这个原命题真,逆命题也真。但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真。

  学生活动:

  口答:

  (1)若同位角相等,则两直线平行;

  (2)若一个四边形是正方形,则它的四条边相等。

  设计意图:

  通过复习旧知识,打下学习否命题、逆否命题的基础。

  二、新课

  【设问】命题“同位角相等,两条直线平行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?

  【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不平行”,这个命题叫原命题的否命题。

  【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?

  学生活动:

  口答:若一个四边形不是正方形,则它的四条边不相等。

  教师活动:

  【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。把其中一个命题叫做原命题,另一个命题叫做原命题的否命题。

  若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定。

  【板书】原命题:若p则q;

  否命题:若┐p则q┐。

  【提问】原命题真,否命题一定真吗?举例说明?

  学生活动:

  讲论后回答:

  原命题“同位角相等,两直线平行”真,它的否命题“同位角不相等,两直线不平行”不真。

  原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真。

  由此可以得原命题真,它的否命题不一定真。

  设计意图:

  通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性。

  教师活动:

  【提问】命题“同位角相等,两条直线平行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?

  学生活动:

  讨论后回答

  【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不平行,则同位角不相等”,这个命题叫原命题的逆否命题。

  教师活动:

  【提问】原命题“正方形的四条边相等”的逆否命题是什么?

  学生活动:

  口答:若一个四边形的四条边不相等,则不是正方形。

  教师活动:

  【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。把其中一个命题叫做原命题,另一个命题就叫做原命题的.逆否命题。

  原命题是“若p则q”,则逆否命题为“若┐q则┐p。

  【提问】“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

  学生活动:

  讨论后回答

  这两个逆否命题都真。

  原命题真,逆否命题也真。

  教师活动:

  【提问】原命题的真假与其他三种命题的真

  假有什么关系?举例加以说明?

  【总结】

  1、原命题为真,它的逆命题不一定为真。

  2、原命题为真,它的否命题不一定为真。

  3、原命题为真,它的逆否命题一定为真。

  设计意图:

  通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性。

  教师活动总结。

  PF2|2.P为等轴双曲线x2y2a2上一点, F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。

  3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

  4.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。

  x2y211(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM平面bcd。

  变式一:空间四边形abcd中,e、f、g、h分别是边ab、bc、cd、da中点,连结ef、fg、gh、he、ac、bd请分别找出图中满足线面平行位置关系的所有情况。(共6组线面平行)

  变式二:在变式一的图中如作pq?ef,使p点在线段ae上、q点在线段fc上,连结ph、qg,并继续探究图中所具有的线面平行位置关系?(在变式一的基础上增加了4组线面平行),并判断四边形efgh、pqgh分别是怎样的四边形,说明理由。

  [设计意图:设计二个变式训练,目的是通过问题探究、讨论,思辨,及时巩固定理,运用定理,培养学生的识图能力与逻辑推理能力。]例2:如图,在正方体abcd—a1b1c1d1中,e、f分别是棱bc与c1d1中点,求证:ef

高中数学教学设计9

  教学目标

  1.使学生了解反函数的概念;

  2.使学生会求一些简单函数的反函数;

  3.培养学生用辩证的观点观察、分析解决问题的能力。

  教学重点

  1.反函数的概念;

  2.反函数的求法。

  教学难点

  反函数的概念。

  教学方法

  师生共同讨论

  教具装备

  幻灯片2张

  第一张:反函数的定义、记法、习惯记法。(记作A);

  第二张:本课时作业中的预习内容及提纲。

  教学过程

  (I)讲授新课

  (检查预习情况)

  师:这节课我们来学习反函数(板书课题)§2.4.1反函数的概念。

  同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?

  生:(略)

  (学生回答之后,打出幻灯片A)。

  师:反函数的定义着重强调两点:

  (1)根据y=f(x)中x与y的关系,用y把x表示出来,得到x=φ(y);

  (2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。

  师:应该注意习惯记法是由记法改写过来的。

  师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?

  生:一一映射确定的.函数才有反函数。

  (学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。

  师:在y=f(x)中与y=f-1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。)

  在y=f(x)中与y=f–1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)

  由此,请同学们谈一下,函数y=f(x)与它的反函数y=f–1(x)两者之间,定义域、值域存在什么关系呢?

