解方程的教学反思
作为一名到岗不久的人民教师,我们的任务之一就是课堂教学,借助教学反思我们可以拓展自己的教学方式,那要怎么写好教学反思呢?下面是小编精心整理的解方程的教学反思,欢迎阅读,希望大家能够喜欢。
解方程的教学反思1
《解方程》是人教课标版小学数学五年级上册第四单元内容,本节课是在认识用字母表示数的基础上进行教学的,新课程解方程教学与以往的最大不同就是,不是利用加减乘除各部分间的关系来解,而是利用天平保持平衡的原理,也就是我们常说的等式的基本性质解方程。
我对课时安排及教学设计均做了较大调整。原订计划是第一课时完成“方程的解”及“解方程”概念教学,要求学生掌握方程检验的书写格式,第二课时完成加、减、乘、除各类型方程解法的教学。调整后的教案改为第一课时完成“方程的解”及“解方程”概念教学、会解形如X±A=B的方程,掌握检验的格式;第二课时只完成乘除法方程的解法。我上的是第一课时,其次对于教学设计也做了相应处理,将例1 改为:X+20=70,又将X-a=b形式的方程穿插学习过程之中。
为什么我会做如此改动呢?基于以下两点原因:
1、考虑到学生一节课内如要掌握加减乘除各种类型方程的解法、理解解方程的原理,规范书写格式,内容太多,怕影响教学效果。2、如果能将“解方程”与“方程的解”这两个概念结合规范的解方程书写过程和结果来向学生解释,更利于学生理解掌握。总体思路如下:
1、从复习天平保持平衡的道理入手,引出课题,引导学习质疑,有利于激发学生主动探究、深入学习的积极性。
2、通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。
3、给足够的时间让学生学习,让学生发现。
4、多层次的练习形式,有利于学生对知识进一步的理解与掌握,并及时有效地巩固强化概念。
5、教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学习方法,总结失败原因,发扬成功经验,培养良好的学习习惯。
6、自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。
在具体教学过程中,我从以下几个方面入手:
一、感受天平的平衡现象,悟出等式的性质变化。
教学中我先利用课件演示了“我说你答”的游戏让学生回顾:天平两端同时加上或减去同样的'重量,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后出示例题X+20=70
二、利用 等式性质解方程-,初步感悟它的妙用
在计算过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,通过讨论:方程X+20=70中左右两边同时减去的为什么是20,而不是其它数呢?让学生明白:左边减去20是为了使方程左边只剩,右边减去20是为了使方程两边仍然相等!不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学习活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。
三、确保正确率,及时进行检验。
原来的检验过程需要完整地写出左边与右边相等的过程,小学生在这个方面就会显得不耐烦,在经历了一个详细的检验过程之后,然后教给学生一个简便的检验方法,学生都很兴奋,积极性也很高涨,而且主动性也很好,这样解决问题的正确率也提高了。
通过教学,发现学生对这种方法掌握的很好,而且很乐意用等式的性质来解方程,但同时让我感到了一点困惑:
从教材的编排上,整体难度下降,有意避开了,形如:A—X=B 和 A÷X=B等类型的题目。把用等式解决的方法单一化了。在实际教学中,如果用等式性质来解就比较麻烦。很显然这种方法存在着目前的局限性。对于好的学生来说,我们会让他们尝试接受——解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。但是用减法和除法各部分之间的关系解答就比较简单。这会不会与教材主倡导的用等式的性质解决问题有矛盾呢?