  生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的值域、定义域。

  师:从反函数的概念可知:函数y=f(x)与y=f–1(x)互为反函数。

  从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:

  (1)由y=f(x)解出x=f–1(y),即把x用y表示出;

  (2)将x=f–1(y)改写成y=f–1(x),即对调x=f–1(y)中的x、y。

  (3)指出反函数的定义域。

  下面请同学自看例1

  (II)课堂练习课本P68练习1、2、3、4。

  (III)课时小结

  本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。

  (IV)课后作业

  一、课本P69习题2.41、2。

  二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。

  板书设计

  课题:求反函数的方法步骤:

  定义:(幻灯片)

  注意:小结一一映射确定的函数才有反函数,函数与它的反函数定义域、值域的关系。

高中数学教学设计10

  函数的奇偶性是函数的重要性质,是对函数概念的深化。它把自变量取相反数时函数值间的关系定量地联系在一起,反映在图像上为:偶函数的图像关于y轴对称,奇函数的图像关于坐标原点成中心对称。这样,就从数、形两个角度对函数的奇偶性进行了定量和定性的分析。

  教材首先通过对具体函数的图像及函数值对应表归纳和抽象,概括出了函数奇偶性的准确定义。然后,为深化对概念的理解,举出了奇函数、偶函数、既是奇函数又是偶函数的函数和非奇非偶函数的实例。最后,为加强前后联系,从各个角度研究函数的性质,讲清了奇偶性和单调性的联系。这节课的重点是函数奇偶性的定义,难点是根据定义判断函数的奇偶性。

  教学目标

  1、通过具体函数,让学生经历奇函数、偶函数定义的讨论,体验数学概念的建立过程,培养其抽象的概括能力。

  2、理解、掌握函数奇偶性的定义,奇函数和偶函数图像的.特征,并能初步应用定义判断一些简单函数的奇偶性。

  3、在经历概念形成的过程中,培养学生归纳、抽象概括能力,体验数学既是抽象的又是具体的。

  任务分析

  这节内容学生在初中虽没学过,但已经学习过具有奇偶性的具体的函数:正比例函数y=kx,反比例函数 ,k≠0,二次函数y=ax,a≠0,故可在此基础上,引入奇、偶函数的概念,以便于学生理解。在引入概念时始终结合具体函数的图像,以增加直观性,这样更符合学生的认知规律,同时为阐述奇、偶函数的几何特征埋下了伏笔。

  对于概念可从代数特征与几何特征两个角度去分析,让学生理解:奇函数、偶函数的定义域是关于原点对称的非空数集;对于在有定义的奇函数y=fx,一定有f0=0既是奇函数,又是偶函数的函数有fx=0,x∈R在此基础上,让学生了解:奇函数、偶函数的矛盾概念———非奇非偶函数。关于单调性与奇偶性关系,引导学生拓展延伸,可以取得理想效果。

  教学设计

  一、问题情景

  1、观察如下两图,思考并讨论以下问题:

  (1)这两个函数图像有什么共同特征?

  (2)相应的两个函数值对应表是如何体现这些特征的?

  可以看到两个函数的图像都关于y轴对称。

  从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相同。

  对于函数fx=x,有f3=9=f3,f2=4=f2,f1=1=f1。事实上,对于R内任意的一个x,都有fx=x2=x2=fx。此时,称函数y=x2为偶函数。

  2、观察函数fx=x和fx= 的图像,并完成下面的两个函数值对应表,然后说出这两个函数有什么共同特征。

  可以看到两个函数的图像都关于原点对称。函数图像的这个特征,反映在解析式上就是:当自变量x取一对相反数时,相应的函数值fx也是一对相反数,即对任一x∈R都有fx=fx。此时,称函数y=fx为奇函数。

  二、建立模型

  由上面的分析讨论引导学生建立奇函数、偶函数的定义

  1奇、偶函数的定义

  如果对于函数fx的定义域内任意一个x,都有fx=fx,那么函数fx就叫作奇函数。如果对于函数fx的定义域内任意一个x,都有fx=fx,那么函数fx就叫作偶函数。

  2、提出问题,组织学生讨论

  (1)如果定义在R上的函数fx满足f2=f2,那么fx是偶函数吗? fx不一定是偶函数

  (2)奇、偶函数的图像有什么特征?

  (奇、偶函数的图像分别关于原点、y轴对称)

  3奇、偶函数的定义域有什么特征? (奇、偶函数的定义域关于原点对称)

  三、解释应用

  [例 题]

  1、判断下列函数的奇偶性。

  注:①规范解题格式;

  ②对于5要注意定义域x∈1,1]。

  2、已知:定义在R上的函数fx是奇函数,当x>0时,fx=x1+x,求fx的表达式。

  解:1任取x<0,则x>0,∴fx=x1x,

  而fx是奇函数,∴fx=fx。∴fx=x1x。

  (2)当x=0时,f0=f0,∴f0=f0,故f0=0

  3、已知:函数f(x是偶函数,且在∞,0上是减函数,判断fx在0,+∞)上是增函数,还是减函数,并证明你的结论。

  解:先结合图像特征:偶函数的图像关于y轴对称,猜想f(x在0,+∞)上是增函数,

  证明如下:

  任取x1>x2>0,则x1

  ∵fx在∞,0上是减函数,∴fx1>fx2。 又fx是偶函数,∴fx1>fx2。

  ∴f(x在0,+∞)上是增函数。

  思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?

  [练 习]

  1、已知:函数fx是奇函数,在[a,b]上是增函数b>a>0,问fx在[b,a]上的单调性如何。

  2fx=x3|x|的大致图像可能是

  3、函数fx=ax2+bx+c,a,b,c∈R,当a,b,c满足什么条件时,1函数fx是偶函数。2函数fx是奇函数。 4设fx,gx分别是R上的奇函数和偶函数,并且fx+gx=xx+1,求fx,gx的解析式。

  四、拓展延伸

  1、有既是奇函数,又是偶函数的函数吗?若有,有多少个? 2设fx,gx分别是R上的奇函数,偶函数,试研究: 1Fx=fx·gx的奇偶性。 2Gx=|fx|+gx的奇偶性。

  3、已知a∈R,fx=a ,试确定a的值,使fx是奇函数。

  4、一个定义在R上的函数,是否都可以表示为一个奇函数与一个偶函数的和的形式?

高中数学教学设计11

  一、学习目标与任务

  1、学习目标描述

  知识目标

  (A)理解和掌握圆锥曲线的第一定义和第二定义,并能应用第一定义和第二定义来解题。

  (B)了解圆锥曲线与现实生活中的联系,并能初步利用圆锥曲线的知识进行知识延伸和知识创新。

  能力目标

  (A)通过学生的操作和协作探讨,培养学生的实践能力和分析问题、解决问题的能力。

  (B)通过知识的再现培养学生的创新能力和创新意识。

  (C)专题网站中提供各层次的例题和习题,解决各层次学生的学习过程中的各种的需要,从而培养学生应用知识的能力。

  德育目标

  让学生体会知识产生的全过程,培养学生运动变化的辩证唯物主义思想。

  2、学习内容与学习任务说明

  本节课的内容是圆锥曲线的第一定义和圆锥曲线的统一定义,以及利用圆锥曲线的定义来解决轨迹问题和最值问题。

  学习重点:圆锥曲线的第一定义和统一定义。

  学习难点:圆锥曲线第一定义和统一定义的应用。

  明确本课的重点和难点,以学习任务驱动为方式,以圆锥曲线定义和定义应用为中心,主动操作实验、大胆分析问题和解决问题。

  抓住本节课的重点和难点,采取的基于学科专题网站下的三者结合的教学模式,突出重点、突破难点。

  充分利用《圆锥曲线》专题网站内的内容,在着重学习内容的基础上,内延外拓,培养学生的创新精神和克服困难的信心。

  二、学习者特征分析

  (说明学生的学习特点、学习习惯、学习交往特点等)

  l本课的学习对象为高二下学期学生,他们经过近两年的高中学习,已经有一定的学习基础和分析问题、解决问题的能力,基本的计算机操作较为熟练。

  高二年下学期学生由于高考的压力,他们保持着传统教学的学习习惯,在

  l课堂上的主体作用的体现不是太充分,但是如果他们还是乐于尝试、勇于探索的。

  高二年的学生在学习交往上“个别化学习”和“协作讨论学习”并存,也就是说学生是具有一定的群体性小组交流能力与协同讨论学习能力的,还是能完成上课时教师布置的协作学习任务的。

  三、学习环境选择与学习资源设计

  1.学习环境选择(打√)

  (1)Web教室(√)(2)局域网(3)城域网(4)校园网(√)(5)Internet(√)

  (6)其它

  2、学习资源类型(打√)

  (1)课件(网络课件)(√)(2)工具(3)专题学习网站(√)(4)多媒体资源库

  (5)案例库(6)题库(7)网络课程(8)其它

  3、学习资源内容简要说明

  (说明名称、网址、主要内容等)