解方程的教学反思2
本节课的内容是在学生学习了用字母表示数、等式的性质的基础上进行学习的。本册教材的解方程不仅安排了形如x+a=bx-a=bax=bx÷a=b这样的简单方程,还安排了形如a-x=ba÷x=b这样的特殊方程。
成功之处:
1、淡化依据逆运算关系解方程,与初中数学相衔接。根据《标准(20xx)》的要求,从小学就引入等式的基本性质,并以此为基础导出解方程的方法,这样就避免了同一内容两种思路、两种算理解释的现象,有利于改善和加强中小学数学教学的衔接。从而摒弃了原来依据逆运算解方程的思路,能有效降低学生学习的.难度,也降低了记忆的难度。实际上依据逆运算解方程就是用算术的思路求未知数,只适合解一些简单的方程,到了中学还要重新另起炉灶。因此,利用等式的性质解方程能够帮助学生深入的理解方程的意义,能深入理解方程所揭示的等量关系,也更有助于逐步感悟方程的实质、等价思想和建模思想。
2、重点教学特殊方程,体会用等式性质解方程的优势。在例3的教学中,先让学生自主尝试解方程20-x=9,大部分学生依据前面学习的内容写成了下面的过程:20-x=9
解:20-x+20=9+20
x=29
可是学生经过检验发现x=29并不是方程的解,从而引导学生讨论怎样把新知识转化为旧知识来解决问题。
不足之处:
1、在练习中由于课本这样的练习太少,没有增加相应的题目,学生熟练的程度还是比较欠缺。
2、学生对于归纳总结出来的特殊方程的解法还没有内化,导致学生出现解普通方程和特殊方程在解法上相混淆。
再教设计:
1、及时总结特殊方程的解法:当未知数是减数或除数时,方程两边要同时加上或乘未知数,再解方程。
2、要弄清什么是减数和除数,避免出现不必要的错误。
解方程的教学反思3
教学解方程共5个例题,以前的教法是利用加减乘除各部分之间的关系解;新教材使用的方法是利用等式的性质,应该说这种方法不用怎样理解,方程两边同时加减乘除一个数,方程两边依然相等。而利用加减乘除各部分之间的关系解,学生由于因各部分之间的关系混乱容易出错,而初中的教学也是利用了等式的性质,于是和本组老师讨论了一下,确定利用等式的性质进行教学,最后学生掌握方法之后,再利用加减乘除各部分之间的'关系讲解一遍。然后让学生根据自己实际情况灵活运用。
可是跟设想的不一样,利用等式的性质进行教学时,有些地方学生还是不好理解,我分析了一下,觉得存在这样的问题。
1、如32-X=45,6÷x=3这样的方程,X在里面,学生不好理解为什么方程两边同时加X或同时乘X,我和学生又从天平开始,讲解,如果两边同时减32,或同时除以6,依然算不出X,我们如果同时加X或同时乘X,然后变成a+X=b或ax=b的形式,再利用所学的方法进行解方程就可以了,可是依然有部分学生没有掌握起来。
2、书写问题,利用等式的性质进行解方程时,书写比较繁琐,学生在比较之后,还是觉得用加减乘除各部分之间的关系解题时,书写简单一些。
所以,鉴于存在的问题,应该让两种方法同时并存,让学生根据自己情况,灵活选择解方程的方法。
解方程的教学反思4
本节课的内容是在学生学了等式的性质和解形如a+x=b x — a =b ax=bx÷a =b这样的一般方程基础上进行教学的。成功之处:如何解决形如a — x =b a÷x =b这样的特殊方程,关键是启发学生思考,根据哪一条等式性质,怎样将新的问题转化为已经解决的旧的问题。在教学中,我首先让学生试做看看遇到了什么样的难题,部分学生发现20—x=9解:20—x—20=9—20在解决问题的过程中遇到了方程右边不够减的情况,方程左边是“—x”。正当学生无从下手,不知所措的情形下,启发学生当我们遇到新问题时怎么解决呢?学生会想到联系前面学习的旧知识来解决,那你认为应该把这样的`减法方程转化为什么运算的方程呢?学生很容易想到把这样的减法方程转化为加法方程就可以解决新问题,接着教师再紧跟着启发学生,如何根据我们学过的知识进行转化呢?