  《圆锥曲线专题网站》:从自然与科技、定义与应用、性质与实践和创新与未来四个方面围绕圆锥曲线进行探讨与研究。(IP:192.168.3.134)

  用Flash5、几何画板和Authorware6制作可操作且具有交互性的网络课件放在专题网站里。

  四、学习情境创设

  1、学习情境类型(打√)

  (1)真实性情境(√)(2)问题性情境(√)

  (3)虚拟性情境(√)(4)其它

  2、学习情境设计

  真实性情境:用Flash5制作的一系列教学软件。用几何画板制作的《圆锥曲线的统一定义》的教学软件。

  问题性情境:圆锥曲线的截取方法、圆锥曲线的各种定义、典型例题。

  虚拟性情境:Authorware6制作的《圆锥曲线的截取》,模拟曲线截取。

  五、学习活动的组织

  1、自主学习设计(打√并填写相关内容)

  (1)抛锚式

  (2)支架式(√)相应内容:圆锥曲线的第一定义和统一定义。

  使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。

  学生活动:分析、操作、协作讨论、总结、提交结论。

  教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。

  (3)随机进入式(√)相应内容:圆锥曲线定义的典型应用。

  使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。

  学生活动:根据自身情况选题、分析题目、协作讨论、解答题目。

  教师活动:讲解例题,总结点评学生做题过程中的问题。

  (4)其它

  2、协作学习设计(打√并填写相关内容)

  (1)竞争

  (2)伙伴(√)

  相应内容:圆锥曲线的第一定义和统一定义

  使用资源:数学教材、专题网站及专题网站下的多媒体教学软件。

  分组情况:每组三人

  学生活动:学生之间对圆锥曲线的定义展开讨论,从而达到对定义的理解和掌握。

  教师活动:问题的提出。学习资源获取路径的指导。问题解答和咨询。

  (3)协同(√)

  相应内容:圆锥曲线定义的典型应用。

  使用资源:轨迹问题、最值问题、其它问题三种典型例题以及各个题目的动画演示和答案。

  分组情况:每组三人。

  学生活动:通过协作讨论区,同学之间互相配合、互相帮助、各种观点互相补充。

  教师活动:总结点评学生做题过程中的'问题。

  (4)辩论

  (5)角色扮演

  (6)其它

  4、教学结构流程的设计

  六、学习评价设计

  1、测试形式与工具(打√)

  (1)堂上提问(√)(2)书面练习(3)达标测试(4)学生自主网上测试(√)(5)合作完成作品(6)其它

  2、测试内容

  教师堂上提问:圆锥曲线的定义、学生提交的结论的完整性、学生协作讨论时的疑问、例题讲解过程中问题,课堂总结。

  学生自主网上测试:解决轨迹问题、最值问题、其它问题三种典型题目。

  (附)圆锥曲线专题网站设计分析

  (1)设计思路

  (A)给学生操作与实践的机会:在每一环节中建设一个可供学生操作的实验平台。

  (B)突出教学中“主导和主体”的作用:在每一环节中建设一个可供师生交流的平台。

  (C)突出知识的再创新过程和知识的延伸:如圆锥曲线的作法和知识的创新与应用。

  (D)强调教学软件的交互性:如在题目中给出提示的动画过程和解答过程。

  (E)突出和各学科的联系:如斜抛运动和行星运动等等。

  (F)强调分层次的教学:

  如在知识应用中的配置不同层次的例题和练习:

  (2)网站导航图

高中数学教学设计12

  教学准备

  教学目标

  解三角形及应用举例

  教学重难点

  解三角形及应用举例

  教学过程

  一.基础知识精讲

  掌握三角形有关的定理

  利用正弦定理,可以解决以下两类问题:

  (1)已知两角和任一边,求其他两边和一角;

  (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:

  (1)已知三边,求三角;

  (2)已知两边和它们的夹角,求第三边和其他两角。

  掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.

  二.问题讨论

  思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的`情况的讨论.

  思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.

  例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。

  一. 小结:

  1.利用正弦定理,可以解决以下两类问题:

  (1)已知两角和任一边,求其他两边和一角;

  (2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);

  2.利用余弦定理,可以解决以下两类问题:

  (1)已知三边,求三角;

  (2)已知两边和它们的夹角,求第三边和其他两角。

  3.边角互化是解三角形问题常用的手段.

  三.作业:P80闯关训练

高中数学教学设计13

  一、教材分析

  1.熟悉教材内容在教材体系中的地位和作用,理清教材内容的逻辑结构

  将教材内容放在教材体系之中,研究它在一章中、一个学习阶段中、初中或高中学段中甚至整个中学学段中的地位和作用,理清教材内容的逻辑结构就是要弄清楚教材内容主要包含哪些知识点,这些知识点之间有何内在的逻辑关系。

  2.分析出核心内容以及所蕴涵的数学思想方法

  分析教材不仅要理清教材内容的逻辑结构,更要分析出对数学学科具有重要影响且处于主干地位、对学生数学认知结构具有不可或缺的基础作用的核心内容以及核心内容的内容核心,还要分析出内容本身所蕴涵的数学思想方法。

  3.突出教材的重点和难点

  教学重点是学习内容中主要的、基本的、中心的`内容。针对课时(一堂课),除了主要的、基本的、中心的知识技能是教学的重点外,诸如概念形成与定义过程;公式、定理、法则的探究过程;应用题的审题和分析等也可确定为不同课的重点。

  教学难点是学生难于理解和掌握的学习内容,或是学生易于混淆或出错的学习内容。这些内容相对于学生而言,较为抽象、复杂,离生活实际较远。

  二、学情分析

  1.分析学生原有的认知基础

  即学生学习该内容时所具备的与该内容相联系的知识、技能、方法、能力等,以确定新课的起点,做好承上启下、新旧知识的有机衔接工作。

  2.了解学生的生理、心理

  中学生的认识能力有一个逐步发展的过程,他们抽象思维能力较低,对教材中概念、原理、规律等知识的理解比较困难;形象思维能力强,精力旺盛,但注意力容易分散。通过分析了解不同层次学生的生理心理与学习该内容是否相匹配及可能产生的知识误区,充分预见可能存在的问题,在课堂上有针对性地加以分析,使教学工作具有较强的预见性,针对性和功效性。

  三、教学目标

  1.知识和技能目标,是对学生学习结果的描述,即学生通过学习所要达到的结果,又叫结果性目标。这种目标一般有三个层次的要求:学懂、学会、能应用。

  2.过程与方法目标,是学生在教师的指导下,如何获取知识和技能的程序和具体做法,是过程中的目标,又叫程序性目标。这种目标强调三个过程:做中学、学中做、反思。

  3.情感态度和价值观目标,是学生对过程或结果的体验后的倾向和感受,是对学习过程和结果的主观经验,又叫体验性目标。它的层次有认同、体会、内化三个层次。

  知识与技能目标是过程与方法目标、情感态度与价值观目标的基础;过程与方法目标是实现知识与技能目标的载体,情感态度与价值观目标对其他目标有重要的促进和优化作用。

  四、教学方法

  中学数学常用的教学方法有讲授法、谈话法、演示法、练习法、问题探究法和情境教学法等。

  五、教案的撰写

高中数学教学设计14

  重点难点教学:

  1.正确理解映射的概念;

  2.函数相等的两个条件;

  3.求函数的定义域和值域。

  教学过程:

  1.使学生熟练掌握函数的概念和映射的定义;

  2.使学生能够根据已知条件求出函数的定义域和值域; 3.使学生掌握函数的三种表示方法。

  教学内容:

  1.函数的定义

  设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB?为从集合A到集合B的一个函数(function),记作:,yf A其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的.集合{|}f A?叫值域(range)。显然,值域是集合B的子集。

  注意:

  ① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  2.构成函数的三要素定义域、对应关系和值域。

  3、映射的定义

  设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

  4.区间及写法:

  设a、b是两个实数,且a

  (1)满足不等式axb??的实数x的集合叫做闭区间,表示为[a,b];

  (2)满足不等式axb??的实数x的集合叫做开区间,表示为(a,b);

  5.函数的三种表示方法

  ①解析法

  ②列表法

  ③图像法

高中数学教学设计15

  一、教材分析

  本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。

  二、学生学习情况分析

  刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。

  三、设计理念

  本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。

  四、教学目标

  1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;

  2.能借助计算器或计算机画出具体对数函数的'图象,探索并了解对数函数的单调性与特殊点;

  3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。

  五、教学重点与难点

  重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.