通过学生思考、讨论和交流,可以根据等式的性质进行转化,从而得出:20—x=9在解决特殊方程的过程中,学生有的解:20—x+x=9+x还想到利用加减法之间的关系来解决,直20=9+x接得出9+x=20也是可以的,肯定学生的9+x =20思考方法的合理性,但是也要告诉学生,9+x—9 =20—9这样的思考方法到了中学解决更加复杂X=11的方程就无能为力了,为了使小学和中学的知识能更好的衔接,我们重点应用等式的性质把特殊方程转化为一般方程,然后依据一般方程的方法解决问题。不足之处:在练习中出现个别学生不注意观察方程是一般方程还是特殊方程,导致出错。再教设计:重点强化特殊方程的特点,让学生在解方程的过程中首先要观察方程的特点,然后采取相应的解决问题的方法。
解方程的教学反思5
最近课堂上学习了《解方程》,是以等式的基本性质为基础来解决的。过去在小学教学简易方程,方程变形的依据是加减运算的关系或乘除运算的关系。这实际上是用算数的思路求未知数,但学生到了中学又要另起炉灶,引入等式的基本形式或方程的同解原理来学习解方程。现在,根据《标准(20xx)》的要求,从小学起就引起等式的基本性质,并以此为基础导出解方程的方法。新课程数学教学这样安排体现了“瞻前顾后”的道理,更加注重知识的迁移和联系,使得小学的知识要与初中的知识更加的接轨。
教材中分为5个例题,分别是不同类型:x±a=b;
ax=b;
a-x=b;
ax+b=c;
a(x±b)=c,这几个类型层次依次递进,难度由简到难。其中例1不仅是教授x±a=b类型的.解方程,还要让学生理解“方程的解”、“解方程”两个概念。刚开始时学生不易区分,但随着后面例题的讲解,并且在解方程的过程中,学生慢慢理解并内化能区分开这两个概念。
通过几天对解方程的练习,大部分学生对解方程的目的以及检验的方法和步骤都有了较好的掌握,也能分清该利用哪个等式性质来解方程。但是在课堂练习和改作业时,发现部分学生还有一些问题存在:
一、用方程来表示较复杂的数量关系学生出现困难,是通过我的帮助列出方程,应及时让学生巩固方法。
二、对于例3形式的解方程,学生还容易出错,如32-x=45,6÷x=3这样的方程,x前面是“-和÷”,学生不好理解为什么方程两边同时“+x”或同时“×x”,我又借助天平讲解:如果两边同时减32或同时除以6,依然算不出x,如果同时加x或同时×x,然后就能变成x+a=b或ax=b的形式,再利用所学方法进行解方程就可以了。这个类型还需要加强训练,让学生能快速区分开来是加数还是要加一个含有未知数的式子。
三、解方程时学生丢步骤,如:2x+6=18这样的方程,学生都知道第一步要等式两边同时减去6,得到“2x=12”,但这一步有部分学生会直接写成“x=12”,说明还需强调2x是一个整体,第一步解完后并不是最后的解,还需让等式两边同时除以2才能得出。
四、检验时学生的步骤丢三落四较多,或丢掉“=方程右边”;
或丢掉最后一句话“x=2是方程的解”。
《简易方程》这单元是本册的重点,解方程又是本单元的一大难点,所以后面的教学时,我除了让学生观察方程中未知数的位置和前面符号来解方程外,还应要求学生说得清,能讲清楚理由,从而在理解变形依据、过程的基础上掌握所学方程的解法。
解方程的教学反思6
创造性地使用教材,是教师的主导作用的体现。本课时教材在使用时至少有三处贯穿了这样的思想。教师这个“教练”、“导演”应该引导学生充分利用其课文内在的资源,使其发挥最大的作用。如:
(1)开始引例“图示”的内容,让学生用其素材编题。
(2)本例解题过程回答题中两个未知量的解答环节。
(3)通过让学生自编用整体思想解答的方程。
这些环节的设置,对系统地、全面地培养学生捕捉信息、分析信息和处理信息的'能力有非常大的作用,对学生课上反思、课上内化知识的能力提高。作为教师,应该长期坚持与学生在这方面切磋、探索,把课堂充分还给学生,充分尊重学生的个性思维,引导学生构建自己的认知结构,并给予适时调控和指导。
解方程的教学反思7
教学重难点是掌握较复杂方程的解法,会正确分析题目中的数量关系;教学目的是进一步掌握列方程解决问题的方法。这一小节内容是在前面初步学会列方程解比较容易的应用题的基础上,教学解答稍复杂的两步计算应用题。例1若用算术方法解,需逆思考,思维难度大,学生容易出现先除后减的错误,用方程解,思路比较顺,体现了列方程解应用题的优越性。
一、从学生喜闻乐见的事物入手,降低问题的难度。
解答例1这类应用题的关键是找题里数量间的相等关系。为了帮助学生找准题量的等量关系。我从学生喜欢的足球入手,引出数学问题,激发学生的学习数学的兴趣,建立学生热爱体育 1
运动的良好情感,又为学习新知识做了很多的铺垫。
二、放手让学生思考、解答,选择解题最佳方案。