  六、教学过程设计

  教学流程:背景材料→引出课题→函数图象→函数性质→问题解决→归纳小结

  (一)熟悉背景、引入课题

  1.让学生看材料:

  材料1(幻灯):马王堆女尸千年不腐之谜:一九七二年,马王堆考古发现震惊世界,专家发掘西汉辛追遗尸时,形体完整,全身润泽,皮肤仍有弹性,关节还可以活动,骨质比现在六十岁的正常人还好,是世界上发现的首例历史悠久的湿尸。大家知道,世界发现的不腐之尸都是在干燥的环境风干而成,譬如沙漠环境,这类干尸虽然肌肤未腐,是因为干燥不利细菌繁殖,但关节和一般人死后一样,是僵硬的,而马王堆辛追夫人却是在湿润的环境中保存二千多年,而且关节可以活动。人们最关注有两个问题,第一:怎么鉴定尸体的年份?第二:是什么环境使尸体未腐?其中第一个问题与数学有关。

  图4—1 (如图4—1在长沙马王堆“沉睡”近2200年的古长沙国丞相夫人辛追,日前奇迹般地“复活”了)那么,考古学家是怎么计算出古长沙国丞相夫人辛追“沉睡”近2200年?上面已经知道考古学家是通过提取尸体的残留物碳14的残留量p,利用t?logp 57302估算尸体出土的年代,不难发现:对每一个碳14的含量的取值,通过这个对应关系,生物死亡年数t都有唯一的值与之对应,从而t是p的函数;

  如图4—2材料2(幻灯):某种细胞分裂时,由1个分裂成2个,2个分裂成4个??,如果要求这种细胞经过多少次分裂,大约可以得到细胞1万个,10万个??,不难发现:分裂次数y就是要得到的细胞个数x的函数,即y?log2x;

  图4—2 1.引导学生观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数y?logax(a?0,且a?1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).

  1对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:注意:○ x2对数函数对底数的限制:(a?0,都不是对数函数.○5y?2log2x,y?log5且a?1).

  3.根据对数函数定义填空;

  例1 (1)函数y=logax的定义域是___________ (其中a>0,a≠1) (2)函数y=loga(4-x)的定义域是___________ (其中a>0,a≠1)说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理

  解,所以把教材中的解答题改为填空题,节省时间,点到为止,以避免挖深、拓展、引入复合函数的概念。

  [设计意图:新课标强调“考虑到多数高中生的认知特点,为了有助于他们对函数概念本质的理解,不妨从学生自己的生活经历和实际问题入手”。因此,新课引入不是按旧教材从反函数出发,而是选择从两个材料引出对数函数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型。这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点] 2

  (二)尝试画图、形成感知1.确定探究问题

  教师:当我们知道对数函数的定义之后,紧接着需要探讨什么问题?学生1:对数函数的图象和性质

  教师:你能类比前面研究指数函数的思路,提出研究对数函数图象和性质的方

  法吗?

  学生2:先画图象,再根据图象得出性质

  教师:画对数函数的图象是否象指数函数那样也需要分类?学生3:按a?1和0?a?1分类讨论

  教师:观察图象主要看哪几个特征?

  学生4:从图象的形状、位置、升降、定点等角度去识图

  教师:在明确了探究方向后,下面,按以下步骤共同探究对数函数的图象:步骤一:(1)用描点法在同一坐标系中画出下列对数函数的图象y?log2xy?log1x 2 (2)用描点法在同一坐标系中画出下列对数函数的图象y?log3xy?log1x 3步骤二:观察对数函数y?log2x、y?log3x与y?log1x、y?log1x的图象特23征,看看它们有那些异同点。

  步骤三:利用计算器或计算机,选取底数a(a?0,且a?1)的若干个不同的值,

  在同一平面直角坐标系中作出相应对数函数的图象。观察图象,它们有哪些共同特征?

  步骤四:规纳出能体现对数函数的代表性图象

  步骤五:作指数函数与对数函数图象的比较2.学生探究成果

  (1)如图4—3、4—4较为熟练地用描点法画出下列对数函数y?log2x、 y?log1x、 y?log3x、y?log1x的图象23图4—3图4—4 (2)如图4—5学生选取底数a=1/4、1/5、1/6、1/10、4、5、6、10,并推荐几位代表上台演示‘几何画板’,得到相应对数函数的图象。由于学生自己动手,加上‘几何画板’的强大作图功能,学生非常清楚地看到了底数a是如何影响函数y?logax(a?0,且a?1)图象的变化。

  图4—5 (3)有了这种画图感知的过程以及学习指数函数的经验,学生很明确y = loga x (a>1)、y = loga x (0(中部)