让学生当小老师,从问题中找出数量之间的关系,弄清解决问题的思路,展示讲解自己的思考过程和结果,这样既增加学生学习的信心,又培养学生分析问题的.能力,发展学生的思维空间;然后,我大胆放手,让学生用自己学过的方法来解答例1,最后老师让学生把各种不同的解法板演在黑板上,让学生分析哪种解法合理,再从中选择最佳解题方案。这样既突出了最佳解题思路,又强化了列方程解题的优越性和解题的关键,促进了学生逻辑思维的发展。
三、教会学生学习方法,比教会知识更重要。
应用题的教学,关键是理清思路,教给方法,启迪思维,提高解题能力。这节课的教学中,教师敢于大胆放手,让学生观察图画,了解画面信息,白色皮多少块,黑色皮多少块,白色皮比黑色皮少多少等信息,组织学生小组讨论交流,再在练习本上画线段图,然后指导学生根据线段图,分析数量之间的关系,讨论交流解决问题的方法,让学生
成为学习的主人,参与到教学的全过程中去。所以在应用题的教学中,教师要指导学生 学会分析应用题的解题方法,一句话,教会学生学习方法比教会知识更重要,让学生真正成为学习的主体。教师是教学过程的组织者、引导者。
解方程的教学反思8
方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。一元一次方程是最简单、最基本的代数方程,它不仅在实际中有广泛的应用,而且是学习二元一次方程组、一元二次方程、分式方程等等知识的基础。解方程既是本章的重点,也为今后学习其他方程、不等式及函数有重要基础作用。为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的解法。并通过练习归纳掌握解方程的基本步骤和技能。
本节课的整体过程是这样的:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的'合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。
总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。由于时间的关系,本节课这一点做得还不够完善,可从学生的课堂练习中反应出来。再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。
总的来说,虽然课堂上同学们总结错误点总结得不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来的等式性质进行;第二,移项时符号还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。
我始终遵照“坚持启发式,反对注入式”的教学原则。即在课堂上,凡是学生自己努力能解的方程都应由学生自己解决完成。
解方程是重点,要求人人过关。通过实验教学,达到预期满意效果。不仅有利于学生的学习,更有利于教师的发展。
解方程的教学反思9
《解方程》这部分内容,是数与代数领域中的一个重要内容,是“代数”教学的起始单元,对于渗透与发展学生的代数思想有着极其重要的作用。
在开课时,通过复习哪些是方程,巩固方程的含义,为后面教学作铺垫。
教学时,我让学生自己说出推想过程,一边板书,一边指出解题的想法,然后着重讲解检验的方法及书写格式,并在后面的.巩固练习当中加入口答检验,根据课本上的“注意”强调说明虽然不要求每题都写出检验,但都要口算进行检验,使学生养成良好的学习习惯。
在出示概念时,先让学生自学了概念。自学完概念后,应让学生对两概念讲讲自己的理解,自己勾画出重点字,然后才是教师对概念重点的强调,这样更能区分两概念不同的含义,对难点的突破也是一个很好的方法,可以让学生将易混易错的地方,清楚理解后,明确两概念的区别,这点在课上忽略了。
在后面的反馈练习时,因前面例题的格式讲的还不够明确,所以练习时有点反复,但在后面的练习中学生已完全掌握。巩固练习的层次很好,由易到难,对学生的学习有突破,学生完成的正确率也很高。
这节课整体来说我比较满意,对于细节上的处理。在今后的教学中我会更加注意,使教学更加严谨,也会更注意教材的研读,争取上一节完美的好课。
解方程的教学反思10
这节课的内容包括两个方面:一是探索并理解“等式两边同时加上或减去同一个数,所得结果仍然是等式”;二是应用等式的性质解只含有加法和减法运算的简便方程。解方程是学生刚接触的新鲜知识,学生在知识经验的储备上明显不足,因此数学中老师要时刻关注学生的学习状态,引领学生经历将现实、具体的'问题加以数学化,引导学生通过操作、观察、分析和比较,由具体到抽象理解等式的性质,并应用等式的性质解方程。在这节课的教学中,让学生理解并掌握等式的性质应是解决一系列问题的关键。
一、让学生在操作中发现
课开始,老师出示天平并在两边各放一个50克的砝码,“你能用式子表示出两边的关系吗?”学生写出 50=50;老师在天平的一边增加一个20克砝码,“这时的关系怎么表示?”学生写出50+20>50,“这时天平的两边不相等,怎样才能让天平两边相等?”学生交流得出在天平的另一边增加同样重量的砝码;“你有什么发现吗?”“自己写几个等式看一看。”通过具体的操作为学生探究问题,寻找结论提供了真实的情境,辅以启发性、引领性的问题,让学生经历了解决问题的过程,并在问题的解决中发现并获得知识。
二、让学生在发现中操作
引入了等式的性质,其目的就是让学生应用这一性质去解方程,第一次学生解方程,学生心理上难免会有些准备不足,为了帮助学生应用等式的性质解方程,教者先利用天平所显示的数量关系,引导学生发现“在方程的两边都减去100,使方程的左边只剩下x”,通过这样有步骤的练习,帮助学生逐渐掌握解方程的方法。
解方程的教学反思11
本节课的教学重点和难点是:
理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点,因此我进行了大胆的尝试,在讲解方程的解时,新课程解方程教学与以往的最大不同就是,不是利用加减乘除各部分间的关系来解,而是利用天平保持平衡的原理,也就是我们常说的等式的基本性质解方程。教学中我先利用演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后出示例1,让学生列出方程x+3=9,用演示x+3个方块=9个方块,提问:“如果要称出x有多少块,改怎么办?”,引导学生思考,只要将天平两端同时减去3个方块,天平仍平衡,得到一个x相当于6个方块,从而得到x=6。你能把称的过程用算式表示出来吗?大部分学生快速的写出了我想要的答案:x+3-3=9-3,于是我问:为什么方程两边要同时减去3,而不减去其它数呢?
学生沉默,终于有两双小手举起来了,“为了得到一个x得多少”,我又强调了一遍,我们的目标是求一个x的多少,所以要把多余的3减去。在此基础上我引导学生总结天平保持平衡的道理,得到等式的基本性质:方程的两边同时加上或减去相同的数,除以或乘上同一个不为0的数,方程两边仍然相等。 另外我还要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。在做练习时我发现大部分的学生在解方程的时候,还是运用了加、减法各部分间的关系来求出方程中的'未知数,只有个别学生懂得运用等式的性质来求出方程中的未知数。在讲授“解方程”定义概念时,我主要从教材思想出发,通过让学生说出采用各自不同的方法求解方程的过程叫解方程,使方程左右两边相等的未知数的值,叫做方程的解。
解方程的教学反思12
这节课,先复习了方程的概念后,马上让学生说说方程需要满足几个条件,让学生意识到方程是一种特殊的未知数,然后出判断题,让学生进一步加深理解方程的意义,并让学生明白等式和方程的区别联系,紧接对有关方程的知识进行梳理,构建网络。并解决实际问题。
本节课的教学目标是结合具体情境,了解方程的含义以及会用方程表示简单情境中的等量关系。在教学的过程中,我设计导学案,先课件出示几个情境图,让学生从生活中的跷跷板引入,看清情境图。让孩子们从中找出数学信息,从而找到等量关系,让孩子用自己的语言进行描述,尝试着列出方程。知道了什么是等式,接着在交流书本的三个情境图,逐渐加大难度。多请几位孩子说说他们找到的等量关系。尝试列出等式。然后观察列出交流,从而知道含有未知数的等式叫方程。做练习进行巩固如何找等量关系,从而列出方程。本节课,我力求让学生通过自主探索,利用生活的例子,让每个学生都有观察、作分析、思考的机会,提供给学生一个广泛的,自由的活动空间,让学生大胆尝试,探索,感受数学的趣味。学生也都表现得比较积极,通过同桌交流等形式,找出等量关系,列方程时,同学们用不同的方式列出了式子,有些学生可能还受到旧知识的影响,把要求的`未知数单独放在了等式一边,当时我虽然告诉孩子们方程不能这样列,但从某些后进生做的练习来看要转变过来还是有些困难,我想,可能是我没能把书本第一个出现天平的情境图讲的还不够透彻,不能真正掌握找出等量关系的方法。整堂课当中,感觉对后进生的关注度不够,如果多加关注,可能可以找出错误资源,然后教师再加以引导,让同学们能更好的快速找出等量关系,更快的列出方程。最后,对自己比较不满意的是,1、学生说的问题与我设想的有出入。2、学生展示的时候不大胆。流程走完了,留给学生的空间太少了。
想让学生有个轻松愉悦的学习氛围,但可能我还需要一些时间,希望以后能上出让学生轻松愉悦的数学课。
解方程的教学反思13
五年级第四单元教材的设计打破了传统的教学方法。在以前人教版教材中,学着解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差等关系来求出方程中的未知数。而新教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。
在教学前,由于我个人比较偏好于传统的教学方法,总觉得用等式的性质解方程比较麻烦。为了转变自己的教学思想,更新教学观念,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学着的主人”和“教师是学着的.组织者、引导者与合作者”的这一角度上,()为学生创设学着此课的情境,通过直观演示,充分给学生提供小组交流的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学着活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。
解方程的教学反思14
本节课的内容包括两个方面:
一是理解“等式两边同时加上或减去同一个数,所得结果仍然是等式”
二是应用等式的性质解只含有加法和减法运算的简单方程。解方程是学生刚接触的新知识,学生原有的知识储备与生活经验不足,因此教学中老师要时刻关注学生的学习的情况,引导学生经历将现实生活问题加以数学化,引导学生通过操作、观察、分析和比较,由具体的知识渗透到抽象的去理解等式的性质,并应用等式的性质来解方程。在这节课的教学中,应让学生理解并掌握等式的性质,这是为学生后续学习方程打下较扎实的基矗
一、让学生通过动手、操作、观察中去发现等式的性质
老师先出示天平,并在天平两边各放一个20克的砝码,“你能用式子表示出两边的关系?”生写出20=20;教师在天平的一边增加一个10克砝码,“这时的关系怎么表示?”生写出20+10>20,“这时天平的两边不相等,怎样才能让天平两边相等?”生交流得出在天平的另一边增加同样重量的砝码;然后依次出现后续的三幅天平图,学生观察,教师板书,并组织学生小组讨论交流:“你有什么发现吗?”通过全班交流,在交流中教师应逐步提示,因为这是一个全新的知识,得出等式的性质。最后,让学生自己写几个等式看一看。通过具体的操作为学生探究问题,寻找结论提供了真实的情境,富有启发性、引领性,让学生经历了解决问题的过程,并在问题的解决中发现并掌握了知识。
二、让学生运用等式的性质解方程
引入了等式的性质,其目的就是让学生应用这一性质去解方程,第一次学习解方程,学生心理上难免会有些准备不足,为了帮助学生应用等式的性质解方程,课前布置了学生预习,课中我先让学生尝试练习,但巡视中发现学生没有根本理解,我就利用天平所显示的数量关系,引导学生发现“在方程的'两边都减去10,使方程的左边只剩下x”,并详细讲解解方程的书写格式,包括检验。通过这样有步骤的练习,帮助学生逐渐掌握解方程的方法。然后让学再次通过修正,试一试,巩固解方程的知识。本节课达到了预期的效果。
三、遗憾的是,由于星期一集体活动的冲突,导致今天的上课时间30分钟都不到,因此学生的交流显得不充分,教师的重点讲解显得不到位
解方程的教学反思15
这次教材的设计打破了传统的教学方法,在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用关系来求出方程中的未知数。而北师大版教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。
原来教学由于我个人比较偏好于传统的教学方法,在教学的过程中没有特别强调“等式”与由等式引申出来的`规律,从而也就影响了学生没能很好地理解等式的性质,所以大部分的学生在解方程的时候,还是运用了加、减法各部分间的关系来计算,只有极个别的学生懂得运用等式的性质来解决问题。在这次实验教学的过程中,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的这一角度上,为学生创设学习此课的情境,提供动手操作、实践以及小组合作、讨论的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都乘同一个数(或除以同一个不为0的数),等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。
尽管如此,仍然存在着许多不足,比如:在验证猜想时,应从一个一个具体的等式抽象到未知的等式,学生容易接受,而我是直接用抽象的等式验证的,学生不太容易接受。还有在解方程时,算理讲得不太清楚,学生在解方程时,有部分学困生学起来有困难。
在今后的教学中,一定要吃透教材,认真钻研教材,才能上出优质课。
【解方程的教学反思】相关文章:
《解方程》教学反思05-17
解方程教学反思02-05
《解方程》的教学反思04-08
解方程1教学反思05-18
《解方程二》教学反思03-28
数学解方程教学反思04-12
《解方程》教学反思15篇05-19
《解方程》教学反思(15篇)05-19
解方程的教学反思15篇03-10